en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

陈筱青,E-mail:xqchen@njmu.edu.cn

中图分类号:R563.8

文献标识码:A

文章编号:1007-4368(2023)07-945-09

DOI:10.7655/NYDXBNS20230707

参考文献 1
迟明,梅亚波,封志纯.新生儿急性呼吸窘迫综合征研究进展[J].中国当代儿科杂志,2018,20(9):724-728
参考文献 2
DE LUCA D,VAN KAAM A H,TINGAY D G,et al.The Montreux definition of neonatal ARDS:biological and clinical background behind the description of a new entity [J].Lancet Respir Med,2017,5(8):657-666
参考文献 3
中国医师协会新生儿科医师分会.“新生儿急性呼吸窘迫综合征”蒙特勒标准(2017年版)[J].中华实用儿科临床杂志,2017,32(19):1456-1458
参考文献 4
邹远霞,张家瑜,周波,等.新生儿急性呼吸窘迫综合征诊疗研究进展[J].医学研究杂志,2021,50(3):129-132
参考文献 5
MEYER N J,CALFEE C S.Novel translational approach⁃ es to the search for precision therapies for acute respirato⁃ ry distress syndrome[J].Lancet Respir Med,2017,5(6):512-523
参考文献 6
洪小杨,封志纯.重度儿科急性呼吸窘迫综合征临床救治的出路[J].中华儿科杂志,2018,56(5):324-326
参考文献 7
HONG X,ZHAO Z,LIU Z,et al.Venoarterial extracorpo⁃ real membrane oxygenation for severe neonatal acute re⁃ spiratory distress syndrome in a developing country[J].Front Pediatr,2020,8:227
参考文献 8
THOMPSON B T,CHAMBERS R C,LIU K D.Acute re⁃ spiratory distress syndrome[J].N Engl J Med,2017,377(6):562-572
参考文献 9
ZHU Z,LIANG L,ZHANG R,et al.Whole blood micro RNA markers are associated with acute respiratory dis⁃ tress syndrome[J].Intensive Care Med Exp,2017,5(1):38
参考文献 10
ZHOU H,CHANDA B,CHEN Y F,et al.Microarray and bioinformatics analysis of circular RNA differential ex⁃ pression in newborns with acute respiratory distress syn⁃ drome[J].Front Pediatr,2021,9:728462
参考文献 11
MATTHAY M A,ZEMANS R L,ZIMMERMAN G A,et al.Acute respiratory distress syndrome[J].Nat Rev Dis Primers,2019,5(1):18
参考文献 12
LUO J,CHEN J,LI Q,et al.Differences in clinical char⁃ acteristics and therapy of neonatal acute respiratory dis⁃ tress syndrome(ARDS)and respiratory distress syndrome(rds):a retrospective analysis of 925 cases[J].Med Sci Monit,2019,25:4992-4998
参考文献 13
中国新生儿急性呼吸窘迫综合征研究协作组基于蒙特勒标准诊断新生儿急性呼吸窘迫综合征多中心横断面调查和影响因素分析[J].中国循证儿科杂志,2018,13(1):70-74
参考文献 14
KITSIOS G D,YANG L,MANATAKIS D V,et al.Host ⁃ response subphenotypes offer prognostic enrichment in patients with or at risk for acute respiratory distress syn⁃ drome[J].Crit Care Med,2019,47(12):1724-1734
参考文献 15
李雯,戚迪,陈兰,等.Vaspin通过PI3K/Akt通路发挥抗炎及血管内皮保护作用减轻脂多糖致急性呼吸窘迫综合征小鼠肺损伤[J].南方医科大学学报,2018,38(3):283-288
参考文献 16
FAN S,QI D,YU Q,et al.Intermedin alleviates the in⁃ flammatory response and stabilizes the endothelial barrier in LPS ⁃induced ARDS through the PI3K/Akt/eNOS sig⁃ naling pathway[J].Int Immunopharmacol,2020,88:106951
参考文献 17
WANG X,ZHANG C,ZOU N,et al.Lipocalin⁃2 silencing suppresses inflammation and oxidative stress of acute re⁃ spiratory distress syndrome by ferroptosis via inhibition of MAPK/ERK pathway in neonatal mice[J].Bioengi⁃ neered,2022,13(1):508-520
参考文献 18
CHEN Z,DONG W H,CHEN Q,et al.Downregulation of miR ⁃ 199a ⁃ 3p mediated by the CtBP2 ⁃ HDAC1 ⁃ FOXP3 transcriptional complex contributes to acute lung injury by targeting NLRP1[J].Int J Biol Sci,2019,15(12):2627-2640
参考文献 19
NING L,RUI X,GUORUI L,et al.A novel mechanism for the protection against acute lung injury by melatonin:mitochondrial quality control of lung epithelial cells is preserved through SIRT3 ⁃ dependent deacetylation of SOD2[J].Cell Mol Life Sci,2022,79(12):610
参考文献 20
WANG B,LIN Y,ZHOU M,et al.Polysaccharides from tetrastigma hemsleyanum diels et gilg attenuate LPS ⁃in⁃ duced acute lung injury by modulating TLR4/COX⁃2/NF⁃ κB signaling pathway[J].Biomed Pharmacother,2022,155:113755
参考文献 21
MORTAZ E,TABARSI P,JAMAATI H,et al.Increased serum levels of soluble TNF⁃α receptor is associated with ICU mortality in COVID⁃19 patients[J].Front Immunol,2021,12:592727
参考文献 22
PROUDFOOT A,BAYLIFFE A,O’KANE C M,et al.Novel anti⁃tumour necrosis factor receptor⁃1(TNFR1)do⁃ main antibody prevents pulmonary inflammation in exper⁃ imental acute lung injury[J].Thorax,2018,73(8):723-730
参考文献 23
SINHA P,WARE L B.Selective tumour necrosis factor re⁃ ceptor ⁃1 inhibition in acute lung injury:a new hope or a false dawn?[J].Thorax,2018,73(8):699-701
参考文献 24
TRIPATHI R,HOSSEINI K,ARAPI V,et al.SLC38A10(SNAT10)is located in ER and golgi compartments and has a role in regulating nascent protein synthesis[J].Int J Mol Sci,2019,20(24):6265
参考文献 25
TRIPATHI R,AGGARWAL T,FREDRIKSSON R.SLC38A10 transporter plays a role in cell survival under oxidative stress and glutamate toxicity[J].Front Mol Bios⁃ ci,2021,8:671865
参考文献 26
CHEN L L.The expanding regulatory mechanisms and cellular functions of circular RNAs[J].Nat Rev Mol Cell Biol,2020,21(8):475-490
参考文献 27
LU S,WU X,XIN S,et al.Knockdown of circ_0001679 alleviates lipopolysaccharide ⁃induced MLE ⁃ 12 lung cell injury by regulating the miR ⁃338⁃3p/mitogen ⁃activated protein kinase 1 axis[J].Bioengineered,2022,13(3):5803-5817
参考文献 28
KE J,CHEN M,MA S,et al.Circular RNA VMA21 ame⁃ liorates lung injury in septic rat via targeting microRNA ⁃ 497⁃5p/CD2⁃ associated protein axis[J].Bioengineered,2022,13(3):5453-5466
参考文献 29
XU F,CHEN R,SHEN Y,et al.CircUBXN7 suppresses cell proliferation and facilitates cell apoptosis in lipopoly⁃ saccharide⁃induced cell injury by sponging miR⁃622 and regulating the IL6ST/JAK1/STAT3 axis[J].Int J Bio⁃ chem Cell Biol,2022,153:106313
参考文献 30
YANG C L,YANG W K,HE Z H,et al.Quietness of cir⁃ cular RNA circ_0054633 alleviates the inflammation and proliferation in lipopolysaccharides ⁃ induced acute lung injury model through NF⁃κB signaling pathway[J].Gene,2021,766:145153
参考文献 31
JIANG Y,ZHU F,WU G S,et al.Microarray and bioinfor⁃ matics analysis of circular RNAs expression profile in traumatic lung injury[J].Exp Ther Med,2020,20(1):227-234
参考文献 32
GUO W,WANG Z,WANG S,et al.Transcriptome se⁃ quencing reveals differential expression of circRNAs in sepsis induced acute respiratory distress syndrome[J].Life Sci,2021,278:119566
参考文献 33
WANG J,ZHANG Y,ZHU F,et al.CircRNA expression profiling and bioinformatics analysis indicate the poten⁃ tial biological role and clinical significance of circRNA in influenza A virus⁃induced lung injury[J].J Biosci,2021,46(2):38
参考文献 34
LIN Q,LIANG Q,QIN C,et al.CircANKRD36 Knock⁃ down suppressed cell viability and migration of lps⁃stimu⁃ lated RAW264.7 cells by sponging MiR⁃330[J].Inflam⁃ mation,2021,44(5):2044-2053
目录contents

    摘要

    目的:基于人环状RNA(circular RNA,circRNA)高通量测序和生物信息学分析结果,研究hsa_circ_0005389与新生儿急性呼吸窘迫综合征(neonatal acute respiratory distress syndrome,NARDS)的关系,以期为NARDS的诊断和治疗提供新的方向。方法:建立脂多糖(lipopolysaccharide,LPS)诱导急性肺损伤细胞模型。通过 RT-qPCR及Western blot检测炎性标志物及相关通路指标在阴性对照组和敲低 hsa_circ_0005389 表达的干预组中的表达变化情况,同时用CCK-8与流式细胞仪检测正常 A549细胞与建立急性肺损伤模型的 A549 细胞敲低或者过表达 hsa_circ_0005389后的增殖与凋亡情况。结果:RT-qPCR及 Western blot结果显示,A549 细胞暴露于10 μg/cm2 LPS 48 h时,各炎性标志物及相关通路指标高表达(P < 0.05)。与阴性对照组相比,敲低 hsa_circ_0005389 表达后,A549 细胞中可溶性肿瘤坏死因子受体 1(soluble tumor necrosis factor receptor 1, sTNFR1)mRNA 相对表达量和肿瘤坏死因子-α(tumor necrosis factor α,TNF-α)蛋白表达量显著降低(P < 0.05);在急性肺损伤模型中,敲低hsa_circ_0005389表达后,各炎性标志物及相关通路指标mRNA相对表达量均下降(P < 0.001)。CCK-8与流式细胞仪检测结果显示,与阴性对照组相比,敲低hsa_circ_0005389表达的A549 细胞增殖加快,凋亡率降低(P < 0.05),而过表达 hsa_circ_0005389后A549细胞增殖减慢,凋亡率增加(P < 0.05)。结论:急性肺损伤细胞模型中,hsa_circ_0005389促进肺损伤炎性标志物的表达,并且影响肺上皮细胞的增殖和凋亡,提示hsa_circ_0005389 参与NARDS的炎症过程,可能是NARDS潜在的干预靶标。

    Abstract

    Objective:The current study aims to investigate the relationship between hsa_circ_0005389 and neonatal acute respiratory distress syndrome(NARDS)based on high - throughput sequencing and bioinformatics analysis of human circular RNA (circRNA)to provide a new direction for the diagnosis and treatment of NARDS. Methods:The acute lung injury model was induced by lipopolysaccharide(LPS). The expression of inflammatory markers and related pathway indexes were detected by RT - qPCR and Western blot in the negative control group and the intervention group with knockdown of hsa_circ_0005389 expression. CCK -8 and flow cytometry were used to detect the proliferation and apoptosis of blank A549 cells and A549 cells with establishment of acute lung injury model,both of which were knocked-down or over-expressed hsa_circ_0005389. Result:The mRNA relative expression and the protein expression of inflammatory markers and related pathway indexes were highly expressed and increased significantly after exposed to 10 μg/cm2 LPS for 48 h(P < 0.05). Compared with the negative control group,the relative mRNA expression level of soluble tumor necrosis factor receptor 1(sTNFR1)and the protein expression of tumor necrosis factor α(TNF-α)in A549 cells were significantly decreased(P < 0.05)after knocking down the expression of hsa_circ_0005389. Inflammatory markers and related pathway indexes decreased significantly(P < 0.001)in the acute lung injury model after knocking down the express of hsa_circ_ 0005389. The proliferation of A549 cells were accelerated and the apoptosis rate was decreased(P < 0.05)when the expression of hsa_circ_0005389 was down - regulated,while the proliferation of A549 cells was slowed down and the apoptosis rate was increased after hsa_circ_0005389 expression was over - regulated(P < 0.05)by using CCK -8 and flow cytometry as compared with the negative control group. Conclusion:In acute lung injury cell model,hsa_circ_0005389 promoted the expression of inflammatory markers of lung injury,affecting the proliferation and apoptosis of lung epithelial cells. These results suggested that hsa_circ_0005389 was involved in the inflammatory process of NARDS,which may be a potential intervention target.

  • 新生儿急性呼吸窘迫综合征(neonatal acute respiratory distress syndrome,NARDS)是一种以肺泡损伤和免疫细胞浸润为特征的、威胁生命的严重呼吸系统疾病,其病理特征是炎症增加微血管通透性导致肺泡内富含蛋白质的液体渗出,从而引发顽固性低氧血症[1]。该病于1989年被首次定义,2017年 Montreux标准重新定义了NARDS,将其与新生儿呼吸窘迫综合征(neonatal respiratory distress syndrome, NRDS)和新生儿短暂性呼吸急促(transient tachy⁃ pnoea of the neonate,TTN)区分开来,为早期诊断提供了依据[2-3]。目前对于 NARDS 的管理,主要采用对因治疗,在施以呼吸支持和气管内注入肺泡表面活性剂治疗的基础上,积极寻找病因,对于肺内原因应尽早查清病原体或吸入证据,对于肺外原因应及时给予多器官支持手段,实现治疗的整体性,真正改善预后[4-7]。NARDS 过程复杂,常伴有弥漫性肺泡损伤(diffuse alvelar damage,DAD)和全身炎症反应综合征,可以引起或加重肺上皮和血管内皮的损伤和炎症[8],因此NARDS的早期诊断和及时治疗很重要。然而有关NARDS治疗的深入研究却滞后于成人和儿童。先前研究表明NARDS中存在差异表达的环状RNA(circular RNA,circRNA),并可能参与 NARDS 的发病机制;此外有研究表明,多种小 RNA(microRNA,miRNA)参与 NARDS 的发病机制,并在其病理过程中发挥着不同的作用[9]。在先前的研究中,本课题组对患有NARDS以及仅患有高胆红素血症的新生儿血标本进行人类高通量 circRNA微阵列分析,发现hsa_circ_0005389在两组间的表达差异 23.9 倍,并且在 NARDS 患儿组中表达量增加[10]。故本研究在人类circRNA高通量芯片测序和相关生物信息学分析的基础上研究 hsa_circ_0005389 与 NARDS 之间的联系,以期为 NARDS的治疗提供新方向。

  • 1 材料和方法

  • 1.1 材料

  • DMEM(南京凯基生物);胎牛血清(BI 公司,南美);青链霉素双抗、胰蛋白酶消化液、DEPC 水、 SDS⁃PAGE 凝胶试剂盒(上海碧云天);PBS 缓冲液(南京森贝伽);LipofectamineTM 3000、TRIzol(Invitrogen 公司,美国);脂多糖(lipopolysaccharide,LPS)(Sigma 公司,美国);mRNA逆转录试剂盒、实时荧光定量试剂盒、CCK⁃8 试剂盒(南京诺维赞);ECL化学发光试剂盒(合肥白鲨生物科技有限公司);PI3K抗体(CST 公司,美国);肿瘤坏死因子(tumor necrosis factor α, TNF⁃α)抗体、β⁃actin抗体(沈阳万类生物科技有限公司);白细胞介素(interleukin,IL)⁃6 抗体(北京 Proteintech公司);山羊抗兔IgG、山羊抗小鼠IgG(北京中杉金桥生物技术有限公司);流式细胞凋亡检测试剂盒(杭州联科生物公司);RNA荧光原位杂交试剂盒(上海吉玛基因生物有限公司)。

  • 1.2 方法

  • 1.2.1 细胞培养和转染

  • 人肺泡上皮细胞(A549)购自上海生命科学研究院,在6孔板中加入添加 10%胎牛血清和青链霉素(100 U/mL)的 DMEM 培养液并放置于 37℃、5% CO2 培养箱中培养。通过 LipofectamineTM 3000 将 siRNA(si ⁃ hsa_circ_0005389)或其阴性对照序列 (NC)3.75 μL、过表达质粒或其对照 Vector(2.5 μg) 转染A549细胞。24 h后更换完全培养基,培养48 h 或加LPS培养48 h。siRNA、NC、Vector 及过表达质粒均购于上海吉玛基因生物有限公司。

  • 1.2.2 核质分离

  • 将A549用1 mL PBS重悬后留取200 μL作为对照组,剩余细胞用液氮速冻,37℃水浴快速溶解,反复3次后离心,辅以不同蔗糖密度梯度达到分离的效果,上清为细胞质,沉淀为细胞核,分别提取细胞质RNA、细胞核RNA,提取后的RNA进行逆转录以及RT⁃qPCR用于检测hsa_circ_0005389在细胞质以及细胞核中的相对表达量。

  • 1.2.3 荧光原位杂交

  • 从上海吉玛制药技术有限公司处购得带Cy3荧光的 hsa_circ_0005389 探针及试剂盒,按照说明书完成此实验。

  • 将适当数量的 A549 细胞接种于 48 孔板,24 h 后 PBS 洗涤 2 次,每孔加入 100 μL 0.1% Buffer A,室温孵育 15 min,PBS 洗涤 2 次后加入 100 μL 2× Buffer C,37℃培养箱放置 30 min;Buffer E 在 73℃ 水浴锅孵育 30 min 后加入稀释后的探针中,继续 73℃变性 5 min;吸弃 Buffer C,每孔加入 100 μL 探针混合液,避光37℃培养箱杂交过夜;次日吸弃探针混合液,每孔加入100 μL 42℃预热的0.1%Buffer F洗涤5 min,每孔加入100 μL 42℃预热的2×Buffer C 洗涤 5 min,吸弃 Buffer C 后进行 DAPI 避光染色 20 min,PBS洗涤2次,置于显微镜下观察。

  • 1.2.4 细胞增殖与凋亡测定

  • 按照 1.2.1 中所述方法转染 siRNA、NC、Vector、过表达质粒,测定起始吸光度,待细胞生长(不加或加入LPS)1、2、3 d后更换为无血清培养基且每孔加 10 μL CCK⁃8,孵育 1 h,测定 450 nm 处的吸光度。另外,将已转染A549细胞再培养48 h,收集上清后消化离心至5 mL EP管,按照细胞凋亡试剂盒说明书步骤测定凋亡程度。

  • 1.2.5 Western blot

  • 使用 RIPA 裂解缓冲液从 A549 细胞中提取总蛋白。将 5 μL 蛋白样品通过 10% SDS⁃PAGE 凝胶分离并印迹在PVDF 膜上,随后用TBST 配制的5% 脱脂奶粉溶液将膜封闭2 h阻断非特异性位点。加入抗 IL⁃6、抗 PI3K、抗 TNF⁃α和抗β⁃actin 4℃冰箱孵育过夜。次日 TBST 洗涤 3 次后用山羊抗兔 IgG 或山羊抗小鼠 IgG 孵育 1.5 h。最后加入 ECL 化学发光试剂,通过 Tanon 5200 Multi 仪器进行曝光扫描。

  • 1.2.6 实时定量PCR(RT⁃qPCR)

  • 用TRIzol提取A549细胞总RNA,通过NanoDrop ND⁃1000 进行 RNA 质控,合格后进行逆转录。将 cDNA(1 μL)与按照PCR试剂盒说明书配制的反应体系(4 μL)混合,于LightCycler480II仪器运行PCR 试剂盒程序,测定相应 mRNA 相对表达量(计算方法为2-ΔΔCT)。所用引物序列见表1。

  • 表1 RT⁃qPCR引物

  • Table1 RT⁃qPCR primers

  • 1.3 统计学方法

  • 使用SPSS 17.0和GraphPad Prism 9.0版软件对数据进行分析。各种实验均重复至少3次,定量数据以平均值 ± 标准差(x-±s)表示,3 组独立样本之间的差异采用重复测量方差分析检验,SNK法进行两两比较。P <0.05为差异有统计学意义。

  • 2 结果

  • 2.1 A549细胞中hsa_circ_0005389的表征

  • 检索从 circBase 数据库网站(http://www.circ⁃ base.org/)及 circprimer 1.2.0.5 版软件可知 hsa_circ_ 0005389位于17号染色体,由多个外显子剪接而成,亲本基因为SLC38A10,包含409个碱基。为了进一步了解 hsa_circ_0005389,对未用 LPS 处理的 A549 细胞(空白组)与 LPS 处理的 A549 细胞(LPS 组) 进行 hsa_circ_0005389 荧光原位杂交分析,无论是空白组还是 LPS 组均提示 hsa_circ_0005389 在 A549 细胞中表达(图1A),另结合核质分离实验提示 hsa_circ_0005389 主要在 A549 细胞质中表达 (图1B)。

  • 2.2 急性肺损伤细胞炎症模型的建立

  • 以LPS(10 μg/cm2)作用于A549细胞不同时间,如图2A所示,A549细胞暴露于LPS(10 μg/cm2)48 h 后,CCK⁃8结果显示与不加LPS的对照组比较,细胞活力显著降低,差异有统计学意义(P <0.01)。将 A549 细胞于不同浓度的 LPS 中暴露 48 h,图2B~G 所示,10 μg/cm2 处理组各炎性标志物和相关通路指标的表达最高,与对照组比较,差异均具统计学意义(P <0.001),且 10 μg/cm2 处理组 hsa_circ_ 0005389的表达也最高(P <0.001)。如图2H所示,所选研究指标的蛋白表达量在 10 μg/cm2 处理组均升高(P <0.05)。

  • 图1 A549细胞中hsa_circ_0005389的表征

  • Figure1 Characterization of hsa_circ_0005389 in A549 cells

  • 图2 LPS诱导急性肺损伤细胞炎症模型的建立

  • Figure2 Establishment of LPS⁃induced cell inflammation model of acute lung injury

  • 2.3 敲低hsa_circ_0005389可降低炎症标志物的表达

  • 转染 si ⁃ hsa_circ_0005389 后 hsa_circ_0005389 表达降低,并且在LPS诱导的肺损伤A549细胞炎症模型中同样有效(P <0.001,图3A、B)。与空白组及阴性对照组相比,敲低 hsa_circ_0005389 表达后 sTNFR1 mRNA下降最为明显,差异具有统计学意义 (P <0.001,图3C),同时TNF⁃α 蛋白表达量较阴性对照组明显降低(P <0.001,图3D);如图3E 所示,建立 A549 细胞肺损伤炎症模型(10 μg/cm2 LPS 作用 48 h)后,与 NC + LPS 组相比,敲低 hsa_circ_ 0005389表达的干预组炎性标志物及相关通路指标显著下降(P均 <0.001)。

  • 图3 敲低hsa_circ_0005389后炎症标志物及相关通路指标的表达

  • Figure3 The expression of inflammatory markers and related pathway indicators after hsa_circ_0005389 knockdown

  • 2.4 敲低/过表达 hsa_circ_0005389 对 A549 细胞增殖及凋亡的影响

  • 与阴性对照组相比,敲低 hsa_circ_0005389 后 A549细胞于2 d开始出现增殖加快,差异有统计学意义(P <0.05,图4A);而LPS诱导的肺损伤A549细胞炎症模型中,与阴性对照组相比,培养3 d的干预组表现出增殖加快,差异具有统计学意义(P <0.001,图4B)。同时,与阴性对照组的凋亡率相比,敲低 hsa_circ_0005389表达的siRNA组的凋亡率降低;在 LPS诱导的肺损伤A549细胞炎症模型中,与阴性对照组的凋亡率相比,敲低 hsa_circ_0005389 表达的 siRNA 组的凋亡率显著降低(P <0.01,图4C、D)。过表达 hsa_circ_0005389 后 A549 细胞中 hsa_circ_ 0005389 的相对表达量升高(P <0.001,图4E)。相对于阴性对照组,过表达 hsa_circ_0005389 后增殖于2 d开始减慢,差异有统计学意义(P <0.01,图4F); 在 LPS 诱导的肺损伤 A549 细胞炎症模型中,相比于阴性对照组,培养 2、3 d 的干预组表现出增殖抑制,差异具有统计学意义(P <0.001,图4G)。与过表达的阴性对照的凋亡率相比,过表达 hsa_circ_ 0005389 后凋亡率升高;同时在 LPS 诱导的肺损伤 A549细胞炎症模型中,相比于阴性对照组,过表达 hsa_circ_0005389 后凋亡率进一步增加(P <0.05,图4H、I)。

  • 3 讨论

  • NARDS是常发生于足月儿及晚期早产儿的一种严重威胁生命的呼吸危重症,由宫内外多种因素引起[11-13],本课题组在之前的研究中发现hsa_circ_ 0005389 在 NARDS 中位于上调 circRNA 表达谱前列[10],同时在人血样本中通过 qPCR 分析表明 hsa_circ_0005389在NARDS中表达增加。hsa_circ_ 0005389 是 SLC38A10 pre⁃mRNA 反向剪接的产物,它的功能以及在NARDS中发挥的作用尚不清楚。

  • 图4 敲低/过表达hsa_circ_0005389对A549细胞增殖及凋亡的影响

  • Figure4 Effects of knockdown/overexpression of hsa_circ_0005389 on proliferation and apoptosis in A549 cells

  • 现阶段,有文章指出 IL⁃6、IL⁃8、可溶性肿瘤坏死因子受体1(soluble tumor necrosis factor receptor 1, sTNFR1)为ARDS炎性标志物[1114];同时,在差异表达的circRNA的亲本基因谱的KEGG通路富集分析 (Kyoto Encyclopedia of Genes and Genomes,KEGG) 中有 PI3K/Akt 信号通路富集,另外也有文章指出 PI3K/Akt通路在LPS诱导的急性炎症反应中扮演重要角色[15-16],故而研究中将 IL ⁃ 6、IL ⁃ 8、sTNFR1、 PI3K、Akt、TNF⁃α作为NARDS炎性标志物。

  • 急性肺损伤A549细胞炎症模型的建立是研究基础,本研究采用 LPS 诱导的急性肺损伤细胞模型。首先,LPS 暴露时间的确定:参考 Wang 等[17] 的文章建立鼠模型时采用的是 48 h、转染后蛋白表达含量改变时间、CCK⁃8 功能实验结果中细胞增殖开始出现差异的时间为 48 h。其次,LPS 暴露浓度的确定:研究中设置不同 LPS 暴露浓度梯度 (0、5、10、15、20、25 μg/cm2),观察 hsa_circ_0005389 与NARDS 炎性标志物和相关通路指标的mRNA及蛋白变化,最终建立LPS 诱导的急性肺损伤A549细胞模型(10 μg/cm2 作用 48 h)。

  • LPS诱导的急性肺损伤模型是研究中常见的诱导方式,多数研究选用小鼠/大鼠体内注射 LPS 建立急性肺损伤体内模型,其中有部分研究选用LPS 诱导的 A549 细胞系建立体外模型。Chen 等[18] 在 2022年发表的文章中利用LPS(200 ng/mL)2 h诱导急性肺损伤;Ning等[19] 研究中采用的细胞模型是A549 细胞系暴露于LPS(100 μg/mL)6 h后建立;在另外一篇研究报道中,使用LPS刺激(20 μg/mL)24 h 诱导急性肺损伤[20]。以上研究中LPS使用的浓度和时间都存在差异,与本研究采用的 LPS(10 μg/mL)48 h 也不相同,这可能与研究目的不同有关,另外即使是相同的细胞系在不同生长环境中细胞状态也有所不同,或者因为使用的LPS厂家和货号不同,药物溶解和稀释时产生的误差等。NARDS和新生儿急性肺损伤具有性质相同的病理变化,且都是全身炎症反应的肺部表现,因此本研究采用LPS诱导的急性肺损伤模型作为体外研究的细胞炎症模型。

  • 敲低 hsa_circ_0005389 表达的 A549 细胞中 sTNFR1 mRNA 相对表达量及TNF⁃α 蛋白表达量显著降低。sTNFR1是TNFR1胞外域的蛋白水解裂解 (脱落)产生的仍然能够与 TNF⁃α 结合的同源可溶性受体,与TNF⁃α在炎症中均有着不可或缺的作用,其表达水平与炎症的程度存在相关关系[21],有文章指出抗sTNFR1药物治疗可抑制肺损伤中的炎症反应[22⁃23];同时,在敲低hsa_circ_0005389表达的A549 细胞上建立急性肺损伤细胞炎症模型,每一个炎性指标都出现明显降低,更进一步说明了 hsa_circ_ 0005389 与炎症过程的正向调节作用。另外, hsa_circ_0005389的亲本基因溶质载体家族38成员 10(solute carrier family 38 member 10,SLC38A10)在垂体、肾上腺、胃和上消化道中表达,是一种氨基酸转运蛋白,可能参与内分泌代谢轴,对细胞的增殖、新蛋白质的合成以及氧化应激起着支持作用[24-25]。敲低 hsa_circ_0005389 表达的 A549 细胞的 CCK ⁃8 增殖及凋亡测定结果也证实hsa_circ_0005389具有抑制增殖与促进凋亡的功能。同时过表达 hsa_circ_0005389的A549细胞CCK⁃8增殖及流式凋亡测定结果进一步证实以上结果。上皮细胞的损伤修复能力关系到NARDS的严重程度,但是内源性修复机制被特异性抑制[11],且启动修复过程对 NARDS 的预后至关重要[8]。这无形中佐证了 hsa_circ_0005389的促炎作用。

  • circRNA 被发现的作用机制有很多种,它可以通过吸附miRNA来调控下游mRNA,或者通过结合蛋白质来影响其功能,或者直接参与基因转录调控发挥作用[26]。在以往相似的研究中,关于 circRNA 发挥作用的机制有较为完善的探究,如 Lu 等[27] 报道敲低circ_0001679通过调节miR⁃12⁃338p/丝裂原活化蛋白激酶 1 来减轻肺损伤;Ke 等[28] 研究表明 circRNA VMA21通过靶向microRNA⁃497⁃5p/CD2改善化肺损伤。相比于此类研究,本研究存在两处不足:首先 hsa_circ_0005389 的下游靶基因以及作用通路尚未明确;其次,虽已证实过表达 hsa_circ_ 0005389后对A549细胞增殖和凋亡的作用,但未能阐明相关炎症标志物表达的动态变化。

  • 现有研究已经表明circRNA在LPS诱导的急性呼吸窘迫综合征[29]、急性肺损伤[30]、创伤性肺损伤[31] 等肺损伤疾病中发挥作用,但在 NARDS 中,本研究基于前期研究,第一次阐述 circRNA 在 NARDS 中的作用,在 NARDS 中首次检测出差异表达的circRNA表达谱。在成人肺损伤疾病中,circRNA 可作为诊断或者疾病预后的潜在生物标志[32-33],在 NARDS中,hsa_circ_0005389 可能作为潜在生物标志预测疾病预后或者作为诊断标准。另外先前研究表明 miRNA 在 ALI 的发展和治疗中发挥着重要作用,circRNA作为miRNA的海绵提供了一种新的治疗思路,目前关于在急性呼吸窘迫综合征/急性肺损伤[2934] 中 circRNA 的作用机制已有初步研究,但是关于circRNA具体的分子机制和生物学功能仍需大量工作,并且在临床中验证。

  • 综上所述,本研究表明hsa_circ_0005389对LPS 诱导的 A549 细胞急性肺损伤模型有促炎作用,是 NARDS诊断和治疗的潜在靶标,其下游分子生物学机制通路有待进一步研究。

  • 参考文献

    • [1] 迟明,梅亚波,封志纯.新生儿急性呼吸窘迫综合征研究进展[J].中国当代儿科杂志,2018,20(9):724-728

    • [2] DE LUCA D,VAN KAAM A H,TINGAY D G,et al.The Montreux definition of neonatal ARDS:biological and clinical background behind the description of a new entity [J].Lancet Respir Med,2017,5(8):657-666

    • [3] 中国医师协会新生儿科医师分会.“新生儿急性呼吸窘迫综合征”蒙特勒标准(2017年版)[J].中华实用儿科临床杂志,2017,32(19):1456-1458

    • [4] 邹远霞,张家瑜,周波,等.新生儿急性呼吸窘迫综合征诊疗研究进展[J].医学研究杂志,2021,50(3):129-132

    • [5] MEYER N J,CALFEE C S.Novel translational approach⁃ es to the search for precision therapies for acute respirato⁃ ry distress syndrome[J].Lancet Respir Med,2017,5(6):512-523

    • [6] 洪小杨,封志纯.重度儿科急性呼吸窘迫综合征临床救治的出路[J].中华儿科杂志,2018,56(5):324-326

    • [7] HONG X,ZHAO Z,LIU Z,et al.Venoarterial extracorpo⁃ real membrane oxygenation for severe neonatal acute re⁃ spiratory distress syndrome in a developing country[J].Front Pediatr,2020,8:227

    • [8] THOMPSON B T,CHAMBERS R C,LIU K D.Acute re⁃ spiratory distress syndrome[J].N Engl J Med,2017,377(6):562-572

    • [9] ZHU Z,LIANG L,ZHANG R,et al.Whole blood micro RNA markers are associated with acute respiratory dis⁃ tress syndrome[J].Intensive Care Med Exp,2017,5(1):38

    • [10] ZHOU H,CHANDA B,CHEN Y F,et al.Microarray and bioinformatics analysis of circular RNA differential ex⁃ pression in newborns with acute respiratory distress syn⁃ drome[J].Front Pediatr,2021,9:728462

    • [11] MATTHAY M A,ZEMANS R L,ZIMMERMAN G A,et al.Acute respiratory distress syndrome[J].Nat Rev Dis Primers,2019,5(1):18

    • [12] LUO J,CHEN J,LI Q,et al.Differences in clinical char⁃ acteristics and therapy of neonatal acute respiratory dis⁃ tress syndrome(ARDS)and respiratory distress syndrome(rds):a retrospective analysis of 925 cases[J].Med Sci Monit,2019,25:4992-4998

    • [13] 中国新生儿急性呼吸窘迫综合征研究协作组基于蒙特勒标准诊断新生儿急性呼吸窘迫综合征多中心横断面调查和影响因素分析[J].中国循证儿科杂志,2018,13(1):70-74

    • [14] KITSIOS G D,YANG L,MANATAKIS D V,et al.Host ⁃ response subphenotypes offer prognostic enrichment in patients with or at risk for acute respiratory distress syn⁃ drome[J].Crit Care Med,2019,47(12):1724-1734

    • [15] 李雯,戚迪,陈兰,等.Vaspin通过PI3K/Akt通路发挥抗炎及血管内皮保护作用减轻脂多糖致急性呼吸窘迫综合征小鼠肺损伤[J].南方医科大学学报,2018,38(3):283-288

    • [16] FAN S,QI D,YU Q,et al.Intermedin alleviates the in⁃ flammatory response and stabilizes the endothelial barrier in LPS ⁃induced ARDS through the PI3K/Akt/eNOS sig⁃ naling pathway[J].Int Immunopharmacol,2020,88:106951

    • [17] WANG X,ZHANG C,ZOU N,et al.Lipocalin⁃2 silencing suppresses inflammation and oxidative stress of acute re⁃ spiratory distress syndrome by ferroptosis via inhibition of MAPK/ERK pathway in neonatal mice[J].Bioengi⁃ neered,2022,13(1):508-520

    • [18] CHEN Z,DONG W H,CHEN Q,et al.Downregulation of miR ⁃ 199a ⁃ 3p mediated by the CtBP2 ⁃ HDAC1 ⁃ FOXP3 transcriptional complex contributes to acute lung injury by targeting NLRP1[J].Int J Biol Sci,2019,15(12):2627-2640

    • [19] NING L,RUI X,GUORUI L,et al.A novel mechanism for the protection against acute lung injury by melatonin:mitochondrial quality control of lung epithelial cells is preserved through SIRT3 ⁃ dependent deacetylation of SOD2[J].Cell Mol Life Sci,2022,79(12):610

    • [20] WANG B,LIN Y,ZHOU M,et al.Polysaccharides from tetrastigma hemsleyanum diels et gilg attenuate LPS ⁃in⁃ duced acute lung injury by modulating TLR4/COX⁃2/NF⁃ κB signaling pathway[J].Biomed Pharmacother,2022,155:113755

    • [21] MORTAZ E,TABARSI P,JAMAATI H,et al.Increased serum levels of soluble TNF⁃α receptor is associated with ICU mortality in COVID⁃19 patients[J].Front Immunol,2021,12:592727

    • [22] PROUDFOOT A,BAYLIFFE A,O’KANE C M,et al.Novel anti⁃tumour necrosis factor receptor⁃1(TNFR1)do⁃ main antibody prevents pulmonary inflammation in exper⁃ imental acute lung injury[J].Thorax,2018,73(8):723-730

    • [23] SINHA P,WARE L B.Selective tumour necrosis factor re⁃ ceptor ⁃1 inhibition in acute lung injury:a new hope or a false dawn?[J].Thorax,2018,73(8):699-701

    • [24] TRIPATHI R,HOSSEINI K,ARAPI V,et al.SLC38A10(SNAT10)is located in ER and golgi compartments and has a role in regulating nascent protein synthesis[J].Int J Mol Sci,2019,20(24):6265

    • [25] TRIPATHI R,AGGARWAL T,FREDRIKSSON R.SLC38A10 transporter plays a role in cell survival under oxidative stress and glutamate toxicity[J].Front Mol Bios⁃ ci,2021,8:671865

    • [26] CHEN L L.The expanding regulatory mechanisms and cellular functions of circular RNAs[J].Nat Rev Mol Cell Biol,2020,21(8):475-490

    • [27] LU S,WU X,XIN S,et al.Knockdown of circ_0001679 alleviates lipopolysaccharide ⁃induced MLE ⁃ 12 lung cell injury by regulating the miR ⁃338⁃3p/mitogen ⁃activated protein kinase 1 axis[J].Bioengineered,2022,13(3):5803-5817

    • [28] KE J,CHEN M,MA S,et al.Circular RNA VMA21 ame⁃ liorates lung injury in septic rat via targeting microRNA ⁃ 497⁃5p/CD2⁃ associated protein axis[J].Bioengineered,2022,13(3):5453-5466

    • [29] XU F,CHEN R,SHEN Y,et al.CircUBXN7 suppresses cell proliferation and facilitates cell apoptosis in lipopoly⁃ saccharide⁃induced cell injury by sponging miR⁃622 and regulating the IL6ST/JAK1/STAT3 axis[J].Int J Bio⁃ chem Cell Biol,2022,153:106313

    • [30] YANG C L,YANG W K,HE Z H,et al.Quietness of cir⁃ cular RNA circ_0054633 alleviates the inflammation and proliferation in lipopolysaccharides ⁃ induced acute lung injury model through NF⁃κB signaling pathway[J].Gene,2021,766:145153

    • [31] JIANG Y,ZHU F,WU G S,et al.Microarray and bioinfor⁃ matics analysis of circular RNAs expression profile in traumatic lung injury[J].Exp Ther Med,2020,20(1):227-234

    • [32] GUO W,WANG Z,WANG S,et al.Transcriptome se⁃ quencing reveals differential expression of circRNAs in sepsis induced acute respiratory distress syndrome[J].Life Sci,2021,278:119566

    • [33] WANG J,ZHANG Y,ZHU F,et al.CircRNA expression profiling and bioinformatics analysis indicate the poten⁃ tial biological role and clinical significance of circRNA in influenza A virus⁃induced lung injury[J].J Biosci,2021,46(2):38

    • [34] LIN Q,LIANG Q,QIN C,et al.CircANKRD36 Knock⁃ down suppressed cell viability and migration of lps⁃stimu⁃ lated RAW264.7 cells by sponging MiR⁃330[J].Inflam⁃ mation,2021,44(5):2044-2053

  • 参考文献

    • [1] 迟明,梅亚波,封志纯.新生儿急性呼吸窘迫综合征研究进展[J].中国当代儿科杂志,2018,20(9):724-728

    • [2] DE LUCA D,VAN KAAM A H,TINGAY D G,et al.The Montreux definition of neonatal ARDS:biological and clinical background behind the description of a new entity [J].Lancet Respir Med,2017,5(8):657-666

    • [3] 中国医师协会新生儿科医师分会.“新生儿急性呼吸窘迫综合征”蒙特勒标准(2017年版)[J].中华实用儿科临床杂志,2017,32(19):1456-1458

    • [4] 邹远霞,张家瑜,周波,等.新生儿急性呼吸窘迫综合征诊疗研究进展[J].医学研究杂志,2021,50(3):129-132

    • [5] MEYER N J,CALFEE C S.Novel translational approach⁃ es to the search for precision therapies for acute respirato⁃ ry distress syndrome[J].Lancet Respir Med,2017,5(6):512-523

    • [6] 洪小杨,封志纯.重度儿科急性呼吸窘迫综合征临床救治的出路[J].中华儿科杂志,2018,56(5):324-326

    • [7] HONG X,ZHAO Z,LIU Z,et al.Venoarterial extracorpo⁃ real membrane oxygenation for severe neonatal acute re⁃ spiratory distress syndrome in a developing country[J].Front Pediatr,2020,8:227

    • [8] THOMPSON B T,CHAMBERS R C,LIU K D.Acute re⁃ spiratory distress syndrome[J].N Engl J Med,2017,377(6):562-572

    • [9] ZHU Z,LIANG L,ZHANG R,et al.Whole blood micro RNA markers are associated with acute respiratory dis⁃ tress syndrome[J].Intensive Care Med Exp,2017,5(1):38

    • [10] ZHOU H,CHANDA B,CHEN Y F,et al.Microarray and bioinformatics analysis of circular RNA differential ex⁃ pression in newborns with acute respiratory distress syn⁃ drome[J].Front Pediatr,2021,9:728462

    • [11] MATTHAY M A,ZEMANS R L,ZIMMERMAN G A,et al.Acute respiratory distress syndrome[J].Nat Rev Dis Primers,2019,5(1):18

    • [12] LUO J,CHEN J,LI Q,et al.Differences in clinical char⁃ acteristics and therapy of neonatal acute respiratory dis⁃ tress syndrome(ARDS)and respiratory distress syndrome(rds):a retrospective analysis of 925 cases[J].Med Sci Monit,2019,25:4992-4998

    • [13] 中国新生儿急性呼吸窘迫综合征研究协作组基于蒙特勒标准诊断新生儿急性呼吸窘迫综合征多中心横断面调查和影响因素分析[J].中国循证儿科杂志,2018,13(1):70-74

    • [14] KITSIOS G D,YANG L,MANATAKIS D V,et al.Host ⁃ response subphenotypes offer prognostic enrichment in patients with or at risk for acute respiratory distress syn⁃ drome[J].Crit Care Med,2019,47(12):1724-1734

    • [15] 李雯,戚迪,陈兰,等.Vaspin通过PI3K/Akt通路发挥抗炎及血管内皮保护作用减轻脂多糖致急性呼吸窘迫综合征小鼠肺损伤[J].南方医科大学学报,2018,38(3):283-288

    • [16] FAN S,QI D,YU Q,et al.Intermedin alleviates the in⁃ flammatory response and stabilizes the endothelial barrier in LPS ⁃induced ARDS through the PI3K/Akt/eNOS sig⁃ naling pathway[J].Int Immunopharmacol,2020,88:106951

    • [17] WANG X,ZHANG C,ZOU N,et al.Lipocalin⁃2 silencing suppresses inflammation and oxidative stress of acute re⁃ spiratory distress syndrome by ferroptosis via inhibition of MAPK/ERK pathway in neonatal mice[J].Bioengi⁃ neered,2022,13(1):508-520

    • [18] CHEN Z,DONG W H,CHEN Q,et al.Downregulation of miR ⁃ 199a ⁃ 3p mediated by the CtBP2 ⁃ HDAC1 ⁃ FOXP3 transcriptional complex contributes to acute lung injury by targeting NLRP1[J].Int J Biol Sci,2019,15(12):2627-2640

    • [19] NING L,RUI X,GUORUI L,et al.A novel mechanism for the protection against acute lung injury by melatonin:mitochondrial quality control of lung epithelial cells is preserved through SIRT3 ⁃ dependent deacetylation of SOD2[J].Cell Mol Life Sci,2022,79(12):610

    • [20] WANG B,LIN Y,ZHOU M,et al.Polysaccharides from tetrastigma hemsleyanum diels et gilg attenuate LPS ⁃in⁃ duced acute lung injury by modulating TLR4/COX⁃2/NF⁃ κB signaling pathway[J].Biomed Pharmacother,2022,155:113755

    • [21] MORTAZ E,TABARSI P,JAMAATI H,et al.Increased serum levels of soluble TNF⁃α receptor is associated with ICU mortality in COVID⁃19 patients[J].Front Immunol,2021,12:592727

    • [22] PROUDFOOT A,BAYLIFFE A,O’KANE C M,et al.Novel anti⁃tumour necrosis factor receptor⁃1(TNFR1)do⁃ main antibody prevents pulmonary inflammation in exper⁃ imental acute lung injury[J].Thorax,2018,73(8):723-730

    • [23] SINHA P,WARE L B.Selective tumour necrosis factor re⁃ ceptor ⁃1 inhibition in acute lung injury:a new hope or a false dawn?[J].Thorax,2018,73(8):699-701

    • [24] TRIPATHI R,HOSSEINI K,ARAPI V,et al.SLC38A10(SNAT10)is located in ER and golgi compartments and has a role in regulating nascent protein synthesis[J].Int J Mol Sci,2019,20(24):6265

    • [25] TRIPATHI R,AGGARWAL T,FREDRIKSSON R.SLC38A10 transporter plays a role in cell survival under oxidative stress and glutamate toxicity[J].Front Mol Bios⁃ ci,2021,8:671865

    • [26] CHEN L L.The expanding regulatory mechanisms and cellular functions of circular RNAs[J].Nat Rev Mol Cell Biol,2020,21(8):475-490

    • [27] LU S,WU X,XIN S,et al.Knockdown of circ_0001679 alleviates lipopolysaccharide ⁃induced MLE ⁃ 12 lung cell injury by regulating the miR ⁃338⁃3p/mitogen ⁃activated protein kinase 1 axis[J].Bioengineered,2022,13(3):5803-5817

    • [28] KE J,CHEN M,MA S,et al.Circular RNA VMA21 ame⁃ liorates lung injury in septic rat via targeting microRNA ⁃ 497⁃5p/CD2⁃ associated protein axis[J].Bioengineered,2022,13(3):5453-5466

    • [29] XU F,CHEN R,SHEN Y,et al.CircUBXN7 suppresses cell proliferation and facilitates cell apoptosis in lipopoly⁃ saccharide⁃induced cell injury by sponging miR⁃622 and regulating the IL6ST/JAK1/STAT3 axis[J].Int J Bio⁃ chem Cell Biol,2022,153:106313

    • [30] YANG C L,YANG W K,HE Z H,et al.Quietness of cir⁃ cular RNA circ_0054633 alleviates the inflammation and proliferation in lipopolysaccharides ⁃ induced acute lung injury model through NF⁃κB signaling pathway[J].Gene,2021,766:145153

    • [31] JIANG Y,ZHU F,WU G S,et al.Microarray and bioinfor⁃ matics analysis of circular RNAs expression profile in traumatic lung injury[J].Exp Ther Med,2020,20(1):227-234

    • [32] GUO W,WANG Z,WANG S,et al.Transcriptome se⁃ quencing reveals differential expression of circRNAs in sepsis induced acute respiratory distress syndrome[J].Life Sci,2021,278:119566

    • [33] WANG J,ZHANG Y,ZHU F,et al.CircRNA expression profiling and bioinformatics analysis indicate the poten⁃ tial biological role and clinical significance of circRNA in influenza A virus⁃induced lung injury[J].J Biosci,2021,46(2):38

    • [34] LIN Q,LIANG Q,QIN C,et al.CircANKRD36 Knock⁃ down suppressed cell viability and migration of lps⁃stimu⁃ lated RAW264.7 cells by sponging MiR⁃330[J].Inflam⁃ mation,2021,44(5):2044-2053

  • 通知关闭
    郑重声明