-
GC(gastric cancer,GC)是全球第5大癌症,死亡率居全球第4位[1-2]。目前,GC的治疗方法主要包括手术、放疗和化疗,但术后局部复发或远处转移的发生率超过40%[3]。此外,放疗和化疗后会出现明显的不良反应,导致晚期GC患者的5年生存率仅约 20%[4-5]。因此,寻找GC新的治疗和预后靶点以提高患者的生存率,已成为一项迫切的公共卫生问题。
-
为筛选出与 GC 预后相关的基因,本研究采用多种分析方法发现,在GC中丁酰胆碱酯酶(bcylcho⁃ linesterase,BCHE)具有良好的预后价值。BCHE是一种由肝脏合成并分泌到血液中的血浆酶,主要表达于外泌体和内质网[6],其半衰期约为 12 d,参考值为5 900~13 200 U/L[7-8]。研究表明,口腔癌和乳腺癌患者血清中BCHE 的表达水平明显升高[9-10]。然而,BCHE 基因在GC中的表达水平、调控机制,以及与临床治疗和预后的相关性仍不清楚。
-
1 材料和方法
-
1.1 材料
-
本研究的GC患者临床病理信息和基因转录组数据都来源于UCSC Xena数据库的肿瘤基因组图谱 (TCGA)[11]。
-
人GC细胞系HGC27、MKN1和人正常胃上皮细胞系GES⁃1(武汉普诺赛生命科技有限公司)。qRT⁃ PCR试剂(南京诺唯赞生物科技股份有限公司);小干扰RNA(small interfering RNA,siRNA)(上海吉玛制药技术有限公司);Lipo6000、CCK⁃8试剂(上海碧云天生物公司);基质凝胶(厦门模基生物科技有限公司)。
-
1.2 方法
-
1.2.1 生信数据处理
-
首先使用 Lasso 回归筛选预后基因[12],并采用 Kaplan⁃Meier生存曲线和单因素、多因素Cox回归分析BCHE基因表达在GC中的预后价值;其次采用卡方检验验证BCHE mRNA与临床病理参数之间的关系,使用TIMER2.0数据库(https://cistrome.shinyapps. io/timer/)[13]和 CIBERSORT 算法研究 BCHE 和免疫细胞浸润之间相关性,此外,利用 WGCNA 算法和DAVID Bioinformatics Resources数据库(https:// david.ncifcrf.gov/)[14] 对BCHE基因进行Gene Ontology (GO)和 Kyoto Encyclopedia of Genes and Genomes (KEGG)分析。
-
1.2.2 qRT⁃PCR
-
使用细胞 RNA 提取试剂盒提取人 GC 细胞 HGC27、MKN1和人正常胃上皮细胞GES⁃1的RNA,再用逆转录试剂将RNA逆转录成cDNA,以GAPDH 作为内参对BCHE进行qRT⁃PCR扩增。BCHE R:5′⁃ TGTTGCAGAGAATCGGAAATCAA⁃3′,F:5′⁃CCCA⁃ ATAAGCATGCAGAGCA⁃3′。GAPDH R:5′⁃GAAG⁃ GTGAAGGTCGGAGTC ⁃3′,F:5′ ⁃GGCTGTTGTCAT ⁃ ACTTCTCATGG⁃3′。采用2-ΔΔCt计算相对表达量。
-
1.2.3 细胞转染
-
利用siRNA靶向敲减BCHE基因。将细胞分为对照组、空载组(si⁃NC)和实验组(si⁃BCHE),收集处理后的HGC27和MKN1细胞,并配制成2×105 个/mL 的细胞悬液,铺入 6 孔板中,每孔 2 mL。培养 24 h 后,每孔滴加7.5 μL Lipo6000和7.5 μL siRNA,在培养箱中培养48 h后进行下一步实验。
-
1.2.4 CCK⁃8和克隆形成实验
-
CCK⁃8 实验:收集处理后的 HGC27 和 MKN1 细胞,并配制成2×104 个/mL的细胞悬液,铺入96孔板中,每孔 100 μL,分别在 24、48、72、96 h 后加入 10 μL CCK⁃8试剂,在37℃下孵育2 h后检测450 nm 的吸光度值。克隆形成实验:收集处理后的HGC27 和 MKN1 细胞,并配制成 1×103 个/mL 的细胞悬液,铺入6孔板中,每孔1 mL,观察到克隆体的外观后使用甲醛固定细胞,再用1%结晶紫对细胞进行染色,最后PBS洗涤3次并拍照。
-
1.2.5 细胞黏附实验
-
96 孔板每孔加入100 μL的1∶4基质凝胶,凝胶凝固后,收集处理过的 HGC27 和 MKN1 细胞,并配制成1×105 个/mL的细胞悬液,铺入96孔板中,每孔 100 μL,随后置于细胞培养箱中孵育2、4和8 h,PBS 洗涤3次后,更换新的培养基后进行CCK⁃8检测。
-
1.2.6 迁移和侵袭实验
-
迁移实验:收集处理后的 HGC27 和 MKN1 细胞,并配制成 2×105 个/mL 的细胞悬液,铺入 6 孔板中,每孔2 mL,24 h后使用灭菌的200 μL枪头垂直于 6 孔板底部横线划线,更换无血清培养基,分别在0、12、24 h后使用荧光倒置显微镜拍照。侵袭实验:收集处理后的 HGC27 和 MKN1 细胞,并配制成 1×106 个/mL 的无血清细胞悬液,将细胞加入铺有 1∶8基质凝胶的Transwell上层小室中,每孔100 μL。小室的底部加入500 μL 20%的血清培养基。培养 48 h 后,使用甲醛固定细胞,再用 0.1%结晶紫对细胞进行染色,最后PBS洗涤3次并拍照。
-
1.3 统计学方法
-
所有统计分析都使用 R 软件(4.1.2 版本)和 GraphPad Prism 8进行,符合正态分布的数据资料以均数±标准差()表示,两组间比较采用独立样本t 检验,多组间比采用单因素方差分析,组间两两比较采用LSD⁃t检验。根据中位数将BCHE mRNA在GC 组织中的表达水平分为高表达组和低表达组[15-18]。生存分析采用 Kaplan ⁃Meier 法并进行 log ⁃ rank 检验。使用 R 包“forestplot”进行单因素和多因素 Cox回归分析,并将单因素分析中差异具有统计学意义 (P <0.05)的变量纳入多因素分析。BCHE 表达高低与临床病理参数的关系采用卡方检验。P <0.05 为差异有统计学意义,每组实验重复3次。
-
2 结果
-
2.1 BCHE与GC患者预后及临床病理参数的关联性分析
-
首先通过 Lasso 回归分析筛选出 15 个与 GC 患者总生存期(overall survival,OS)有关的基因: BCHE、GPX3、ADAMTS18、ASPA、CD36、SERPINE1、 CYP19A1、LRAT、CGB5、ANO3、SOX14、CYMP、 CFHR4、F13B和OTX2(图1A);其次,根据生存曲线分析筛选出影响预后差异最显著的基因BCHE(P <0.001,图1B),且发现 BCHE mRNA 高表达的 GC 患者无进展生存期(P=0.001)、疾病特异性生存期 (P=0.002)和无病生存期(P=0.004)更短(图1C~E)。进一步分析发现,BCHE mRNA 在肿瘤组织中的表达水平高于癌旁组织(P <0.001),同时 BCHE mRNA在晚期GC(Ⅲ/Ⅳ期)患者中的表达水平高于早期 GC(Ⅰ/Ⅱ期)患者(P=0.020,图1F)。根据 BCHE mRNA 在 GC 组织中表达水平的中位数将患者分为高表达组和低表达组,分析BCHE mRNA 的表达与GC患者临床病理学参数之间的关系。结果表明,BCHE mRNA 的高表达与 T 分期(P=0.029)、TNM分期(P=0.035)、肿瘤类型(P <0.001)、肿瘤突变负荷(tumor mutational burden,TMB)(P <0.001)、微卫星不稳定性(microsatellite instability,MSI)(P <0.001)等临床病理参数相关(表1)。此外,单因素分析结果显示 BCHE mRNA 的表达水平(P <0.001)、年龄(P=0.010)、T分期(P=0.002)、M分期(P=0.002)、 N分期(P=0.002)、TNM分期(P <0.001)和肿瘤类型 (P=0.030)与GC患者预后有关。将单因素分析中有统计学意义的临床因素和BCHE表达水平因素一并纳入多因素分析,结果表明BCHE mRNA 的表达水平(P=0.006)、年龄(P=0.025)和M分期(P=0.019)均是GC患者的独立预后因素(表2)。
-
图1 BCHE mRNA在GC中的表达水平及相关生存分析
-
Figure1 The expression of BCHE mRNA and related survival analysis in GC
-
2.2 BCHE表达和免疫细胞浸润的相关性分析
-
首先,使用CIBERSORT算法研究BCHE mRNA 与免疫细胞浸润之间的关系。结果表明,BCHE mRNA高表达与多种免疫细胞浸润相关,包括浆细胞、B 细胞、调节性 T 细胞、NK 细胞和巨噬细胞等 (P <0.05,图2A);进一步通过 TIMER2.0 数据库研究 BCHE mRNA 表达与免疫细胞浸润之间的具体相关性。结果表明,在 GC 中 BCHE mRNA 的表达与 B 细胞(r=0.192,P <0.001)、单核细胞(r=0.226, P <0.001)、巨噬细胞(r=0.169,P <0.001)、NK细胞 (r=0.137,P=0.008)、肥大细胞(r=0.432,P <0.001) 和癌症相关成纤维细胞(cancer fibroblast,CAF) (r=0.733,P <0.001)显著正相关;与 CD4 + T 细胞 (r=-0.256,P <0.001)和 CD8 + T 细胞(r=-0.104, P=0.043)显著负相关(图2B)。
-
2.3 BCHE基因的富集分析
-
为了解目的基因BCHE可能存在的生物学功能和信号通路,我们利用 WGCNA 算法和 ESTIMATE 算法筛选与BCHE基因相关的共表达基因,选择了与免疫细胞和基质细胞相关性最高的棕色模块(包含了 188 个与 BCHE 共表达的基因)(图3A),使用 DAVID数据库对这188个基因进行富集分析,GO分析结果表明BCHE的表达可能与细胞增殖、细胞黏附和细胞迁移等功能有关(图3B)。KEGG 分析表明,BCHE的功能可能与PI3K⁃Akt信号通路、TGF⁃β 信号通路和癌症通路等有关(图3C)。
-
图2 BCHE与免疫细胞浸润的相关性分析
-
Figure2 The correlation between BCHE and immune cell infiltration
-
图3 BCHE mRNA的富集分析
-
Figure3 Enrichment analysis of BCHE mRNA
-
2.4 BCHE敲减对GC细胞增殖、黏附、迁移和侵袭的影响
-
为验证 BCHE 在 GC 细胞中的作用,本研究验证了该基因的体外功能。qRT⁃PCR 检测发现, GC 细胞株(HGC27 和 MKN1)中 BCHE mRNA 的表达显著高于胃组织正常细胞株(GSE⁃1)(P <0.001,图4A)。通过 siRNA 敲减 BCHE 表达,敲减效率如图4B、C 所示,选择敲减效率最高的 1 号片段 (si ⁃BCHE ⁃1)进行下游的功能实验。结果发现, BCHE 敲减后明显抑制了 GC 细胞的增殖能力 (P <0.05)和克隆形成能力(P <0.001,图4D~G)。黏附实验结果表明,BCHE敲减后能够促进GC细胞的黏附能力(P <0.05,图5A、B)。迁移和侵袭实验结果表明,BCHE 敲减后明显抑制 GC 细胞的迁移 (P <0.001)和侵袭能力(P <0.001,图5C~F)。这些结果表明,BCHE 是GC细胞中的一个促癌基因,敲减BCHE可抑制其介导的恶性生物学功能。
-
3 讨论
-
BCHE 是一个潜在的肿瘤标志物,其 mRNA 水平在卵巢癌、乳腺癌和肺癌中显著升高[9,19-20],且 BCHE mRNA的高表达与子宫内膜癌和卵巢癌患者较差的总生存率相关[19,21]。本研究通过生信数据分析以及实验验证发现,BCHE 在GC细胞中高表达,且BCHE mRNA 的高表达与GC 预后不良呈显著正相关。以上结果提示,BCHE可能是GC新的预后生物标志物。
-
鉴于GC微环境对肿瘤发生发展和转移具有重要作用,本研究使用CIBERSORT算法和TIMER 2.0 数据库分析发现,BCHE mRNA高表达与B细胞、癌症相关成纤维细胞及巨噬细胞的浸润呈正相关,与 CD4+ T 和 CD8+ T 细胞浸润呈负相关。研究报道显示,肿瘤微环境中存在较多的免疫细胞亚型,部分免疫细胞亚型与肿瘤患者较差的预后相关,如 M2 型巨噬细胞、调节性 B 细胞、癌症相关成纤维细胞等[22-24];亦有研究表明,B细胞浸润可能和肿瘤转移相关[25]。另外,部分 T 细胞上高表达免疫抑制性分子(如 PD⁃1、CTLA⁃4)等,当与携带相应配体的肿瘤细胞结合时,可抑制效应性T细胞的杀伤功能,从而使肿瘤细胞逃脱体内免疫系统的检查点监视,这也成为针对免疫检查点治疗的核心所在[26]。据此,有理由推测GC组织中BCHE 的高表达可能通过重塑肿瘤免疫微环境,促进肿瘤的发生发展,进而可影响免疫治疗的效果。
-
图4 敲减BCHE抑制胃癌细胞的增殖和克隆形成的能力
-
Figure4 Knock⁃down of BCHE inhibits proliferation and colony formation of gastric tumor cells
-
图5 敲减BCHE抑制胃癌细胞的侵袭和迁移能力
-
Figure5 Knock⁃down of BCHE inhibits invasion and migration of gastric tumor cells
-
研究表明,BCHE 与细胞凋亡、细胞黏附、细胞增殖和肿瘤发生有关[27-28]。在神经母细胞瘤中, BCHE mRNA的敲低显著抑制了癌细胞的增殖和侵袭[28]。在对子宫内膜癌的研究中发现BCHE可能和 TGF⁃β信号通路有关[21]。然而,BCHE在GC中的生物学功能的研究尚未见报道。本研究通过敲低 BCHE mRNA表达显著减缓了GC细胞增殖和克隆,并促进GC细胞的黏附、抑制GC细胞的迁移和浸润能力。因此,BCHE是一个促癌基因,降低BCHE的表达可抑制其介导的恶性生物学功能。但本研究仍有不足,如未对BCHE的分子机制进行实验验证,因此,本研究团队将会在今后的工作中完善对该部分内容的探索。
-
参考文献
-
[1] SUNG H,FERLAY J,SIEGEL R,et al.Global cancer sta⁃ tistics 2020:GLOBOCAN estimates of incidence and mor⁃ tality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2021,71(3):209-249
-
[2] ZHAO W,JIA L,ZHANG M,et al.The killing effect of novel bi⁃specific Trop2/PD⁃L1 CAR⁃T cell targeted gas⁃ tric cancer[J].Am J Cancer Res,2019,9(8):1846-1856
-
[3] MANZANEDO I,PEREIRA F,SERRANO Á,et al.Re⁃ view of management and treatment of peritoneal metasta⁃ ses from gastric cancer origin[J].J Gastrointest Oncol,2021,12(Suppl 1):S20-S29
-
[4] ALLEMANI C,MATSUDA T,DI CARLO V,et al.Global surveillance of trends in cancer survival 2000⁃14(CON⁃ CORD⁃3):analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 popu⁃ lation⁃based registries in 71 countries[J].Lancet,2018,391(10125):1023-1075
-
[5] ZHANG Y J,LU K,WU X,et al.Genetic variants in the Hedgehog signaling pathway genes are associated with gastric cancer risk in a Chinese Han population[J].J Biomed Res,2022,36(1):22-31
-
[6] GAUGHAN G,PARK H,PRIDDLE J,et al.Refinement of the localization of human butyrylcholinesterase to chro⁃ mosome 3q26.1 ⁃ Q26.2 using a PCR ⁃ derived probe[J].Genomics,1991,11(2):455-458
-
[7] SANTARPIA L,GRANDONE I,CONTALDO F,et al.Bu⁃ tyrylcholinesterase as a prognostic marker:a review of the literature[J].J Cachexia Sarcopenia Muscle,2013,4(1):31-39
-
[8] OSTERGAARD D,VIBY ⁃MOGENSEN J,HANEL H K,et al.Half ⁃life of plasma cholinesterase[J].Acta Anaes⁃ thesiol Scand,1988,32(3):266-269
-
[9] KUMAR R,RAZAB S,PRABHU K,et al.Serum butyryl⁃ cholinesterase and zinc in breast cancer[J].J Cancer Res Ther,2017,13(2):367-370
-
[10] PRABHU K,NAIK D,RAY S,et al.Significance of se⁃ rum butyrylcholinesterase levels in oral cancer[J].Aus⁃ tralas Med J,2011,4(7):374-378
-
[11] GOLDMAN M J,CRAFT B,HASTIE M,et al.Visualizing and interpreting cancer genomics data via the Xena plat⁃ form[J].Nat Biotechnol,2020,38(6):675-678
-
[12] ZOU C,HUANG D H,WEI H G,et al.Identification of immune⁃related risk signatures for the prognostic predic⁃ tion in oral squamous cell carcinoma[J].J Immunol Res,2021,2021:6203759
-
[13] LI T,FU J,ZENG Z,et al.TIMER2.0 for analysis of tumor⁃ infiltrating immune cells[J].Nucleic Acids Res,2020,48(W1):W509-W514
-
[14] SHERMAN B T,HAO M,QIU J,et al.DAVID:a web server for functional enrichment analysis and functional annotation of gene lists(2021 update)[J].Nucleic Acids Res,2022,50(W1):W216-W221
-
[15] HUGHES C G,BONCYK C S,FEDELES B,et al.Associ⁃ ation between cholinesterase activity and critical illness brain dysfunction[J].Crit Care Lond Engl,2022,26(1):377
-
[16] FUKSHI K,OKAMOTO T,OZAKI K,et al.Butyrylcholin⁃ esterase level as an independent prognostic factor for overall survival in patients on maintenance hemodialysis:a single⁃center retrospective study[J].Clin Exp Nephrol,2022,26(2):190-197
-
[17] 朱德明,孔连宝,贾文博,等.ANKRD1通过介导上皮细胞间充质转化促进肝细胞肝癌增殖与转移[J].南京医科大学学报(自然科学版),2023,43(4):484-491
-
[18] 马佩,方圆,查全斌,等.长链非编码RNA LINC01197 调节GC进展的机制研究[J].南京医科大学学报(自然科学版),2021,41(7):992-998
-
[19] WILLIS S,VILLALOBOS V M,GEVAERT O,et al.Sin⁃ gle gene prognostic biomarkers in ovarian cancer:a meta⁃ analysis[J].PLoS One,2016,11(2):e0149183
-
[20] ZENGIN T,ÖNAL ⁃ SÜZEK T.Analysis of genomic and transcriptomic variations as prognostic signature for lung adenocarcinoma[J].BMC Bioinform,2020,21(Suppl 14):368
-
[21] LIU J,TIAN T,LIU X,et al.BCHE as a prognostic bio⁃ marker in endometrial cancer and its correlation with im⁃munity[J].J Immunol Res,2022,2022:6051092
-
[22] MURAKAMI Y,SAITO H,SHIMIZU S,et al.Increased regulatory B cells are involved in immune evasion in pa⁃ tients with gastric cancer[J].Sci Rep,2019,9(1):13083
-
[23] CHEN Z H,ZHOU L J,LIU L L,et al.Single ⁃cell RNA sequencing highlights the role of inflammatory cancer⁃as⁃ sociated fibroblasts in bladder urothelial carcinoma[J].Nat Commun,2020,11(1):5077
-
[24] MAO X,XU J,WANG W,et al.Crosstalk between cancer⁃ associated fibroblasts and immune cells in the tumor mi⁃ croenvironment:new findings and future perspectives[J].Mol Cancer,2021,20(1):131
-
[25] GU Y,LIU Y,FU L,et al.Tumor⁃educated B cells selec⁃ tively promote breast cancer lymph node metastasis by HSPA4⁃targeting IgG[J].Nat Med,2019,25(2):312-322
-
[26] AI L,XU A,XU J.Roles of PD⁃1/PD⁃L1 pathway:signal⁃ ing,cancer,and beyond[J].Adv Exp Med Biol,2020,1248:33-59
-
[27] JAISWAL S,JAISWAL G.Butyrylcholinesterase:an eco⁃ nomical marker of disease activity in oral squamous cell carcinoma before and after therapy[J].J Cancer Res Ther,2020,16(Suppl):S39-S42
-
[28] BARANOWSKA J,KORTYLEWICZ Z,MCLNTYRE E,et al.Multifarious functions of butyrylcholinesterase in neuroblastoma:impact of bche deletion on the neuroblas⁃ toma growth in vitro and in vitro[J].J Pediatr Hematol Oncol,2022,44(6):293-304
-
摘要
目的:探究丁酰胆碱酯酶(bcylcholinesterase,BCHE)在胃癌(gastric cancer,GC)中的预后价值,验证和分析BCHE 对胃癌细胞生物学功能的影响。方法:采用Lasso回归法筛选预后基因,并利用卡方检验验证BCHE表达水平与临床病理参数之间的关系;利用TIMER2.0数据库和CIBERSORT算法研究BCHE和免疫细胞浸润之间的相关性,WGCNA算法和DAVID Bioinformatics Resources数据库进行富集分析;qRT-PCR检测正常人胃上皮细胞系(GES-1)及人胃癌细胞系(HGC27和MKN1) 中BCHE的表达情况;在HGC27和MKN1细胞系中瞬时转染小干扰RNA敲减BCHE后,利用CCK-8和克隆形成实验检测细胞增殖能力,黏附实验检测细胞黏附能力,Transwell和划痕实验检测细胞迁移、侵袭能力等功能变化情况。结果:利用Lasso回归分析筛选出15个与GC患者预后相关的基因,其中BCHE具有最佳的预测价值;进一步分析表明BCHE在胃癌组织中的表达水平显著高于其在癌旁组织中的表达水平,且BCHE在肿瘤细胞中的表达与免疫细胞浸润密切相关。富集分析结果显示BCHE 高表达与细胞增殖、细胞迁移和细胞黏附等有关。体外实验进一步证实降低BCHE的表达显著抑制胃癌细胞系的恶性生物学功能。结论:BCHE可作为GC的预后生物标志物,且可促进肿瘤内免疫细胞浸润;此外,降低BCHE表达可抑制其介导的恶性生物学功能。
Abstract
Objective:This study aims to explore the prognostic value of butyrylcholinesterase(BCHE)in gastric cancer(GC)and analyze its impact on the biological functions of gastric cancer cells. Methods:Firstly,Lasso regression method was used to screen prognostic genes,and the relationships between BCHE expression levels and clinical pathological parameters were verified using chi -square test. In addition,TIMER 2.0 database and CIBERSORT algorithm were utilized to investigate the correlation between BCHE and immune cell infiltration,and enrichment analysis was performed using WGCNA algorithm and DAVID Bioinformatics Resources database. Finally,the expression levels of BCHE in normal gastric epithelial cell line(GES-1)and gastric cancer cell lines (HGC27 and MKN1)were detected by real -time qPCR. Following transient transfection of small interfering RNA was conducted to knockdown the expression of BCHE in HGC27 and MKN1 cell lines. Cell proliferation was detected by CCK-8 and colony formation assay. Cell adhesion ability was detected by adhesion assay. Cell migration and invasion were detected by transwell and scratch assay. Results:Fifteen genes related to the prognosis of GC patients were screened out using Lasso regression analysis. Among them,BCHE has the best predictive value. Further analysis indicated that the expression level of BCHE in GC tissues was higher than those in the adjacent tissues or healthy controls,while the expression of BCHE in tumor cells was closely related to immune cell infiltration related molecules. Enrichment analysis showed that the high expression of BCHE was related to cell proliferation,migration and adhesion. The results of in vitro experiments further confirmed that reducing the expression of BCHE significantly inhibited the malignant biological function of gastric cancer cell line. Conclusion:BCHE serve as a prognostic biomarker for GC and can promote immune cell infiltration in tumors. In addition,reducing the expression of BCHE can inhibit its mediated malignant biological function.
Keywords
BCHE ; gastric cancer ; prognosis ; tumor-infiltrating immune cell