en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

陆卫平,E-mail:hyhalwp@sina.com

中图分类号:R587.2

文献标识码:A

文章编号:1007-4368(2023)09-1201-07

DOI:10.7655/NYDXBNS20230903

参考文献 1
ZOJA C,ZANCHI C,BENIGNI A.Key pathways in renal disease progression of experimental diabetes[J].Nephrol Dial Transplant,2015,30:54-59
参考文献 2
JIANG Z H,TANG Y Z,SONG H N,et al.miRNA ⁃342 suppresses renal interstitial fibrosis in diabetic nephropa⁃ thy by targeting SOX6[J].Int J Mol Med,2020,45(1):45-52
参考文献 3
ZANCHI C,MACCONI D,TRIONFINI P,et al.MicroRNA 184 is a downstream effector of albuminuria driving renal fibrosis in rats with diabetic nephropathy[J].Diabetolo⁃ gia,2017,60(6):1114-1125
参考文献 4
HEERSPINK H J L,STEFANSSON B V,CORREA⁃ROT⁃ TER B V,et al.Dapagliflozin in patients with chronic kid⁃ ney disease[J].N Engl J Med,2020,383(15):1436-1446
参考文献 5
LI Y,LI L,ZENG O,et al.H2S improves renal fibrosis in STZ ⁃ induced diabetic rats by ameliorating TGF ⁃ β 1 expression[J].Ren Fail,2017,39(1):265-272
参考文献 6
MARRERO M B,BANES⁃BERCELI A K,STERN D M,et al.Role of the JAK/STAT signaling pathway in diabetic nephropathy[J].Am J Physiol Ren Physiol,2006,290(4):F762-F768
参考文献 7
GAN X,WANG J,WANG C,et al.PRR5L degradation promotes mTORC2⁃mediated PKC ⁃ delta phosphorylation and cell migration downstream of Galpha12[J].Nat Cell Biol,2012,14(7):686-696
参考文献 8
SHI Y,HU F B.The global implications of diabetes and cancer[J].Lancet,2014,383(9933):1947-1948
参考文献 9
CHEN Y Y,PENG X F,LIU G Y,et al.Protein arginine methyltranferase⁃1 induces ER stress and epithelial⁃mes⁃ enchymal transition in renal tubular epithelial cells and contributes to diabetic nephropathy[J].Biochim Biophys Acta Mol Basis Dis,2019,1865(10):2563-2575
参考文献 10
钟涛,张国新,周迪夷,等.灵芝多糖对糖尿病肾病小鼠肾小管上皮细胞间充质转化的抑制作用[J].中国医药导报,2020,17(6):9-12
参考文献 11
LU Q,CHEN Y B,YANG H,et al.Inactivation of TSC1 promotes epithelial⁃mesenchymal transition of renal tubu⁃ lar epithelial cells in mouse diabetic nephropathy[J].Acta Pharmacol Sin,2019,40(12):1555-1567
参考文献 12
ZHAO L,ZHAO J,WANG X,et al.Serum response factor induces endothelial⁃mesenchymal transition in glomerularendothelial cells to aggravate proteinuria in diabetic nephropathy[J].Physiol Genomics,2016,48(10):711-718
参考文献 13
LOK S W Y,YIU W H,LI H Y,et al.The PAR⁃1 antago⁃ nist vorapaxar ameliorates kidney injury and tubulointer⁃ stitial fibrosis[J].Clin Sci,2020,134(21):2873-2891
参考文献 14
GONG E Y,JO H A,PARK S H,et al.VSIG4 induces epithelialmesenchymal transition of renal tubular cells under high ⁃glucoseconditions[J].Life(Basel),2020,10(12):354-364
参考文献 15
PEERAPEN P,THONGBOONKERD V.Protective roles of trigonelline against oxalate⁃induced epithelial⁃to⁃mes⁃ enchymal transition in renal tubular epithelial cells:An in vitro study[J].Food Chem Toxicol,2020,135:110915
参考文献 16
WANG Y N,ZHAO S L,SU Y Y,et al.Astragaloside Ⅳ attenuates high glucose ⁃ induced EMT by inhibiting the TGF⁃ β/Smad pathway in renal proximal tubular epithelial cells[J].Biosci Rep,2020,40(6):20190987
参考文献 17
ZHANG L,WANG H,TIAN L,et al.Expression of USP7 and MARCH7 is correlated with poor prognosis in epithe⁃ lial ovarian cancer[J].Tohoku J Exp Med,2016,239(3):165-175
参考文献 18
TERMEN S,TAN E J,HELDIN C H,et al.p53 regulates epithelial ⁃ mesenchymal transition induced by transform⁃ ing growth factor beta[J].Cell Physiol,2013,228(4):801
参考文献 19
YANG W,DICKER D T,CHEN J,et al.CARPs enhance p53 turnover by degrading 14⁃3⁃3 sigma and stabilizing MDM2[J].Cell Cycle,2008,7(5):670-682
参考文献 20
DEKKERS⁃CLAIRE C J,SERGEI P,LAVERMAN G D,et al.Effects of the SGLT⁃2 inhibitor dapagliflozin on glo⁃ merular and tubular injury markers[J].Diabetes Obes Metab,2018,20(8):1988-1993
参考文献 21
CHRISTOPH W,LACHIN J M,INZUCCHI S E,et al.Em⁃ pagliflozin and clinical outcomes in patients with type 2 diabetes mellitus,established cardiovascular disease,and chronic kidney disease[J].Circulation,2018,137(2):119-129
参考文献 22
TANG L,WU Y,TIAN M,et al.Dapagliflozin slows the progression of the renal and liver fibrosis associated with type 2 diabetes[J].Am J Physiol Endocrinol Metab,2017,313(5):E563-E576
参考文献 23
JUDIT H,BALOGH D B,ADAM H,et al.Reduced O ⁃ GlcNAcylation and tubular hypoxia contribute to the anti⁃ fibrotic effect of SGLT2 inhibitor dapagliflozin in the dia⁃ betic kidney[J].Am J Physiol Ren Physiol,2020,318(4):1017-1029
参考文献 24
HUANG F J,ZHAO Y Y,WANG Q Z,et al.Dapagliflozin attenuates renal tubulointerstitial fibrosis associated with type 1 diabetes by regulating STAT1/TGFβ1 signaling [J].Front Endocrinol(Lausanne),2019,10:441
参考文献 25
林远灿,骆海莺,刘慧芳,等.垂盆草总黄酮通过TGF⁃β 1/Smad2/3通路干预肝星状细胞上皮间质转化的分子机制[J].中药材,2020,43(1):202-205
参考文献 26
ZHANG H Y,CHEN F Y,FAN X,et al.Quantitative pro⁃ teomic analysis on activated hepatic stellate cells rever⁃ sion reveal STAT1 as a key regulator between liver fibro⁃ sis and recovery[J].Sci Rep,2017,7:44910
参考文献 27
KAOWINN S,KAEWPIBOON C,KOH S S,et al.STAT1 ⁃ HDAC4 signaling induces epithelial ⁃ mesenchy⁃ mal transition and sphere formation of cancer cells overex⁃ pressing the oncogene,CUG2[J].Oncol Rep,2018,40(5):2619-2627
目录contents

    摘要

    目的:探讨达格列净对糖尿病肾病肾小管上皮细胞的上皮细胞-间充质转化和纤维化的影响及分子机制。方法:体外培养人肾小管上皮细胞HK-2,分为对照组、高糖组、低剂量达格列净+高糖组和高剂量达格列净+高糖组。用Western blot与 RT-PCR分别检测E3泛素连接酶Rffl的表达水平。Western blot检测各组上皮细胞钙黏蛋白(epithelial cadherin,E-cadherin)、 α-平滑肌肌动蛋白(α-smooth muscle actin,α-SMA)、纤连蛋白(Fibronectin)、转化生长因子-β1(transforming growth factor β1, TGF-β1)、信号转导与转录激活因子1(signal transducer and activator of transcription 1,STAT1)的表达水平。在HK-2细胞中过表达Rffl后,Western blot检测E-cadherin、α-SMA、Fibronectin、TGF-β1、STAT1的表达水平。结果:高糖组中Rffl的表达水平显著低于对照组,加入达格列净后Rffl表达升高;与对照组相比,高糖组细胞中E-cadherin表达水平降低,Fibronectin、α-SMA表达水平升高,过表达Rffl后E-cadherin表达水平升高,Fibronectin、α-SMA表达水平降低;与高糖组相比,低剂量达格列净+高糖组和高剂量达格列净+高糖组中E-cadherin表达水平均升高,Fibronectin、α-SMA表达水平均降低,且呈一定的剂量依赖性;与对照组相比,高糖组细胞中STAT1、TGF-β1的表达水平升高,而在过表达Rffl或达格列净作用后则明显降低。结论:达格列净通过上调 Rffl的表达抑制STAT1/TGF-β1信号通路,改善糖尿病肾病肾小管上皮细胞的上皮细胞-间充质转化和纤维化。

    Abstract

    Objective:The current study aims to investigate the effect and molecular mechanism of dapagliflozin on epithelial - mesenchymal transformation and fibrosis of renal tubular epithelial cells in diabetic kidney disease. Methods:Human renal tubular epithelial cells HK-2 were cultured in vitro and divided into control group,high glucose group,low dose dapagliflozin + high glucose group and high dose dapagliflozin +high glucose group. The expression levels of Rffl were detected by Western blot and RT - PCR, respectively. The expression levels of epithelial cadherin(E -cadherin),α- smooth muscle actin(α-SMA),Fibronectin,transforming growth factor β1(TGF-β1)and signal transducer and activator of transcription 1(STAT1)were detected by Western blot. After Rffl was overexpressed in HK -2 cells,the expression levels of E -cadherin,α- SMA,Fibronectin,TGF -β1 and STAT1 were detected by Western blot. Results:The expression level of Rffl was significantly lower in the high glucose group than in the control group,and the expression of Rffl was increased after adding dapagliflozin. Compared with the control group,the expression level of E-Cadherin in the high glucose group was decreased,while the expression level of Fibronectin and α-SMA was increased. After Rffl was overexpressed in cells,the expression level of E - Cadherin was increased,while the expression levels of Fibronectin and α - SMA were decreased. Compared with high glucose group,the expression levels of E-Cadherin in low-dose dapagliflozin+high glucose group and high-dose dapagliflozin + high glucose group were increased,but the expression levels of Fibronectin and α- SMA were decreased in a dose - dependent manner. Compared with the control group,the expression levels of STAT1 and TGF-β1 were increased in the high glucose group,but significantly decreased after overexpression of Rffl or addition of dapagliflozin. Conclusion:Dapagliflozin inhibits STAT1/ TGF-β1 signaling pathway by up-regulating Rffl expression,and improves epithelial-mesenchymal transformation and fibrosis of renal tubular epithelial cells in diabetic kidney disease.

    关键词

    达格列净糖尿病肾病RfflTGF-β1EMT纤维化

  • 糖尿病肾病(diabetic kidney disease,DKD)是糖尿病最常见的微血管并发症之一,是终末期肾病(end stage renal disease,ESRD)发生的主要原因[1]。DKD的病理特征是肾小球硬化、细胞外基质(extracellular matrix,ECM)合成增加、肾小管萎缩和肾小管间质纤维化[2]。越来越多的研究表明肾小管上皮细胞的上皮细胞⁃间充质转化(epithelial⁃mesenchymal tran⁃ sition,EMT)及纤维化在 DKD 的进展中起重要作用,然而目前 DKD 的治疗仍以控制血糖、血压、调节血脂为主要治疗原则,在抗纤维化方面效果并不明显[3]

  • 达格列净是一种钠⁃葡萄糖协同转运蛋白2(so⁃ dium⁃glucose transporter 2,SGLT⁃2)抑制剂,可以抑制葡萄糖的重吸收,促进尿糖排出,降低血糖。近年来研究发现,达格列净还具有肾脏保护作用[4],然而其具体机制尚未明确。转化生长因子⁃β1(trans⁃ forming growth factor β1,TGF⁃β1)是作用最强的致纤维化细胞因子,通过介导多种信号参与肾纤维化的发生发展[5]。信号转导与转录激活因子 1(signal transducer and activator of transcription 1,STAT1)是 STAT转录因子家族成员,与高糖诱导的氧化应激、 TGF⁃β1的表达以及ECM蛋白Ⅳ型胶原蛋白和纤连蛋白(Fibronectin)的产生有关[6]。泛素蛋白酶体系统是细胞内蛋白质降解的主要途径,可以严格调控 TGF⁃β超家族信号转导。Rffl是一种能抑制内体再循环的 E3 泛素连接酶,可通过调控 PRR5L 降解促进mTORC2介导的PKC⁃δ磷酸化从而延缓肺纤维化进展[7]。然而 Rffl 在肾纤维化中的作用还未见报道。设想达格列净的肾保护机制可能与上调Rffl的表达抑制STAT1/TGF⁃β1通路相关。

  • 本研究通过高糖培养肾小管上皮细胞模拟糖尿病肾病环境,探讨达格列净是否通过上调 Rffl的表达抑制STAT1/TGF⁃β1信号通路从而改善DKD肾小管上皮细胞的EMT和纤维化,为DKD的治疗提供理论基础。

  • 1 材料和方法

  • 1.1 材料

  • 人肾小管上皮细胞 HK⁃2 细胞(上海中乔新舟公司);胎牛血清、DMEM 高糖培养基(含有 4.5 g/L D⁃葡萄糖)、DMEM 低糖培养基(含有 1 g/L D⁃葡萄糖)、0.25%胰蛋白酶、链霉素、青霉素(Gibco 公司,美国);达格列净(Med Chem Express公司,美国);鼠抗上皮细胞钙黏蛋白(epithelial cadherin,E ⁃ cad⁃ herin)、纤连蛋白(Fibronectin)、STAT1、α⁃Tubulin单克隆抗体,兔抗α⁃平滑肌肌动蛋白(α⁃smooth muscle actin,α⁃SMA)、TGF⁃β1、Rffl多克隆抗体、山羊抗兔二抗、山羊抗鼠二抗(Proteintech公司,美国);Trizol、质粒转染试剂LipofectamineTM2000脂质体(Invitrogen公司,美国),RT⁃PCR试剂(南京诺唯赞公司),RT⁃PCR 引物(南京金斯瑞公司);大肠杆菌DH5α(北京擎科生物科技有限公司);空载质粒PCDH和重组PCDH⁃ Rffl 质粒(广州易锦生物技术有限公司);PCR 仪 (Eppendorf公司,德国)。

  • 1.2 方法

  • 1.2.1 细胞培养

  • 人肾小管上皮细胞HK⁃2在37℃、5% CO2的培养箱中用含有10%胎牛血清、1%青霉素(100 U/mL)和链霉素(100 μg/mL)的DMEM培养基培养。细胞生长融合至80%时,用0.25%的胰酶消化细胞,细胞收缩变圆后加入完全培养基终止消化,传代。传代后的细胞在 37℃、5%CO2的培养箱中培养 24 h 后换液 1 次,以去除死亡的细胞,以后每 2 d 换液 1 次。取对数生长期的细胞用于实验研究。

  • 1.2.2 分组

  • 收集对数期 HK⁃2 细胞,使用含 4.5 g/L 葡萄糖的DMEM高糖培养基培养48 h,记作高糖组(HG组); 使用含有 1 g/L 葡萄糖的 DMEM 低糖培养基培养 48 h,记作对照组(NC 组)。收集对数期 HK⁃2 细胞接种于6孔板,分为低剂量达格列净+高糖组(Dap⁃L组,使用含有5 μmol/L达格列净的DMEM高糖培养基培养48 h),高剂量达格列净+高糖组(Dap⁃H组,使用含有10 μmol/L达格列净的DMEM高糖培养基培养 48 h),PCDH 组(PCDH 转至 HK ⁃2 细胞,使用 DMEM高糖培养基培养48 h),PCDH⁃Rffl组(PCDH⁃ Rffl转至HK⁃2细胞,DMEM高糖培养基培养48 h)。

  • 1.2.3 Western blot检测

  • 取按照上述分组培养48 h的各组细胞,加入适量的 RIPA 细胞裂解液提取细胞中的蛋白,BCA 试剂盒对蛋白进行定量,蛋白样品与上样缓冲液按照 1∶5的比例充分混匀,100℃煮沸变性10 min,每个样品取50 μg进行聚丙烯酰胺凝胶电泳(SDS⁃PAGE)分离,90 V 低温电转移 2 h,5%的脱脂奶粉 37℃封闭 1 h,分别加入 E⁃cadherin、α⁃SMA、Fibronectin、Rffl、 TGF⁃β1、α⁃Tubulin抗体,所有抗体均按照说明书稀释,4℃过夜,TBST 洗涤,分别加入 1∶5 000 稀释的 HRP标记的羊抗鼠IgG、羊抗兔IgG,室温孵育1 h,暗室内曝光显影,应用Image J软件分析各条带灰度值。

  • 1.2.4 RT⁃PCR检测

  • 采用TRIzol法提取细胞中总RNA,参照反转录试剂盒合成 cDNA。以 cDNA 为模板进行 qRT⁃PCR 反应,PCR循环条件:95℃ 30 s 预变性;95℃ 10 s, 60℃ 30 s 共 40 个循环;95℃ 15 s,60℃ 60 s,95℃ 15 s 采集熔解曲线。以β肌动蛋白(β⁃actin)为内参,采用2-∆∆Ct法计算Rffl mRNA的相对表达量。

  • 1.3 统计学方法

  • 所有实验数据采用SPSS 21.0软件进行分析,符合正态分布的计量资料用均数±标准差(x-±s)表示,两组比较采用 t 检验,多组间差异比较采用单因素方差分析,两两比较采用LSD⁃t检验,P <0.05为差异有统计学意义。

  • 2 结果

  • 2.1 Rffl在高糖培养的HK⁃2细胞中低表达

  • qRT⁃PCR检测了低糖和高糖培养的HK⁃2细胞 Rffl的表达水平,结果显示HG组细胞中Rffl mRNA 水平较NC组明显降低。Western blot检测结果证明 HG组细胞中Rffl蛋白表达较NC组明显下调,差异有统计学意义(P <0.05,图1)。

  • 2.2 在高糖培养的HK⁃2细胞中过表达Rffl

  • qRT⁃PCR 结果显示,转染重组质粒 PCDH⁃Rffl 后,HK⁃2中Rffl的表达水平与PCDH组相比明显上升。Western blot 结果与 qPCR 结果一致,表明成功构建过表达Rffl的HK⁃2细胞(P <0.05,图2)。

  • 图1 不同浓度葡萄糖培养的HK⁃2中Rffl的表达水平

  • Figure1 Rffl expression level in HK⁃2 cultured at differ⁃ ent glucose concentrations

  • 2.3 过表达Rffl抑制高糖环境中HK⁃2细胞的EMT 和纤维化

  • 与 NC 组相比,HG 组细胞中 E⁃cadherin 蛋白表达水平降低,Fibronectin、α⁃SMA蛋白表达水平升高 (P <0.05,n=3);与PCDH组相比,PCDH⁃Rffl组细胞中 E ⁃ cadherin 蛋白表达水平升高,Fibronectin、α⁃ SMA 蛋白表达水平降低(P <0.05,n=3,图3),提示过表达Rffl抑制高糖环境中HK⁃2的EMT和纤维化。

  • 2.4 达格列净抑制高糖处理的 HK⁃2 细胞的 EMT 和纤维化

  • 与 NC 组相比,HG 组细胞中 E⁃cadherin 蛋白表达水平降低,Fibronectin、α⁃SMA蛋白表达水平升高 (P <0.05,n=3);与HG组相比,Dap⁃L组及Dap⁃H组细胞中 E⁃cadherin 表达水平均升高,Fibronectin、α⁃ SMA表达均降低(P <0.05,n=3);与Dap⁃L组相比,Dap⁃H组细胞中E⁃cadherin表达水平升高,Fibronec⁃ tin、α⁃SMA表达均降低(P <0.05,n=3,图4),提示达格列净抑制高糖处理的HK⁃2的EMT和纤维化,且达格列净的浓度越高,抑制作用越强。

  • 图2 重组质粒 PCDH⁃Rffl 转染后 Rffl 在 HK⁃2 中的表达水平

  • Figure2 Expression level of Rffl in HK⁃2 after transfected with recombinant plasmid PCDH⁃Rffl

  • 图3 Western blot检测过表达Rffl对HK⁃2中E⁃cadherin、Fibronectin、α⁃SMA表达的影响

  • Figure3 The effects of Rffl overexpression on the expression of E⁃cadherin,Fibronectin and α⁃SMA in HK⁃2 detected by Western blot

  • 2.5 达格列净促进高糖培养的HK⁃2细胞中Rffl的表达

  • 与NC组相比,HG组细胞中Rffl蛋白表达水平降低 (P <0.05,n=3);Dap⁃L组及Dap⁃H组细胞中Rffl表达均高于HG组(P <0.05,n=3);与Dap⁃L组相比,Dap⁃H 组细胞中Rffl表达水平升高(P <0.05,n=3,图5),提示达格列净促进高糖培养的HK⁃2中Rffl的表达,且达格列净的浓度越高,促Rffl表达的作用越明显。

  • 图4 Western blot检测达格列净对HK⁃2中E⁃cadherin、Fibronectin、α⁃SMA表达的影响

  • Figure4 The effects of dapagliflozin on the expression of E ⁃cadherin,Fibronectin and α ⁃SMA in HK ⁃2 detected by Western blot

  • 2.6 过表达 Rffl 抑制高糖培养的 HK ⁃ 2 细胞中 STAT1、TGF⁃β1的表达

  • 相对于 NC 组,HG 组细胞中 STAT1、TGF⁃β1 的表达水平升高(P <0.05,n=3);与 PCDH 组相比, PCDH⁃Rffl 组细胞中 STAT1、TGF⁃β1 蛋白表达水平均降低(P <0.05,n=3,图6),提示过表达Rffl抑制高糖培养的HK⁃2中STAT1、TGF⁃β1的表达。

  • 2.7 达格列净抑制高糖培养的 HK ⁃ 2 细胞中 STAT1、TGF⁃β1的表达

  • 与 NC 组相比,HG 组细胞中 STAT1、TGF⁃β1 的表达水平升高(P <0.05,n=3);相比HG组,Dap⁃L组及Dap⁃H组细胞中STAT1、TGF⁃β1表达均降低(P <0.05,n=3);与 Dap ⁃ L 组相比,Dap ⁃ H 组细胞中 STAT1、TGF⁃β1表达均降低(P <0.05,n=3,图7),提示达格列净抑制高糖培养的HK⁃2中STAT1、TGF⁃β1 的表达,达格列净的浓度越高,抑制作用越显著。

  • 3 讨论

  • 糖尿病是世界范围内日益严重的公共卫生疾病,在全球普通人群中的患病率约为10%。根据国际糖尿病联合会的数据,到2035年,全球糖尿病患者的数量将从2013年的3.82亿增加到5.92亿,其中大约 40%的糖尿病患者会发展为 DKD[8]。DKD 是糖尿病最严重的微血管并发症之一,是导致 ESRD的主要因素,显著增加了糖尿病患者的病死率。肾小管上皮细胞 EMT 及肾纤维化是 DKD 进展到ESRD 的主要病理基础和共同途径,然而目前针对 DKD的治疗方式在抑制EMT、抗纤维化方面效果有限。如何有效抑制肾小管上皮细胞EMT 及肾纤维化,从而阻止和延缓DKD向终末期肾病发展,是目前亟待解决的难题。

  • 图5 Western blot检测达格列净对HK⁃2中Rffl表达的影响

  • Figure5 The effect of dapagliflozin on Rffl expression in HK⁃2 detected by Western blot

  • 肾小管上皮细胞 EMT 在肾脏纤维化中发挥重要作用[9-10],而抑制EMT可以在一定程度上延缓肾纤维化进展。在EMT过程中,上皮细胞的迁移、侵袭、抗凋亡能力增强,促进细胞外基质沉积,加剧肾间质细胞纤维化,严重危害肾脏功能[11]。E⁃cadherin 作为细胞黏附连接的中心成分,是维持上皮细胞完整性所必需的。α⁃SMA是肌纤维成熟细胞表达的一个特征蛋白,在肾组织中可直接反映纤维化程度[12]。 Fibronectin是肾纤维化中一种主要的ECM成分,其合成增加会促进ECM积聚,加快肾间质纤维化的进展[13]。肾EMT常以E⁃cadherin表达量降低,α⁃SMA、 Fibronectin 等间质标志物表达量升高等为主要特征[14-16]。泛素化修饰是一种重要的蛋白质翻译后修饰,它是泛素分子在一系列酶的作用下,与靶蛋白质共价结合的修饰过程。E3 泛素连接酶MARCH7 能够调控E⁃cadherin和β⁃catenin的表达。在卵巢癌中,USP7通过逆转MARCH7自身的泛素化,并稳定 MARCH7,从而介导 E⁃cadherin 和β ⁃catenin 的表达[17]。TGF⁃β可以诱导EMT发生,在乳腺上皮细胞中,野生型p53可以调控TGF⁃β信号产生的EMT[18],而 E3 泛素连接酶 Rffl 可通过使 MDM2 变得稳定来促进p53的降解[19]。Rffl还可通过PRR5L降解促进 mTORC2介导的PKC⁃δ磷酸化从而影响肺纤维化进展[7]。本研究结果显示,高糖处理后肾小管上皮细胞中 E⁃cadherin 表达水平降低,Fibronectin、α⁃SMA 表达水平升高,而Rffl过表达可逆转高糖诱导的肾小管上皮细胞EMT,提示Rffl高表达具有一定的抑制高糖处理的肾小管上皮细胞HK⁃2发生纤维化的作用。

  • 图6 Western blot检测过表达Rffl对HK⁃2中STAT1、TGF⁃β1表达的影响

  • Figure6 The effects of Rffl overexpression on the expression of STAT1 and TGF⁃β1 in HK⁃2 detected by Western blot

  • 图7 Western blot检测达格列净对HK⁃2中STAT1、TGF⁃β1表达的影响

  • Figure7 The effects of dapagliflozin on STAT1 and TGF⁃β1 expression in HK⁃2 detected by Western blot

  • SGLT⁃2抑制剂是一种不依赖胰岛素水平的新型降糖药,除降糖作用外,它还具备降低血压、改善肾小球高滤过、减少蛋白尿、改善氧化应激、抑制炎症等肾脏保护作用[20-21]。对18周的单侧肾切除db/db小鼠进行 4 周达格列净治疗,肾脏 TGF⁃β1、纤溶酶原激活物抑制物1、Ⅳ型胶原以及Fibronectin的表达均显著降低[22]。研究表明,达格列净可以通过抑制高糖毒性,进而降低O⁃GlcNAc糖基化修饰和减少肾小管缺氧[23] 或抑制STAT1/TGF⁃β1通路激活[24],从而改善肾小管间质纤维化。本研究结果显示,与高糖组相比,低剂量达格列净+高糖组及高剂量达格列净+ 高糖组中 E⁃cadherin 表达水平均升高,Fibronectin、 α⁃SMA表达水平均降低,并呈现出一定的剂量依赖性,提示达格列净具有抑制高糖处理的肾小管上皮细胞HK⁃2发生纤维化的作用。

  • TGF⁃β1在EMT和组织纤维化中起重要调节作用,可以正向调控 EMT,是肾间质纤维化及肾小球硬化的重要细胞因子[25]。高血糖会诱导激活 DKD 中STAT1和TGF⁃β1,并参与肾小管间质纤维化的过程[24]。抑制STAT1可以抑制肝纤维化的进展[26],此外,STAT信号通路在肾纤维化中起着至关重要的作用,激活 STAT 可诱导 EMT 并导致肾损害缓解[27]。本研究表明,高糖处理后肾小管上皮细胞中STAT1、 TGF⁃β1的表达水平升高,过表达Rffl后STAT1、TGF ⁃β1表达水平降低,这表明在肾小管上皮细胞HK⁃2 中E3泛素连接酶Rffl对STAT1/TGF⁃β1通路具有一定的抑制作用。此外,本研究发现达格列净同样可逆转STAT1、TGF⁃β1的表达水平,并呈现出一定的剂量依赖性,这表明达格列净改善EMT的作用可能与抑制高血糖诱导的STAT1/TGF⁃β1通路相关。

  • 本研究发现,达格列净可缓解高血糖条件下肾小管上皮细胞EMT和纤维化,并抑制了促纤维化因子STAT1和TGF⁃β1的表达。本研究初步探索达格列净对DKD肾小管上皮细胞EMT和纤维化的改善作用及其可能机制,但详细作用机制有待进一步深入探究。

  • 参考文献

    • [1] ZOJA C,ZANCHI C,BENIGNI A.Key pathways in renal disease progression of experimental diabetes[J].Nephrol Dial Transplant,2015,30:54-59

    • [2] JIANG Z H,TANG Y Z,SONG H N,et al.miRNA ⁃342 suppresses renal interstitial fibrosis in diabetic nephropa⁃ thy by targeting SOX6[J].Int J Mol Med,2020,45(1):45-52

    • [3] ZANCHI C,MACCONI D,TRIONFINI P,et al.MicroRNA 184 is a downstream effector of albuminuria driving renal fibrosis in rats with diabetic nephropathy[J].Diabetolo⁃ gia,2017,60(6):1114-1125

    • [4] HEERSPINK H J L,STEFANSSON B V,CORREA⁃ROT⁃ TER B V,et al.Dapagliflozin in patients with chronic kid⁃ ney disease[J].N Engl J Med,2020,383(15):1436-1446

    • [5] LI Y,LI L,ZENG O,et al.H2S improves renal fibrosis in STZ ⁃ induced diabetic rats by ameliorating TGF ⁃ β 1 expression[J].Ren Fail,2017,39(1):265-272

    • [6] MARRERO M B,BANES⁃BERCELI A K,STERN D M,et al.Role of the JAK/STAT signaling pathway in diabetic nephropathy[J].Am J Physiol Ren Physiol,2006,290(4):F762-F768

    • [7] GAN X,WANG J,WANG C,et al.PRR5L degradation promotes mTORC2⁃mediated PKC ⁃ delta phosphorylation and cell migration downstream of Galpha12[J].Nat Cell Biol,2012,14(7):686-696

    • [8] SHI Y,HU F B.The global implications of diabetes and cancer[J].Lancet,2014,383(9933):1947-1948

    • [9] CHEN Y Y,PENG X F,LIU G Y,et al.Protein arginine methyltranferase⁃1 induces ER stress and epithelial⁃mes⁃ enchymal transition in renal tubular epithelial cells and contributes to diabetic nephropathy[J].Biochim Biophys Acta Mol Basis Dis,2019,1865(10):2563-2575

    • [10] 钟涛,张国新,周迪夷,等.灵芝多糖对糖尿病肾病小鼠肾小管上皮细胞间充质转化的抑制作用[J].中国医药导报,2020,17(6):9-12

    • [11] LU Q,CHEN Y B,YANG H,et al.Inactivation of TSC1 promotes epithelial⁃mesenchymal transition of renal tubu⁃ lar epithelial cells in mouse diabetic nephropathy[J].Acta Pharmacol Sin,2019,40(12):1555-1567

    • [12] ZHAO L,ZHAO J,WANG X,et al.Serum response factor induces endothelial⁃mesenchymal transition in glomerularendothelial cells to aggravate proteinuria in diabetic nephropathy[J].Physiol Genomics,2016,48(10):711-718

    • [13] LOK S W Y,YIU W H,LI H Y,et al.The PAR⁃1 antago⁃ nist vorapaxar ameliorates kidney injury and tubulointer⁃ stitial fibrosis[J].Clin Sci,2020,134(21):2873-2891

    • [14] GONG E Y,JO H A,PARK S H,et al.VSIG4 induces epithelialmesenchymal transition of renal tubular cells under high ⁃glucoseconditions[J].Life(Basel),2020,10(12):354-364

    • [15] PEERAPEN P,THONGBOONKERD V.Protective roles of trigonelline against oxalate⁃induced epithelial⁃to⁃mes⁃ enchymal transition in renal tubular epithelial cells:An in vitro study[J].Food Chem Toxicol,2020,135:110915

    • [16] WANG Y N,ZHAO S L,SU Y Y,et al.Astragaloside Ⅳ attenuates high glucose ⁃ induced EMT by inhibiting the TGF⁃ β/Smad pathway in renal proximal tubular epithelial cells[J].Biosci Rep,2020,40(6):20190987

    • [17] ZHANG L,WANG H,TIAN L,et al.Expression of USP7 and MARCH7 is correlated with poor prognosis in epithe⁃ lial ovarian cancer[J].Tohoku J Exp Med,2016,239(3):165-175

    • [18] TERMEN S,TAN E J,HELDIN C H,et al.p53 regulates epithelial ⁃ mesenchymal transition induced by transform⁃ ing growth factor beta[J].Cell Physiol,2013,228(4):801

    • [19] YANG W,DICKER D T,CHEN J,et al.CARPs enhance p53 turnover by degrading 14⁃3⁃3 sigma and stabilizing MDM2[J].Cell Cycle,2008,7(5):670-682

    • [20] DEKKERS⁃CLAIRE C J,SERGEI P,LAVERMAN G D,et al.Effects of the SGLT⁃2 inhibitor dapagliflozin on glo⁃ merular and tubular injury markers[J].Diabetes Obes Metab,2018,20(8):1988-1993

    • [21] CHRISTOPH W,LACHIN J M,INZUCCHI S E,et al.Em⁃ pagliflozin and clinical outcomes in patients with type 2 diabetes mellitus,established cardiovascular disease,and chronic kidney disease[J].Circulation,2018,137(2):119-129

    • [22] TANG L,WU Y,TIAN M,et al.Dapagliflozin slows the progression of the renal and liver fibrosis associated with type 2 diabetes[J].Am J Physiol Endocrinol Metab,2017,313(5):E563-E576

    • [23] JUDIT H,BALOGH D B,ADAM H,et al.Reduced O ⁃ GlcNAcylation and tubular hypoxia contribute to the anti⁃ fibrotic effect of SGLT2 inhibitor dapagliflozin in the dia⁃ betic kidney[J].Am J Physiol Ren Physiol,2020,318(4):1017-1029

    • [24] HUANG F J,ZHAO Y Y,WANG Q Z,et al.Dapagliflozin attenuates renal tubulointerstitial fibrosis associated with type 1 diabetes by regulating STAT1/TGFβ1 signaling [J].Front Endocrinol(Lausanne),2019,10:441

    • [25] 林远灿,骆海莺,刘慧芳,等.垂盆草总黄酮通过TGF⁃β 1/Smad2/3通路干预肝星状细胞上皮间质转化的分子机制[J].中药材,2020,43(1):202-205

    • [26] ZHANG H Y,CHEN F Y,FAN X,et al.Quantitative pro⁃ teomic analysis on activated hepatic stellate cells rever⁃ sion reveal STAT1 as a key regulator between liver fibro⁃ sis and recovery[J].Sci Rep,2017,7:44910

    • [27] KAOWINN S,KAEWPIBOON C,KOH S S,et al.STAT1 ⁃ HDAC4 signaling induces epithelial ⁃ mesenchy⁃ mal transition and sphere formation of cancer cells overex⁃ pressing the oncogene,CUG2[J].Oncol Rep,2018,40(5):2619-2627

  • 参考文献

    • [1] ZOJA C,ZANCHI C,BENIGNI A.Key pathways in renal disease progression of experimental diabetes[J].Nephrol Dial Transplant,2015,30:54-59

    • [2] JIANG Z H,TANG Y Z,SONG H N,et al.miRNA ⁃342 suppresses renal interstitial fibrosis in diabetic nephropa⁃ thy by targeting SOX6[J].Int J Mol Med,2020,45(1):45-52

    • [3] ZANCHI C,MACCONI D,TRIONFINI P,et al.MicroRNA 184 is a downstream effector of albuminuria driving renal fibrosis in rats with diabetic nephropathy[J].Diabetolo⁃ gia,2017,60(6):1114-1125

    • [4] HEERSPINK H J L,STEFANSSON B V,CORREA⁃ROT⁃ TER B V,et al.Dapagliflozin in patients with chronic kid⁃ ney disease[J].N Engl J Med,2020,383(15):1436-1446

    • [5] LI Y,LI L,ZENG O,et al.H2S improves renal fibrosis in STZ ⁃ induced diabetic rats by ameliorating TGF ⁃ β 1 expression[J].Ren Fail,2017,39(1):265-272

    • [6] MARRERO M B,BANES⁃BERCELI A K,STERN D M,et al.Role of the JAK/STAT signaling pathway in diabetic nephropathy[J].Am J Physiol Ren Physiol,2006,290(4):F762-F768

    • [7] GAN X,WANG J,WANG C,et al.PRR5L degradation promotes mTORC2⁃mediated PKC ⁃ delta phosphorylation and cell migration downstream of Galpha12[J].Nat Cell Biol,2012,14(7):686-696

    • [8] SHI Y,HU F B.The global implications of diabetes and cancer[J].Lancet,2014,383(9933):1947-1948

    • [9] CHEN Y Y,PENG X F,LIU G Y,et al.Protein arginine methyltranferase⁃1 induces ER stress and epithelial⁃mes⁃ enchymal transition in renal tubular epithelial cells and contributes to diabetic nephropathy[J].Biochim Biophys Acta Mol Basis Dis,2019,1865(10):2563-2575

    • [10] 钟涛,张国新,周迪夷,等.灵芝多糖对糖尿病肾病小鼠肾小管上皮细胞间充质转化的抑制作用[J].中国医药导报,2020,17(6):9-12

    • [11] LU Q,CHEN Y B,YANG H,et al.Inactivation of TSC1 promotes epithelial⁃mesenchymal transition of renal tubu⁃ lar epithelial cells in mouse diabetic nephropathy[J].Acta Pharmacol Sin,2019,40(12):1555-1567

    • [12] ZHAO L,ZHAO J,WANG X,et al.Serum response factor induces endothelial⁃mesenchymal transition in glomerularendothelial cells to aggravate proteinuria in diabetic nephropathy[J].Physiol Genomics,2016,48(10):711-718

    • [13] LOK S W Y,YIU W H,LI H Y,et al.The PAR⁃1 antago⁃ nist vorapaxar ameliorates kidney injury and tubulointer⁃ stitial fibrosis[J].Clin Sci,2020,134(21):2873-2891

    • [14] GONG E Y,JO H A,PARK S H,et al.VSIG4 induces epithelialmesenchymal transition of renal tubular cells under high ⁃glucoseconditions[J].Life(Basel),2020,10(12):354-364

    • [15] PEERAPEN P,THONGBOONKERD V.Protective roles of trigonelline against oxalate⁃induced epithelial⁃to⁃mes⁃ enchymal transition in renal tubular epithelial cells:An in vitro study[J].Food Chem Toxicol,2020,135:110915

    • [16] WANG Y N,ZHAO S L,SU Y Y,et al.Astragaloside Ⅳ attenuates high glucose ⁃ induced EMT by inhibiting the TGF⁃ β/Smad pathway in renal proximal tubular epithelial cells[J].Biosci Rep,2020,40(6):20190987

    • [17] ZHANG L,WANG H,TIAN L,et al.Expression of USP7 and MARCH7 is correlated with poor prognosis in epithe⁃ lial ovarian cancer[J].Tohoku J Exp Med,2016,239(3):165-175

    • [18] TERMEN S,TAN E J,HELDIN C H,et al.p53 regulates epithelial ⁃ mesenchymal transition induced by transform⁃ ing growth factor beta[J].Cell Physiol,2013,228(4):801

    • [19] YANG W,DICKER D T,CHEN J,et al.CARPs enhance p53 turnover by degrading 14⁃3⁃3 sigma and stabilizing MDM2[J].Cell Cycle,2008,7(5):670-682

    • [20] DEKKERS⁃CLAIRE C J,SERGEI P,LAVERMAN G D,et al.Effects of the SGLT⁃2 inhibitor dapagliflozin on glo⁃ merular and tubular injury markers[J].Diabetes Obes Metab,2018,20(8):1988-1993

    • [21] CHRISTOPH W,LACHIN J M,INZUCCHI S E,et al.Em⁃ pagliflozin and clinical outcomes in patients with type 2 diabetes mellitus,established cardiovascular disease,and chronic kidney disease[J].Circulation,2018,137(2):119-129

    • [22] TANG L,WU Y,TIAN M,et al.Dapagliflozin slows the progression of the renal and liver fibrosis associated with type 2 diabetes[J].Am J Physiol Endocrinol Metab,2017,313(5):E563-E576

    • [23] JUDIT H,BALOGH D B,ADAM H,et al.Reduced O ⁃ GlcNAcylation and tubular hypoxia contribute to the anti⁃ fibrotic effect of SGLT2 inhibitor dapagliflozin in the dia⁃ betic kidney[J].Am J Physiol Ren Physiol,2020,318(4):1017-1029

    • [24] HUANG F J,ZHAO Y Y,WANG Q Z,et al.Dapagliflozin attenuates renal tubulointerstitial fibrosis associated with type 1 diabetes by regulating STAT1/TGFβ1 signaling [J].Front Endocrinol(Lausanne),2019,10:441

    • [25] 林远灿,骆海莺,刘慧芳,等.垂盆草总黄酮通过TGF⁃β 1/Smad2/3通路干预肝星状细胞上皮间质转化的分子机制[J].中药材,2020,43(1):202-205

    • [26] ZHANG H Y,CHEN F Y,FAN X,et al.Quantitative pro⁃ teomic analysis on activated hepatic stellate cells rever⁃ sion reveal STAT1 as a key regulator between liver fibro⁃ sis and recovery[J].Sci Rep,2017,7:44910

    • [27] KAOWINN S,KAEWPIBOON C,KOH S S,et al.STAT1 ⁃ HDAC4 signaling induces epithelial ⁃ mesenchy⁃ mal transition and sphere formation of cancer cells overex⁃ pressing the oncogene,CUG2[J].Oncol Rep,2018,40(5):2619-2627

  • 通知关闭
    郑重声明