-
早在1870年代,人类就在肿瘤中发现细菌,并尝试利用细菌治疗肿瘤[1]。近年来研究发现,癌症与微生物群之间存在关联,不同的癌细胞中存在着独特的细菌种群,乳腺癌中具有更多样化的细菌类型,如变形菌门和放线菌门等[2],而结直肠癌中厚壁菌门和拟杆菌门最为丰富[3]。研究发现,肿瘤内细菌的存在可能与肿瘤治疗效果有关,Fu等[4] 发现在生理条件下瘤内细菌增强了宿主细胞的生存能力,促进乳腺癌的转移和定植;细菌还在化疗药的耐药性方面发挥关键作用[5],胰腺癌中的细菌可以通过代谢产生的胞嘧啶脱氨酶使化疗药吉西他滨失活,导致化疗失败。研发时空特异性的抗肿瘤细菌进行癌症免疫治疗,为肿瘤治疗提供一个全新的治疗策略,因而备受关注。本文总结了癌症细菌免疫疗法的最新临床研究进展,讨论该研究领域的未来发展方向。
-
1 卡介苗(bacillus Calmette⁃Guérin,BCG)在临床治疗中的研究进展
-
BCG是由法国科学家Guérin和Calmette通过13 年的传代培养获得的减毒结核杆菌[6],长期以来, BCG 主要作为疫苗用于结核病的预防接种。1928 年,Pearl等[7] 发现结核病患者的膀胱癌发病率较低,随后科研人员尝试使用 BCG 膀胱灌注的方法治疗膀胱癌患者,并获得成功[8]。1990年,美国联邦药物管理局(Food and Drug Administration,FDA)批准 BCG用于膀胱原位癌的治疗,并成为非肌层浸润性膀胱癌(non muscle⁃invasive bladder cancer,NMIBC) 治疗的一线疗法。BCG 是迄今为止在癌症治疗中开展临床试验最多的细菌,被设计、改造成表达多种抗肿瘤蛋白的工程菌,以进一步提高其疗效。
-
VPM1002BC 是一株转基因 BCG[9],它将脲酶 C 基因替换成能破坏吞噬膜稳定性的李斯特溶菌素 hly基因,从而获得免疫原性更好、不良反应更低的改良型BCG。新近的一项Ⅰ/Ⅱ期单臂试验显示[10],对 BCG治疗后复发的患者使用改良的VPM1002BC后无复发率(relapse⁃free rate,RFR)为 49.3%,有近一半的患者没有再复发,并且 VPM1002BC 具有良好的耐受性和安全性。不同患者对 BCG 治疗的敏感性差异较大。对于单独使用BCG治疗无效的患者,联合免疫治疗方案可以提高膀胱内 BCG 疗法的反应率。白细胞介素⁃15(interleukin⁃15,IL⁃15)的超激动剂复合物N⁃803可促进自然杀伤细胞(natural killer cell,NK细胞)和CD8+ T细胞的增殖和活化、从而增强对肿瘤细胞的杀伤作用。Ⅰb期临床研究数据显示,接受 N⁃803 联合 BCG 膀胱内灌注治疗的 9 例患者在 6 年后均无复发,所有患者获得完全缓解 (complete response,CR)[11]。免疫抑制分子程序性死亡受体⁃1(programmed cell death protein 1,PD⁃1) 在肿瘤免疫逃逸中发挥重要作用[12],针对PD⁃1的抑制剂已应用于多种泌尿系统肿瘤中[13]。使用抗PD⁃ 1单克隆抗体Pembrolizumab(派姆单抗)作为肌层浸润性膀胱癌(muscle⁃invasive bladder cancer,MIBC)患者的辅助治疗手段,Ⅰ期临床研究[14] 结果表明BCG 和 Pembrolizumab 的联合治疗是安全的,并且 42% 的患者达到了主要研究终点——病理完全缓解。
-
2 李斯特菌(Listeria monocytogenes,Lm)在临床治疗中的研究进展
-
单核细胞增生Lm能将肿瘤抗原选择性的递送至主要组织相容性复合体⁃1 类(major histocompati⁃ bility complex⁃Ⅰ,MHC⁃Ⅰ)类和 MHC⁃Ⅱ类分子途径,并诱导 T 淋巴细胞对 Lm 呈递抗原的强烈反应[15-16]。将肿瘤相关抗原转入减毒 Lm 可以显著增强机体的免疫应答[17-18]。GVAX 是由粒细胞⁃巨噬细胞集落刺激因子组成的胰腺癌疫苗,可诱导T 淋巴细胞针对包括间皮素在内的肿瘤相关抗原产生免疫反应,与环磷酰胺(cyclophosphamide,Cy)联用可以抑制调节性 T 细胞(regulatory cell,Treg)功能,增强疫苗效果。CRS⁃207是一种分泌间皮素的减毒单核Lm,研究者发现在胰腺癌动物模型中使用 GVAX 和 CRS⁃207 可以产生协同抗肿瘤的效果,随后的临床研究数据表明单用GVAX治疗患者的中位总生存期(overall survival,OS)为4.6个月,而同时接受这两种肿瘤疫苗的患者的中位 OS 为 9.7 个月, CRS ⁃207 的加入可以显著延长胰腺癌患者的生存期[19]。在另外一项Ⅰb期临床研究中[20],研究人员在 35 例晚期恶性胸膜间皮瘤患者身上采用 CRS⁃ 207联合标准化疗(铂类+培美曲塞)的治疗方案,最终1例患者肿瘤完全消失,19例患者(89%)肿瘤明显缩小,10 例患者(29%)肿瘤稳定,中位无疾病进展生存时间(progression⁃free survival,PFS)为 7.5 个月,中位OS为14.7个月。
-
减毒基因重组 Lm ADXS11⁃001 能分泌李斯特溶血素O(LLO)、与人乳头瘤病毒(human papilloma virus,HPV)的E7致癌蛋白相结合,从而激活MHC⁃Ⅰ 类通路,临床用于治疗宫颈癌和头颈癌。ADXS11⁃ 001的一项Ⅱ期临床试验数据显示[21],在26例转移性或复发性的宫颈癌患者中,ADXS11⁃001 的治疗使 38.5% 的患者达到了 12 个月的 OS,并且治疗的耐受性良好,无严重不良反应。
-
3 沙门氏菌在临床治疗中的研究进展
-
减毒沙门氏菌是目前细菌抗肿瘤领域研究较多的一种兼性厌氧菌,它可以利用自身兼性厌氧的特点靶向肿瘤部位,在多种动物肿瘤模型中表现出了较好的抑瘤效果[22-23]。沙门氏菌可以作为药物载体递送核酸药物、肿瘤疫苗等,既可增强药物活性,同时又可降低药物毒性。此外,沙门氏菌偏爱肿瘤的乏氧和坏死区域,而传统放化疗则只能作用于血管丰富的肿瘤组织,将沙门氏菌治疗与传统疗法联用有望协同提高抗肿瘤效果[24]。VNP20009是缺失脂质 A 合成基因 msbB 和嘌呤合成基因purI的减毒沙门氏菌,在小鼠模型中具有良好的抑瘤效果[25]。 Ⅰ期临床试验结果显示[26],尽管 VNP20009 有较高的体内安全性,但只在部分患者的肿瘤部位出现了定植,而且没有观察到肿瘤的消退。为提高其治疗效果,研究者[27] 在 VNP20009 中转入大肠杆菌胞嘧啶脱氢酶的表达质粒,同时每日口服5⁃氟胞嘧啶(5⁃ fluorocytosine,5⁃FC),该酶能将无毒的5⁃FC 转化对肿瘤细胞有杀伤作用的5⁃氟尿嘧啶(5⁃fluorouracil, 5⁃FU),通过细菌瘤内给药的方式在3例患者身上进行了测试。在2例患者的肿瘤组织内观察到了细菌的定植,治疗后无不良反应,但没有观察到肿瘤的消退。尽管VNP20009在动物肿瘤模型中取得较好的抑瘤作用,但其临床试验均不理想。VNP20009 毒性基因的缺失可能与抗肿瘤效果的减弱有关,因此毒力的降低与临床疗效之间的平衡是细菌临床应用的重要挑战。
-
4 诺氏梭菌在临床治疗中的研究进展
-
Clostridium novyi⁃NT 是一株消除了α⁃毒素的减毒的诺氏梭菌[28],它是一种严格厌氧菌,肿瘤组织内部缺氧区域为Clostridium novyi⁃NT 提供了完美的生长环境,使其成为缺氧实体瘤的理想溶瘤菌。研究人员首先对16只自然发生肿瘤的狗进行了试验[29],瘤内注射Clostridium novyi⁃NT后,有6只狗产生了抗肿瘤反应。有 3 只显示肿瘤完全消除,另外 3 只肿瘤的大小减小了30%。随后研究人员对24例难治性实体瘤患者实施瘤内注射Clostridium novyi⁃NT孢子,Ⅰ期临床试验显示出 Clostridium novyi⁃NT 可控的不良反应,42%的患者出现了肿瘤消退[30]。Clos⁃ tridiumnovyi⁃NT的注射引发了短暂的全身细胞因子反应并增强了肿瘤特异性T细胞反应。另有一项使用Clostridium novyi⁃NT联合免疫检查点抑制剂Pem⁃ brolizumab( 派姆单抗)的抗肿瘤临床试验 (NCT03435952)正在进行中。
-
5 益生菌在临床治疗中的研究进展
-
益生菌是一类对宿主有益的活性微生物,其种类繁多,广泛应用于食品、医疗和保健领域,可调节人体免疫反应和胃肠道消化功能等[31-32]。研究表明益生菌可预防癌症的发生风险、增强化疗药物的作用,并降低癌症患者的放化疗不良反应[33-36]。抗癌药物与益生菌联合使用还会表现出更强的抗肿瘤效果[33,37-38]。最新的临床结果表明口服益生菌能够改善癌症患者的肠道菌群,并增强肿瘤免疫治疗的反应。在这项Ⅰ期临床试验中[39],研究人员对转移性肾细胞癌(metastatic renal cell carcinoma,mRCC) 患者使用免疫检查点抑制剂Nivolumab(纳武利尤单抗)加 Ipilimumab(伊匹木单抗)同时联合丁酸梭菌 (CBM588)治疗,单独免疫治疗组患者的中位无进展生存期为2.5个月,而辅以丁酸梭菌组的中位无进展生存期为12.7个月,联合治疗显著改善了mRCC患者的中位无进展生存期。目前,多个辅以益生菌的联合治疗方案正在开展中,如双歧杆菌、乳酸杆菌等 (NCT04131803、NCT03829111、NCT05220124、NCT03 358511、NCT05122546、NCT05032014、NCT05094167)。
-
已完成临床试验的抗肿瘤细菌疗法见表1。
-
6 总结与展望
-
近年来,靶向治疗和免疫治疗的发展为癌症患者带来了新希望,然而其不良反应以及肿瘤耐药性等问题仍然是临床面临的巨大挑战[40-41]。与传统疗法相比,细菌在肿瘤治疗中的优势在于能够靶向肿瘤并定植于肿瘤乏氧区域,从而增强对肿瘤细胞的特异性免疫识别和消除[42-43]。尽管细菌疗法在肿瘤临床治疗上初现成效,但其安全性仍存在疑虑、疗效尚待提升。与传统抗肿瘤药物不同,活体细菌可以在靶部位快速增殖,因此给药剂量无法反映出有效剂量,而给药方式、患者间的个体差异、肿瘤浸润性炎症细胞的存在等都会影响有效剂量[44]。考虑到细菌给药带来的可能感染风险,可以使用抗生素控制和消除细菌。此外,携带重组质粒的工程菌株可能出现的质粒丢失现象也会影响最终疗效。新近一项研究构建了集“免疫检查点阻断免疫疗法(抗PD⁃1 纳米抗体)⁃最早的细菌免疫疗法(溶瘤细菌)⁃免疫细胞疗法(巨噬细胞)”三种疗法于一体的“特洛伊木马”型巨噬细胞免疫治疗新方法,为细菌给药和疗效提升提供了全新思路[45]。由于肿瘤的异质性,单一的抗癌药物很难治愈肿瘤,因此细菌介导的癌症治疗与传统的化学疗法、放射疗法及免疫疗法相结合将获得更好的临床效果,也是未来临床试验开展的重要方向。
-
参考文献
-
[1] HEPPNER F,MÖSE J R.The liquefaction(oncolysis)of malignant gliomas by a non pathogenic Clostridium[J].Acta Neurochir(Wien),1978,42(1⁃2):123-125
-
[2] NEJMAN D,LIVYATAN I,FUKS G,et al.The human tu⁃ mor microbiome is composed of tumor type⁃specific intra⁃ cellular bacteria[J].Science,2020,368(6494):973-980
-
[3] BULLMAN S,PEDAMALLU C S,SICINSKA E,et al.Analysis of Fusobacterium persistence and antibiotic re⁃ sponse in colorectal cancer[J].Science,2017,358(6369):1443-1448
-
[4] FU A,YAO B,DONG T,et al.Tumor⁃resident intracellu⁃ lar microbiota promotes metastatic colonization in breast cancer[J].Cell,2022,185(8):1356-1372
-
[5] GELLER L T,BARZILY⁃ROKNI M,DANINO T,et al.Po⁃ tential role of intratumor bacteria in mediating tumor re⁃ sistance to the chemotherapeutic drug gemcitabine[J].Science,2017,357(6356):1156-1160
-
[6] ROSENTHAL S R.BCG vaccination against tuberculosis [J].Am Rev Respir Dis,1983,128(4):776
-
[7] PEARL R.On the pathological relations between cancer and tuberculosis[J].Exp Biol Med,1928,26(1):73-75
-
[8] LANGE C,AABY P,BEHR M A,et al.100 years of My⁃ cobacterium bovis bacille Calmette⁃Guérin[J].Lancet In⁃ fect Dis,2022,22(1):e2-e12
-
[9] RENTSCH C A,BOSSHARD P,MAYOR G,et al.Results of the phase I open label clinical trial SAKK 06/14 assess⁃ ing safety of intravesical instillation of VPM1002BC,a re⁃ combinant mycobacterium bacillus calmette guerin(BCG),in patients with non⁃muscle invasive bladder can⁃ cer and previous failure of conventional BCG therapy[J].Oncoimmunology,2020,9(1):1748981
-
[10] RENTSCH C A,THALMANN G N,LUCCA I,et al.A phase1/2 single⁃arm clinical trial of recombinant bacillus calmette ⁃ guerin(BCG)VPM1002BC immunotherapy in non⁃muscle⁃invasive bladder cancer recurrence after con⁃ ventional BCG therapy:SAKK 06/14[J].Eur Urol Oncol,2022,5(2):195-202
-
[11] ROSSER C J,TIKHONENKOV S,NIX J W,et al.Safety,tolerability,and long ⁃term clinical outcomes of an IL ⁃15 analogue(N ⁃803)admixed with bacillus calmette ⁃ guerin(BCG)for the treatment of bladder cancer[J].Oncoimmu⁃ nology,2021,10(1):1912885
-
[12] JIANG X,WANG J,DENG X,et al.Role of the tumor mi⁃ croenvironment in PD ⁃L1/PD ⁃1⁃mediated tumor immune escape[J].Mol Cancer,2019,18(1):10
-
[13] 任筱寒,王尚乾,秦超.免疫检查点抑制剂在泌尿系统恶性肿瘤中的应用[J].南京医科大学学报(自然科学版),2021,41(1):141-148
-
[14] BALAR A V,KAMAT A M,KULKARNI G S,et al.Pem⁃ brolizumab monotherapy for the treatment of high⁃risk non⁃ muscle ⁃ invasive bladder cancer unresponsive to BCG(KEYNOTE⁃057):an open⁃label,single⁃arm,multicentre,phase2 study[J].Lancet Oncol,2021,22(7):919-930
-
[15] D’ORAZIO S E F.Innate and adaptive immune respons⁃ es during listeria monocytogenes infection[J/OL].Micro⁃ biol Spectr,2019,7(3)[2023⁃02⁃01],DOI:10.1128/mi⁃ crobiolspec.GPP3⁃0065-2019
-
[16] HOWELL L M,FORBES N S.Bacteria ⁃ based immune therapies for cancer treatment[J].Semin Cancer Biol,2022,86(Pt 2):1163-1178
-
[17] RADOSHEVICH L,COSSART P.Listeria monocytogenes:towards a complete picture of its physiology and pathogen⁃ esis[J].Nat Rev Microbiol,2018,16(1):32-46
-
[18] OLADEJO M,PATERSON Y,WOOD L M.Clinical expe⁃ rience and recent advances in the development of listeria⁃ based tumor immunotherapies[J].Front Immunol,2021,(12):642316
-
[19] LE D T,WANG⁃GILLAM A,PICOZZI V,et al.Safety and survival with GVAX pancreas prime and listeria monocy⁃ togenes ⁃expressing mesothelin(CRS ⁃207)boost vaccines for metastatic pancreatic cancer[J].J Clin Oncol,2015,33(12):1325-1333
-
[20] HASSAN R,ALLEY E,KINDLER H,et al.Clinical re⁃ sponse of live⁃attenuated,listeria monocytogenes express⁃ ing mesothelin(CRS ⁃207)with chemotherapy in patients with malignant pleural mesothelioma[J].Clin Cancer Res,2019,25(19):5787-5798
-
[21] BASU P,MEHTA A,JAIN M,et al.A randomized phase2 study of ADXS11⁃001 listeria monocytogenes⁃listerioly⁃ sin O immunotherapy with or without cisplatin in treat⁃ ment of advanced cervical cancer[J].Int J Gynecol Can⁃ cer,2018,28(4):764-772
-
[22] PANGILINAN C R,WU L H,LEE C H.Salmonella im⁃ pacts tumor⁃induced macrophage polarization,and inhib⁃ its SNAI1⁃mediated metastasis in melanoma[J].Cancers(Basel),2021,13(12):2894
-
[23] MURAKAMI T,HIROSHIMA Y,MIYAKE K,et al.Effi⁃ cacy of tumor ⁃ targeting salmonella typhimurium A1 ⁃ R against malignancies in patient ⁃ derived orthotopic xeno⁃ graft(PDOX)murine models[J].Cells,2019,8(6):599
-
[24] MI Z,FENG Z C,LI C,et al.Salmonella⁃mediated cancer therapy:an innovative therapeutic strategy[J].J Cancer,2019,10(20):4765-4776
-
[25] LOW K B,ITTENSOHN M,LUO X,et al.Construction of VNP20009:a novel,genetically stable antibiotic⁃sensitive strain of tumor⁃targeting Salmonella for parenteral admin⁃ istration in humans[J].Methods Mol Med,2004,(90):47-60
-
[26] TOSO J F,GILL V J,HWU P,et al.Phase I study of the intravenous administration of attenuated Salmonella ty⁃ phimurium to patients with metastatic melanoma[J].J Clin Oncol,2002,20(1):142-152
-
[27] NEMUNAITIS.J,CUNNINGHAM.C,SENZER.N,et al.Pilot trial of genetically modified,attenuated Salmonella expressing the E.coli cytosine deaminase gene in refracto⁃ ry cancer patients[J].Cancer Gene Ther,2003,10(10):737-744
-
[28] DANG L H,BETTEGOWDA C,HUSO D L,et al.Combi⁃ nation bacteriolytic therapy for the treatment of experi⁃ mental tumors[J].Proc Natl Acad Sci U S A,2001,98(26):15155-15160
-
[29] ROBERTS N J,ZHANG L,JANKU F,et al.Intratumoral injection of Clostridium novyi⁃ NT spores induces antitu⁃ mor responses[J].Sci Transl Med,2014,6(249):249ra111
-
[30] JANKU F,ZHANG H H,PEZESHKI A,et al.Intratumor⁃ al injection of Clostridium novyi ⁃ NT spores in patients with treatment ⁃ refractory advanced solid tumors[J].Clin Cancer Res,2021,27(1):96-106
-
[31] SUEZ J,ZMORA N,SEGAL E,et al.The pros,cons,and many unknowns of probiotics[J].Nat Med,2019,25(5):716-729
-
[32] KIM S K,GUEVARRA R B,KIM Y T,et al.Role of pro⁃ biotics in human gut microbiome⁃associated diseases[J].J Microbiol Biotechnol,2019,29(9):1335-1340
-
[33] KAEID SHARAF L,SHUKLA G.Probiotics(Lactobacillus acidophilus and Lactobacillus rhamnosus GG)in conjunc⁃ tion with celecoxib(selective COX⁃2 inhibitor)modulated dmh⁃induced early experimental colon carcinogenesis[J].Nutr Cancer,2018,70(6):946-955
-
[34] AGAH S,ALIZADEH A M,MOSAVI M,et al.More pro⁃ tection of Lactobacillus acidophilus than Bifidobacterium bifidum probiotics on azoxymethane⁃induced mouse colon cancer[J].Probiotics Antimicrob Proteins,2019,11(3):857-864
-
[35] GURBATRI C R,LIA I,VINCENT R,et al.Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies[J].Sci Transl Med,2020,12(530):eaax0876
-
[36] SHI L,SHENG J,CHEN G,et al.Combining IL⁃2⁃based immunotherapy with commensal probiotics produces en⁃ hanced antitumor immune response and tumor clearance [J].J Immunother Cancer,2020,8(2):e000973
-
[37] SHARAF L K,SHARMA M,CHANDEL D,et al.Prophy⁃ lactic intervention of probiotics(L.acidophilus,L.rhamno⁃ sus GG)and celecoxib modulate Bax ⁃mediated apoptosis in 1,2 ⁃ dimethylhydrazine ⁃ induced experimental colon carcinogenesis[J].BMC Cancer,2018,18(1):1111
-
[38] LEE S H,CHO S Y,YOON Y,et al.Bifidobacterium bifi⁃ dum strains synergize with immune checkpoint inhibitors to reduce tumour burden in mice[J].Nat Microbiol,2021,6(3):277-288
-
[39] DIZMAN N,MEZA L,BERGEROT P,et al.Nivolumab plus ipilimumab with or without live bacterial supplemen⁃ tation in metastatic renal cell carcinoma:a randomized phase1 trial[J].Nat Med,2022,28(4):704-712
-
[40] MULLARD A.Addressing cancer’s grand challenges[J].Nat Rev Drug Discov,2020,19(12):825-826
-
[41] ZHANG X,CHEN X,GUO Y,et al.Dual gate⁃controlled therapeutics for overcoming bacterium⁃induced drug resis⁃ tance and potentiating cancer immunotherapy[J].Angew Chem Int Ed Engl,2021,60(25):14013-14021
-
[42] HUANG X,PAN J,XU F,et al.Bacteria⁃based cancer im⁃ munotherapy[J].Adv Sci(Weinh),2021,8(7):2003572
-
[43] CHOWDHURY S,CASTRO S,COKER C,et al.Program⁃ mable bacteria induce durable tumor regression and sys⁃ temic antitumor immunity[J].Nat Med,2019,25(7):1057-1063
-
[44] ZHOU S,GRAVEKAMP C,BERMUDES D,et al.Tumour⁃ targeting bacteria engineered to fight cancer[J].Nat Rev Cancer,2018,18(12):727-743
-
[45] WU L,LI L,LI S,et al.Macrophage⁃mediated tumor⁃tar⁃ geted delivery of engineered Salmonella typhi murium VNP20009 in anti⁃PD1 therapy against melanoma[J].Ac⁃ ta Pharm Sin B,2022,12(10):3952-3971
-
摘要
由于肿瘤及其微环境的复杂性,传统的癌症疗法存在严重局限,如药物响应性差、不良反应大、药物难以到达肿瘤深部、肿瘤易复发等。近年来,细菌介导的癌症免疫疗法以其独特的优势正引起人们的关注。该类细菌优先在肿瘤的缺氧区定植,通过重塑肿瘤免疫微环境、激活抗肿瘤免疫等多种机制杀伤肿瘤细胞。在此基础上,通过遗传工程技术构建重组抗肿瘤菌株,靶向肿瘤并在肿瘤核心区分泌治疗性蛋白或核酸药物,或与其他抗癌疗法联用,有望成为种新的癌症治疗策略。本文围绕已开展临床实验的抗肿瘤细菌,介绍不同抗肿瘤细菌的研究进展及其临床应用现状,为肿瘤的细菌免疫治疗提供新思路。
Abstract
Due to the complexity of tumor microenvironment,traditional cancer therapies have serious limitations,such as poor drug responsiveness,toxic side effects,difficulty in reaching deeper tumors,and tumors prone to recurrence. In recent years,bacterial - mediated cancer immunotherapy is attracting attention with its unique advantages. These bacteria preferentially colonize the hypoxic zone of tumors and kill tumor cells through various mechanisms,such as reshaping the tumor immune microenvironment and activating anti-tumor immunity. Based on this,genetic engineering techniques to construct recombinant antitumor strains that target tumors and secrete therapeutic proteins or nucleic acid drugs in the tumor core or in combination with other anticancer therapies are promising as a new cancer treatment strategy. This paper introduces the research progress of different antitumor bacteria and their clinical application status,and provides new ideas for bacterial immunotherapy of tumors.
Keywords
oncolytic bacteria ; BCG ; Listeria ; Salmonella ; Clostridia ; probiotics