-
从胚胎到成年,巨噬细胞存在于身体的各个器官[1]。巨噬细胞是高度可塑性的细胞,通过改变其形态和功能来感知周围或全身环境,进而发生应答[2]。巨噬细胞属于免疫细胞,具有较强的吞噬能力。在免疫系统激活过程中,巨噬细胞参与了快速、非特异性的防御反应和长期、特异性的适应性反应(包括招募其他免疫细胞)[2]。巨噬细胞还能产生大量的细胞因子、趋化因子和生长因子等,这些因子参与了感染反应和组织修复。此外,除了在组织稳态和防御病原体中发挥免疫调节作用外,巨噬细胞还限制了一些疾病的发展,包括败血症、慢性炎症性疾病、神经退行性疾病和癌症[3-6]。在代谢性疾病 (包括非酒精性脂肪性肝病)中,巨噬细胞也发挥着至关重要的作用。
-
肝脏是一个重要的代谢器官,而肝脏中的巨噬细胞作为防御胃肠道有害物质通过门静脉循环进入肝脏的第一道防线,其存在维持着肝脏的稳态[7]。在非酒精性脂肪性肝病中,肝脏中存在不同的巨噬细胞以及动态的演变和功能的变化[8-9]。本文将从肝脏巨噬细胞的分类、异质性以及在非酒精性脂肪性肝病中的作用等方面进行综述。
-
1 肝脏巨噬细胞的分类
-
1.1 枯否细胞
-
枯否细胞于1876年由Wilhem von Kupffer 首次描述,20年后Tadeusz Browicz将枯否细胞鉴定为巨噬细胞[10-11]。巨噬细胞均表达通用的标志物,包括 CD64、F4/80和MerTK。近年来,对小鼠枯否细胞的区分有了长足进展。CLEC4F被确定为小鼠枯否细胞的特异性标志物,因而可以建立 Clec4f ⁃Dtr 和 Clec4f⁃cre小鼠模型,以分别特异性地去除或靶向枯否细胞[12-15]。虽然CLEC4F是一种有用的枯否细胞标志物,但是它也有其局限性。首先,它在枯否细胞中表达相对较晚,因此很难识别正在发展成枯否细胞的那些早期和中间态细胞[13-14,16-17]。对于正常肝脏来说,枯否细胞主要来源于胚胎,并在整个生命过程中自我维持、自我更新,因而CLEC4F的较晚表达无关紧要[18-19]。但是,对于疾病状态下的肝脏 (如非酒精性脂肪性肝病)来说,驻留巨噬细胞会逐渐减少或者丢失。其中一个重要的发现是胚胎来源的枯否细胞自我维持、自我更新能力受损,进而发生死亡,被单核细胞衍生的枯否细胞所替代[17,20-22]。单核细胞衍生的枯否细胞可能需要近1周的时间才表达 CLEC4F,然后才能将它们与其他肝脏巨噬细胞区分开来。其次,尽管 CLEC4F 在许多物种中保守,但在人类中并没有保守性[23],这导致真正的人类枯否细胞无法被识别。
-
近年来,单细胞RNA测序技术的出现,便于人们解析正常肝脏的细胞图谱,揭示人类枯否细胞的真实身份。然而,每项研究所得出的关于人类枯否细胞身份的结论不尽相同。尽管如此,利用单细胞 RNA测序技术(基于RNA水平)比较人和小鼠基因表达图谱,发现了枯否细胞较为特异的一些标志物,包括 CD5L、VSIG4、CD163、FOLR2、MARCO 和 SLC40A1,可用于在 7 个不同物种的肝脏中识别单一均质的枯否细胞群[23]。此外,通过流式细胞术 (基于蛋白水平)也能识别不同物种中的枯否细胞,包括VSIG4、CD163和FOLR2。另外,小鼠肝脏枯否细胞表面的其他受体包括 CLEC2 和 CD206 也可进一步区分不同来源的肝脏巨噬细胞。CLEC2(由 Clec1b编码)是枯否细胞非常早期的标志物,并在其整个寿命期间均保持表达[17,21]。因此,这是一个非常有用的标志物,能够区分单核细胞衍生的枯否细胞。在小鼠中,单核细胞衍生的枯否细胞主要限于疾病状态的肝脏,然而在正常人体肝脏中,已有研究通过单细胞测序鉴定了此类细胞的存在。潜在原因可能是人类暴露于病原体、高脂饮食、酒精和其他毒素等,导致单核细胞衍生的枯否细胞的招募[23]。然而,这些细胞是否是严格意义上的单核细胞衍生的枯否细胞仍需进一步探究。此外,基于CD206和 ESAM 的表达,枯否细胞可以分为两个亚群,即 CD206-ESAMK-C1 和 CD206 + ESAM+ KC2 [24-25],其中 CD206-ESAMK-C1是主要的枯否细胞亚群。转录组分析表明所有特异性表达于 KC2 的基因也都被肝窦内皮细胞表达,提示这些细胞可能是双重细胞或者消化产物[23,26]。因此,通过整合枯否细胞特异的表面标志物(包括 CD5L、VSIG4、CD163、FOLR2、 MARCO、SLC40A1、CLEC2和CLEC4F),进而区分枯否细胞和其他巨噬细胞。
-
1.2 枯否细胞以外的其他巨噬细胞
-
除了枯否细胞,正常肝脏中还存在其他巨噬细胞群体。首先,肝包膜巨噬细胞已经被证实存在于人和小鼠的肝脏中[23,27]。肝包膜由一层间皮细胞和一层位于肝表面下方的包膜成纤维细胞组成[28],而肝包膜巨噬细胞存在于此。在小鼠肝脏中,肝包膜巨噬细胞来源于单核细胞,在断奶时积累在包膜中[27]。它们表达通用的巨噬细胞标志物,如 F4/ 80 和 CD64,但不表达枯否细胞的标志物,如VSIG4、 CLEC4F、FOLR2 或 CLEC2[23]。此外,它们也表达 CX3CR1和CD207[23,27]。肝包膜巨噬细胞尽管在小鼠中具有明确的特征,但在人类中特征仍不明确。一方面,可能是因为相关标志物在人和小鼠中缺乏保守性[23];另一方面,可能是人类肝活检组织中缺乏包膜组织。此外,肝包膜巨噬细胞的转录特征在小鼠肝脏中并不是独特的。中央静脉区存在一群巨噬细胞,其转录特征与肝包膜巨噬细胞相似[23]。此外,在正常人和小鼠的肝脏中还发现了另外一群巨噬细胞。它们靠近胆管[23],其转录谱在不同物种间是一样的,与脂肪组织和脂肪肝中的脂质相关巨噬细胞相似[17,29]。因此,我们将这些细胞称为胆管 ⁃脂质相关巨噬细胞[23]。在小鼠肝脏中,胆管⁃脂质相关巨噬细胞没有特异的表面标志物,而在人体肝脏中,通过 CITE ⁃ seq 分析 CD14、CD11a、CD26、 CD141和CD9进而识别胆管⁃脂质相关巨噬细胞[23]。
-
2 肝脏巨噬细胞的分区和相互作用
-
单核细胞和巨噬细胞具有较强的可塑性,以便快速适应微环境的改变。2004 年的一项研究使用免疫组织化学和地高辛⁃胶原酶灌注分离方法,发现枯否细胞在门区和静脉周围存在功能差异[30]。 2021 年的一项研究使用定量多重共聚焦成像和数学建模评估了肝脏免疫细胞的定位,发现枯否细胞聚集在门区周围[31]。免疫分区是一个依赖于肠道菌群的动态过程,而肝窦内皮细胞被确定为免疫分区过程中的关键细胞,主要通过影响趋化因子成分而发生作用[31]。在人体正常肝脏中,MARCO 阳性枯否细胞在门区相对富集[32]。近年来,空间转录组学技术的出现,证实了人体CD68+ MARCO+ 驻留枯否细胞定位于门区,而招募的CD68+ MARCO-巨噬细胞靠近中央静脉[33]。然而,小鼠研究未能揭示巨噬细胞的任何特定分区,仅能发现一些单核细胞衍生的巨噬细胞位于大血管周围[15-17,24]。
-
肝脏中巨噬细胞与其他细胞相互作用。巨噬细胞的特异性是由肝窦内皮细胞、肝星状细胞和肝细胞共同塑造的。这些细胞表达 CSF1、DDL4、 TGF⁃β和 BMP9 等配体,进而激活巨噬细胞中的一些转录因子,如 LXRα、SPIC、RBPJ、SMADs 和 ID3,从而维持巨噬细胞特异性转录[14-16]。
-
3 巨噬细胞在非酒精性脂肪性肝病中的异质性
-
巨噬细胞在肝脏疾病环境中由于受到不同的代谢和免疫等信号刺激,会表现不同的功能。单细胞RNA测序研究揭示了正常和代谢疾病中肝脏内多种巨噬细胞群体。代谢性疾病中肝脏巨噬细胞多样性的研究大多集中在非酒精性脂肪性肝病的后期阶段,包括非酒精性脂肪性肝炎。
-
在非酒精性脂肪性肝炎中,单核细胞衍生的巨噬细胞数目和比例显著增加,可由正常情况下的 10%增加到50%,打破了原有驻留巨噬细胞和招募的巨噬细胞之间的平衡[17,20-22,34]。这些招募的巨噬细胞包括过渡型巨噬细胞、单核细胞衍生的枯否细胞和脂质相关巨噬细胞[17,20,22]。与非脂质相关巨噬细胞相比,脂质相关巨噬细胞在非酒精性脂肪性肝炎进程中表现出促炎表型[17,20]。由于胚胎来源的枯否细胞的丧失,单核细胞衍生的枯否细胞增加,以弥补枯否细胞池。在非酒精性脂肪性肝炎中,枯否细胞也可被划分为Trem2high、Trem2low、胚胎来源和单核细胞衍生的枯否细胞,Trem2high枯否细胞表型类似于脂质相关巨噬细胞[17,20-21,35]。2021年的一项研究揭示了一种胚胎来源的枯否细胞,通过表达CD36,对肥胖相关的氧化应激具有至关重要的作用[24]。
-
单细胞测序分析人和小鼠肝脏巨噬细胞的转录图谱,发现人体 TREM2+ CD9+ 瘢痕相关巨噬细胞和小鼠脂质相关巨噬细胞重叠,表明人和鼠中这两个巨噬细胞群可能是相同的细胞群[17]。在纤维化的微环境中,瘢痕相关巨噬细胞逐渐增加,并上调促纤维化基因,包括Spp1、Lgals3、Ccl2、Cxcl8、Pdgfb 和Vegfa[36]。因此,单细胞测序技术在非酒精性脂肪性肝炎进程中,有助于揭示肝脏巨噬细胞促纤维化表型。虽然这些研究揭示了单核细胞衍生的巨噬细胞在人和鼠中的有害作用,但2021年的一项研究表明,胚胎来源的肝脏巨噬细胞对肝脏脂肪变性相关的氧化应激有促进作用[24]。因此,无论是胚胎来源的巨噬细胞还是单核细胞衍生的巨噬细胞,它们在非酒精性脂肪性肝炎中的作用可能是一个动态的演变过程。
-
4 巨噬细胞在非酒精性脂肪性肝病中的作用
-
4.1 炎症作用
-
肝脏巨噬细胞在代谢性疾病中的重要性不言而喻。肝脏巨噬细胞的清除可减轻炎症。小鼠在高脂饮食喂养15~20周后,通过RNA测序分析肝脏驻留的巨噬细胞和招募的巨噬细胞,提示在肥胖和肝脏脂肪变性时,炎性标志物只在单核细胞衍生的巨噬细胞而不是驻留的枯否细胞中表达[37]。然而,这两种细胞群体只是根据表面标志物 F4/80 和 CD11b表达水平来定义的,即F4/80lowCD11b+ 代表招募的巨噬细胞,F4/80highCD11b+ 代表驻留的巨噬细胞,无法区分驻留和招募的巨噬细胞不同亚群。在另外一种非酒精性脂肪性肝炎的模型中,即蛋氨酸⁃胆碱缺乏饮食6周的小鼠中,通过转录组分析证实,与胚胎来源的巨噬细胞相比,单核细胞衍生的巨噬细胞处于更高的促炎状态[21]。在两种巨噬细胞中,脂代谢相关基因在非酒精性脂肪性肝炎中是最易受调节的。该研究也表明了在非酒精性脂肪性肝炎中,驻留的巨噬细胞减少,而单核细胞浸润增加。然而在单纯脂肪变时并没有发生这种情况,表明单核细胞的浸润和炎症的增加仅发生在非酒精性脂肪性肝病的后期阶段,即非酒精性脂肪性肝炎。一致的是,肥胖合并单纯脂肪变患者肝脏巨噬细胞的转录组学分析揭示,这些巨噬细胞没有任何炎症激活[38]。
-
单细胞测序技术允许深入研究巨噬细胞亚群表型以及根据它们的来源、功能和相关的炎性表型区分细胞[39]。肝脏巨噬细胞介导的炎症依赖于单核细胞的招募和肝脏疾病的严重程度。单细胞测序分析了饮食诱导的非酒精性脂肪性肝炎小鼠模型中肝脏巨噬细胞亚群的转录组学特征。单核细胞衍生的巨噬细胞具有更明显的促炎特征,而胚胎来源的巨噬细胞要么没有促炎特征,要么比其健康对照组略具促炎特征[17,20,22,35,40]。因此,这些研究证实了非酒精性脂肪性肝炎中炎症和单核细胞招募之间的关系。
-
此外,非酒精性脂肪性肝病的巨噬细胞高表达 p38α和 FoxO1。使用巨噬细胞特异性敲除 P38a 和 Foxo1 的小鼠,证实了 P38a 和 Foxo1 的敲除可减少促炎细胞因子的分泌,增加M2巨噬细胞的极化,降低炎症,抑制非酒精性脂肪性肝炎的发展[41-42]。而巨噬细胞XBP1通过激活巨噬细胞NLRP3信号促进促炎细胞因子表达和 M1 巨噬细胞的极化,加重炎症,促进非酒精性脂肪性肝炎的进展[43]。
-
4.2 胰岛素抵抗
-
巨噬细胞介导的胰岛素抵抗,是独立于炎症而存在的,并且在炎症发生前出现[38]。在高脂饮食早期且没有炎症的情况下,清除肝脏巨噬细胞可以改善胰岛素的敏感性[44-45]。通过在肝脏巨噬细胞中特异性敲除炎症主要调节因子NF⁃κB,可以减少IL⁃1β 表达并改善肥胖小鼠的肝脏胰岛素敏感性,表明肝脏巨噬细胞源性IL⁃1β在肥胖引起的肝功能障碍中发挥了直接作用[46]。然而,在肝脏巨噬细胞中特异性敲除 Il1b 未能改善肥胖小鼠的肝脏胰岛素敏感性[38]。这一发现表明,肝脏巨噬细胞中的NF⁃κB 可能独立于IL⁃1β调节肥胖小鼠的肝脏胰岛素敏感性。因此,研究肝脏巨噬细胞中NF⁃κB下游的转录调控以及验证其靶基因在胰岛素敏感性中的功能将是未来的研究方向。
-
此外,脂肪组织巨噬细胞上表皮生长因子受体的激活可加重胰岛素抵抗。研究表明高脂饮食增加了脂肪组织巨噬细胞中表皮生长因子受体及其配体双调蛋白的表达。而选择性去除脂肪组织巨噬细胞上表皮生长因子受体,可抑制肥胖和胰岛素抵抗的发展[47]。据报道,脂肪组织巨噬细胞来源的 miR⁃29a,可通过外泌体转运到肝脏,进而诱导胰岛素抵抗。其作用机制与下游 PPAR ⁃δ密切相关。 GW501516,作为PPAR⁃δ的激动剂,可改善miR⁃29a 诱导的胰岛素抵抗[48]。然而,也有研究表明,M2极化的骨髓源性巨噬细胞分泌含有 miR⁃690 的外泌体,可以改善肥胖小鼠葡萄糖耐受和胰岛素敏感性,提示miR⁃690可能成为治疗代谢性疾病的新胰岛素增敏剂[49]。
-
4.3 脂代谢和氧化应激
-
肝脏中肝细胞脂肪酸过度积累时,会发生脂毒性,进而导致内质网应激、氧化应激、肝细胞衰老和凋亡。脂肪变的肝细胞分泌细胞因子和趋化因子,包括 CCL2、CXCL10 和细胞外囊泡,进而激活非实质细胞(包括肝星状细胞、肝窦内皮细胞和巨噬细胞)[50-51]。另外,游离胆固醇也可以介导脂肪肝中巨噬细胞的活化[52]。正常情况下,巨噬细胞具有模式识别受体(介导促炎信号)和清道夫受体(参与脂质摄取和吞噬)。而在非酒精性脂肪性肝病中,清道夫受体A和脂肪酸转运蛋白CD36受到广泛关注,因为它们介导低密度脂蛋白的摄取[53-54]。
-
已有研究表明小鼠体内枯否细胞的清除,可减少高脂饮食诱导的肝脏脂肪变性和炎症[55]。活化的枯否细胞会分泌促炎细胞因子,包括IL⁃1β和TNF,而这些细胞因子通过PPAR⁃α途径抑制参与肝细胞脂质代谢的基因,从而促进肝细胞脂肪变性[44,56]。有趣的是,富含脂肪的巨噬细胞在摄取凋亡的脂肪变性肝细胞后,也可转变成抗炎表型[57]。此外, Blériot等[24] 使用单细胞转录组分析和命运图谱方法证实在健康和肥胖者中,除了主要的CD206lowESAM-枯否细胞群外,还有 CD206highESAM+ 亚群,均通过 CD36的表达参与脂质代谢的调节。Weiss等[58] 的最新研究表明巨噬细胞来源的衣康酸反式作用于肝细胞,以调节肝脏代谢脂肪酸的能力。
-
2019年的一项研究表明,在肥胖和胰岛素抵抗的人和小鼠中,肝脏巨噬细胞并不会变成促炎巨噬细胞[38]。小鼠在高脂饮食9周后出现肥胖、肝脏脂肪变和胰岛素抵抗,此时并没有招募促炎单核细胞。小鼠在高脂饮食至少12周后,才开始招募促炎单核细胞[38]。通常认为,肝脏巨噬细胞产生胰岛素样生长因子结合蛋白7,直接调节肥胖小鼠和人中的胰岛素信号和脂质堆积,从而促进代谢性疾病的发展[38]。虽然巨噬细胞在早期阶段并未获得促炎表型,但是它们已经不同于健康对照组中的肝脏巨噬细胞,高达1 000个基因的表达具有统计学差异[38]。而这些差异基因大多数参与氧化应激[59]。脂质过氧化功能障碍和活性氧的过度产生促进了氧化应激。
-
Barreby 等[60] 利用单细胞测序分析发现在肥胖人群中,保护性驻留肝髓细胞(称为肝髓细胞2)的比例会降低。功能性实验表明,肝髓细胞2的存在可以改善与肥胖相关的氧化应激。因此,肝髓细胞 2可能是非酒精性脂肪性肝病相关氧化应激的潜在治疗靶点。
-
4.4 纤维化
-
肝纤维化是非酒精性脂肪性肝炎晚期的一个关键特征,与其预后密切相关[61]。伴有纤维化的非酒精性脂肪性肝炎患者,可进一步发展成为肝硬化、门静脉高压、器官功能受损和肝细胞癌[62]。纤维化的严重程度是肝脏疾病相关发病率和病死率的重要预测因素[63]。免疫细胞、内皮细胞和肝星状细胞等相互作用,共同构成了纤维化生态位[36]。巨噬细胞是肝纤维化的一个调节因子。
-
RNA测序分析表明单核细胞衍生的巨噬细胞,而不是枯否细胞,上调与纤维化进展相关的生长因子和细胞因子,揭示单核细胞衍生的巨噬细胞在肝脏纤维化形成中起主要作用[64]。一致的是,Ccr2-/-小鼠表现出较少的单核细胞衍生的巨噬细胞和较轻的纤维化[65]。
-
然而,纤维化生态位上的单核细胞衍生的巨噬细胞存在功能异质性。近年来,单细胞测序发现小鼠肝脏中单核细胞衍生的巨噬细胞定位于与 desmin+ 肝星状细胞非常接近的纤维化组织区域,这表明它们可能参与肝纤维化[17]。与此同时,在人类肝硬化的肝脏中也发现了类似的现象,具有促纤维化特征的Trem2+ Cd9+ 单核细胞衍生的巨噬细胞在人类肝纤维化过程中明显增多[36],其转录组学特征包含调节纤维化生成的一些基因,包括 Spp1、Lgals3、 Ccl2和Pdgfb[36]。有趣的是,该巨噬细胞群与正常和脂肪变肝脏中发现的脂质相关巨噬细胞群具有很大的相似性[22-23]。Hendrikx等[66] 利用空间转录组分析发现 Trem2+ 巨噬细胞也定位于纤维化区域。另一项研究发现了Ceacam1+ Msr1+ Ly6C-F4/80- Mac1+ 单核细胞群,根据其分离的核形状和细胞质颗粒,被称为分离的含核非典型单核细胞。其受C/EBPβ调节,具有促纤维化作用[67]。此外,表达骨桥蛋白的 CLEC4F-单核细胞衍生的巨噬细胞也具有促纤维化作用[17]。目前,虽然这些不同巨噬细胞亚群之间的确切关系尚不清楚,但是它们的相关性得到了临床数据的支持,即非酒精性脂肪性肝炎伴有纤维化患者的血清和肝脏样本中骨桥蛋白、CCL2和IL⁃8表达上调[68]。此外,巨噬细胞也是纤维化消退和组织完整性恢复的重要调节因子,因为它们可以降解细胞外基质并具有免疫调节功能。清除CX3CR1+ CCR2+ 脂质相关巨噬细胞增加了肝纤维化,表明这群细胞对纤维化起着抑制作用[22]。
-
纤维化生态位离不开巨噬细胞、内皮细胞和肝星状细胞之间的相互作用。巨噬细胞来源的TNF⁃α、IL⁃1β、TGF⁃β和galectin⁃3是重要的促纤维化信号,可激活肝星状细胞中的NF⁃κB通路,诱导胶原生成并促进其存活[43,69-71]。巨噬细胞中的YAP信号介导纤维化血管内皮细胞亚群的交流[72]。因此,巨噬细胞在纤维化过程中发挥重要作用。
-
5 结语与展望
-
在巨噬细胞分区、细胞代谢和细胞间相互作用以及功能验证上所取得的进展,将有利于阐明肝脏巨噬细胞亚群在非酒精性脂肪性肝病中的具体作用。探索肝脏巨噬细胞的多样性有利于进一步了解非酒精性脂肪性肝病。单细胞测序技术,更有助于了解肝脏疾病不同阶段巨噬细胞亚群的转录谱改变。此外,采用靶向方法来清除特定的肝脏巨噬细胞亚群,以确定巨噬细胞亚群在非酒精性脂肪性肝病中的作用,为后续非酒精性脂肪性肝病的治疗提供了新的策略。
-
参考文献
-
[1] LAZAROV T,JUAREZ ⁃ CARRENO S,COX N,et al.Physiology and diseases of tissue ⁃ resident macrophages [J].Nature,2023,618(7966):698-707
-
[2] CHEN S,SAEED A,LIU Q,et al.Macrophages in immu⁃ noregulation and therapeutics[J].Signal Transduct Tar⁃ get Ther,2023,8(1):207
-
[3] YEUNG S T,OVANDO L J,RUSSO A J,et al.CD169 + macrophage intrinsic IL ⁃10 production regulates immune homeostasis during sepsis[J].Cell Rep,2023,42(3):112171
-
[4] SHARMA R,ANTYPIUK A,VANCE S Z,et al.Macro⁃ phage metabolic rewiring improves heme⁃suppressed effe⁃ rocytosis and tissue damage in sickle cell disease[J].Blood,2023,141(25):3091-3108
-
[5] XU L,PAN C L,WU X H,et al.Inhibition of Smad3 in macrophages promotes Aβ efflux from the brain and there⁃ by ameliorates Alzheimer’s pathology[J].Brain Behav Immun,2021,95:154-167
-
[6] ZHANG X,LI S,MALIK I,et al.Reprogramming tumour⁃ associated macrophages to outcompete cancer cells[J].Nature,2023,619(7970):616-623
-
[7] GUILLIAMS M,SCOTT C L.Liver macrophages in health and disease[J].Immunity,2022,55(9):1515-1529
-
[8] WEN Y K,LAMBRECHT J,JU C,et al.Hepatic macro⁃ phages in liver homeostasis and diseases ⁃ diversity,plas⁃ ticity and therapeutic opportunities[J].Cell Mol Immu⁃ nol,2021,18(1):45-56
-
[9] KAZANKOV K,DAHL JØRGENSEN S M,THOMSEN K L,et al.The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J].Nat Rev Gas⁃ troenterol Hepatol,2019,16(3):145-159
-
[10] KUPFFER C.Ueber sternzellen der leber[J].Archiv Für Mikroskopische Anatomie,1876,12(1):353-358
-
[11] BROWICZ.Ueber intravasculäre zellen in den blutcapil⁃ laren der leberacini[J].Archiv Für Mikroskopische Anat⁃ omie,1899,55(1):420-426
-
[12] BEATTIE L,SAWTELL A,MANN J,et al.Bone marrow⁃ derived and resident liver macrophages display unique transcriptomic signatures but similar biological functions [J].J Hepatol,2016,65(4):758-768
-
[13] SCOTT C L,ZHENG F,DE BAETSELIER P,et al.Bone marrow⁃derived monocytes give rise to self⁃renewing and fully differentiated Kupffer cells[J].Nat Commun,2016,7:10321
-
[14] SCOTT C L,T′JONCK W,MARTENS L,et al.The tran⁃ scription factor ZEB2 is required to maintain the tissue ⁃ specific identities of macrophages[J].Immunity,2018,49(2):312-325
-
[15] SAKAI M,TROUTMAN T D,SEIDMAN J S,et al.Liver⁃ derived signals sequentially reprogram myeloid enhancers to initiate and maintain Kupffer cell identity[J].Immunity,2019,51(4):655-670
-
[16] BONNARDEL J,T′ JONCK W,GAUBLOMME D,et al.Stellate cells,hepatocytes,and endothelial cells imprint the Kupffer cell identity on monocytes colonizing the liver macrophage niche[J].Immunity,2019,51(4):638-654
-
[17] REMMERIE A,MARTENS L,THONÉ T,et al.Osteopon⁃ tin expression identifies a subset of recruited macro⁃ phages distinct from Kupffer cells in the fatty liver[J].Im⁃ munity,2020,53(3):641-657
-
[18] GINHOUX F,GUILLIAMS M.Tissue ⁃ resident macro⁃ phage ontogeny and homeostasis[J].Immunity,2016,44(3):439-449
-
[19] LIU Z,GU Y,CHAKAROV S,et al.Fate mapping via Ms4a3 ⁃ expression history traces monocyte ⁃ derived cells [J].Cell,2019,178(6):1509-1525
-
[20] SEIDMAN J S,TROUTMAN T D,SAKAI M,et al.Niche⁃ specific reprogramming of epigenetic landscapes drives myeloid cell diversity in nonalcoholic steatohepatitis[J].Immunity,2020,52(6):1057-1074
-
[21] TRAN S,BABA I,POUPEL L,et al.Impaired Kupffer cell self ⁃ renewal alters the liver response to lipid over⁃ load during non ⁃ alcoholic steatohepatitis[J].Immunity,2020,53(3):627-640
-
[22] DAEMEN S,GAINULLINA A,KALUGOTLA G,et al.Dynamic shifts in the composition of resident and recruited macrophages influence tissue remodeling in NASH[J].Cell Rep,2021,34(2):108626
-
[23] GUILLIAMS M,BONNARDEL J,HAEST B,et al.Spatial proteogenomics reveals distinct and evolutionarily con⁃ served hepatic macrophage niches[J].Cell,2022,185(2):379-396
-
[24] BLÉRIOT C,BARREBY E,DUNSMORE G,et al.A sub⁃ set of Kupffer cells regulates metabolism through the expression of CD36[J].Immunity,2021,54(9):2101-2116
-
[25] DE SIMONE G,ANDREATA F,BLERIOT C,et al.Iden⁃ tification of a Kupffer cell subset capable of reverting the T cell dysfunction induced by hepatocellular priming[J].Immunity,2021,54(9):2089-2100
-
[26] HUME D A,OFFERMANNS S,BONNAVION R.Contam⁃ ination of isolated mouse Kupffer cells with liver sinusoi⁃ dal endothelial cells[J].Immunity,2022,55(7):1139-1140
-
[27] SIERRO F,EVRARD M,RIZZETTO S,et al.A liver cap⁃ sular network of monocyte ⁃ derived macrophages restricts hepatic dissemination of intraperitoneal bacteria by neu⁃ trophil recruitment[J].Immunity,2017,47(2):374-388
-
[28] BALOG S,LI Y C,OGAWA T,et al.Development of cap⁃ sular fibrosis beneath the liver surface in humans and mice[J].Hepatology,2020,71(1):291-305
-
[29] JAITIN D A,ADLUNG L,THAISS C A,et al.Lipid⁃asso⁃ ciated macrophages control metabolic homeostasis in a Trem2⁃dependent manner[J].Cell,2019,178(3):686-698
-
[30] BYKOV I,YLIPAASTO P,EEROLA L,et al.Functional differences between periportal and perivenous Kupffer cells isolated by digitonin ⁃ collagenase perfusion[J].Comp Hepatol,2004,3(Suppl 1):S34
-
[31] GOLA A,DORRINGTON M G,SPERANZA E,et al.Commensal⁃driven immune zonation of the liver promotes host defence[J].Nature,2021,589(7840):131-136
-
[32] MACPARLAND S A,LIU J C,MA X Z,et al.Single cell RNA sequencing of human liver reveals distinct intrahe⁃ patic macrophage populations[J].Nat Commun,2018,9(1):4383
-
[33] ANDREWS T S,ATIF J,LIU J C,et al.Single⁃cell,single⁃ nucleus,and spatial RNA sequencing of the human liver identifies cholangiocyte and mesenchymal heterogeneity [J].Hepatol Commun,2022,6(4):821-840
-
[34] DECZKOWSKA A,DAVID E,RAMADORI P,et al.XCR1(+)type 1 conventional dendritic cells drive liver pathology in non ⁃ alcoholic steatohepatitis[J].Nat Med,2021,27(6):1043-1054
-
[35] XIONG X L,KUANG H,ANSARI S,et al.Landscape of intercellular crosstalk in healthy and NASH liver revealed by single⁃cell secretome gene analysis[J].Mol Cell,2019,75(3):644-660
-
[36] RAMACHANDRAN P,DOBIE R,WILSON⁃KANAMORI J R,et al.Resolving the fibrotic niche of human liver cir⁃ rhosis at single⁃cell level[J].Nature,2019,575(7783):512-518
-
[37] MORINAGA H,MAYORAL R,HEINRICHSDORFF J,et al.Characterization of distinct subpopulations of hepa⁃ tic macrophages in HFD/obese mice[J].Diabetes,2015,64(4):1120-1130
-
[38] MORGANTINI C,JAGER J,LI X,et al.Liver macro⁃ phages regulate systemic metabolism through non⁃inflam⁃ matory factors[J].Nat Metab,2019,1(4):445-459
-
[39] RAMACHANDRAN P,MATCHETT K P,DOBIE R,et al.Single ⁃ cell technologies in hepatology:new insights into liver biology and disease pathogenesis[J].Nat Rev Gastroenterol Hepatol,2020,17(8):457-472
-
[40] KRENKEL O,HUNDERTMARK J,ABDALLAH A T,et al.Myeloid cells in liver and bone marrow acquire a func⁃ tionally distinct inflammatory phenotype during obesity ⁃ related steatohepatitis[J].Gut,2020,69(3):551-563
-
[41] ZHANG X,FAN L,WU J,et al.Macrophage p38alpha promotes nutritional steatohepatitis through M1 polariza⁃ tion[J].J Hepatol,2019,71(1):163-174
-
[42] LEE S,USMAN T O,YAMAUCHI J,et al.Myeloid FoxO1 depletion attenuates hepatic inflammation and prevents nonalcoholic steatohepatitis[J].J Clin Invest,2022,132(14)
-
[43] WANG Q,ZHOU H,BU Q,et al.Role of XBP1 in regula⁃ ting the progression of non⁃alcoholic steatohepatitis[J].J Hepatol,2022,77(2):312-325
-
[44] HUANG W,METLAKUNTA A,DEDOUSIS N,et al.De⁃ pletion of liver Kupffer cells prevents the development of diet ⁃induced hepatic steatosis and insulin resistance[J].Diabetes,2010,59(2):347-357
-
[45] NEYRINCK A M,CANI P D,DEWULF E M,et al.Criti⁃ cal role of Kupffer cells in the management of diet ⁃ in⁃ duced diabetes and obesity[J].Biochem Biophys Res Commun,2009,385(3):351-356
-
[46] TENCEROVA M,AOUADI M,VANGALA P,et al.Acti⁃ vated Kupffer cells inhibit insulin sensitivity in obese mice[J].FASEB J,2015,29(7):2959-2969
-
[47] CAO S,PAN Y,TANG J,et al.EGFR ⁃mediated activa⁃ tion of adipose tissue macrophages promotes obesity and insulin resistance[J].Nat Commun,2022,13(1):4684
-
[48] LIU T,SUN Y C,CHENG P,et al.Adipose tissue macro⁃ phage⁃derived exosomal miR⁃29a regulates obesity⁃asso⁃ ciated insulin resistance[J].Biochem Biophys Res Com⁃ mun,2019,515(2):352-358
-
[49] YING W,GAO H,DOS REIS F C G,et al.MiR⁃690,an exosomal ⁃ derived miRNA from M2 ⁃ polarized macro⁃ phages,improves insulin sensitivity in obese mice[J].Cell Metab,2021,33(4):781-790
-
[50] PEISELER M,SCHWABE R,HAMPE J,et al.Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease ⁃ novel insights into cellular communication circuits[J].J Hepatol,2022,77(4):1136-1160
-
[51] TILG H,ADOLPH T E,DUDEK M,et al.Non⁃alcoholic fatty liver disease:the interplay between metabolism,microbes and immunity[J].Nat Metab,2021,3(12):1596-1607
-
[52] HORN C L,MORALES A L,SAVARD C,et al.Role of cholesterol ⁃associated steatohepatitis in the development of NASH[J].Hepatol Commun,2022,6(1):12-35
-
[53] GOVAERE O,PETERSEN S K,MARTINEZ⁃LOPEZ N,et al.Macrophage scavenger receptor 1 mediates lipid ⁃ induced inflammation in non⁃alcoholic fatty liver disease [J].J Hepatol,2022,76(5):1001-1012
-
[54] BIEGHS V,WOUTERS K,VAN GORP P J,et al.Role of scavenger receptor A and CD36 in diet⁃induced nonalco⁃ holic steatohepatitis in hyperlipidemic mice[J].Gastroen⁃ terology,2010,138(7):2477-2486
-
[55] CHEN L,YE H,ZHAO X,et al.Selective depletion of he⁃ patic Kupffer cells significantly alleviated hepatosteatosis and intrahepatic inflammation induced by high fat diet [J].Hepatogastroenterology,2012,59(116):1208-1212
-
[56] TOSELLO⁃TRAMPONT A C,LANDES S G,NGUYEN V,et al.Kuppfer cells trigger nonalcoholic steatohepatitis development in diet ⁃induced mouse model through tumor necrosis factor ⁃alpha production[J].J Biol Chem,2012,287(48):40161-40172
-
[57] JINDAL A,BRUZZI S,SUTTI S,et al.Fat⁃laden macro⁃ phages modulate lobular inflammation in nonalcoholic steatohepatitis(NASH)[J].Exp Mol Pathol,2015,99(1):155-162
-
[58] WEISS J M,PALMIERI E M,GONZALEZ⁃COTTO M,et al.Itaconic acid underpins hepatocyte lipid metabolism in non⁃alcoholic fatty liver disease in male mice[J].Nat Metab,2023,5(6):981-995
-
[59] AZZIMATO V,JAGER J,CHEN P,et al.Liver macro⁃ phages inhibit the endogenous antioxidant response in obesity⁃associated insulin resistance[J].Sci Transl Med,2020,12(532):eaaw9709
-
[60] BARREBY E,STRUNZ B,NOCK S,et al.Human resi⁃ dent liver myeloid cells protect against metabolic stress in obesity[J].Nat Metab,2023,5(7):1188-1203
-
[61] SANYAL A J,VAN NATTA M L,CLARK J,et al.Pro⁃ spective study of outcomes in adults with nonalcoholic fatty liver disease[J].N Engl J Med,2021,385(17):1559-1569
-
[62] POWELL E E,WONG V W,RINELLA M.Non⁃alcoholic fatty liver disease[J].Lancet,2021,397(10290):2212-2224
-
[63] ANGULO P,KLEINER D E,DAM ⁃ LARSEN S,et al.Liver fibrosis,but no other histologic features,is associat⁃ ed with long⁃term outcomes of patients with nonalcoholic fatty liver disease[J].Gastroenterology,2015,149(2):389-397
-
[64] KRENKEL O,PUENGEL T,GOVAERE O,et al.Thera⁃ peutic inhibition of inflammatory monocyte recruitment reduces steatohepatitis and liver fibrosis[J].Hepatology,2018,67(4):1270-1283
-
[65] SEKI E,DE MINICIS S,INOKUCHI S,et al.CCR2 pro⁃ motes hepatic fibrosis in mice[J].Hepatology,2009,50(1):185-197
-
[66] HENDRIKX T,PORSCH F,KISS M G,et al.Soluble TREM2 levels reflect the recruitment and expansion of TREM2(+)macrophages that localize to fibrotic areas and limit NASH[J].J Hepatol,2022,77(5):1373-1385
-
[67] SATOH T,NAKAGAWA K,SUGIHARA F,et al.Identifi⁃ cation of an atypical monocyte and committed progenitor involved in fibrosis[J].Nature,2017,541(7635):96-101
-
[68] GLASS O,HENAO R,PATEL K,et al.Serum interleukin⁃ 8,osteopontin,and monocyte chemoattractant protein 1 are associated with hepatic fibrosis in patients with nonal⁃ coholic fatty liver disease[J].Hepatol Commun,2018,2(11):1344-1355
-
[69] MATSUDA M,SEKI E.Hepatic stellate cell⁃macrophage crosstalk in liver fibrosis and carcinogenesis[J].Semin Liver Dis,2020,40(3):307-320
-
[70] YANG M,QI X,LI N,et al.Western diet contributes to the pathogenesis of non ⁃alcoholic steatohepatitis in male mice via remodeling gut microbiota and increasing pro⁃ duction of 2 ⁃ oleoylglycerol[J].Nat Commun,2023,14(1):228
-
[71] CAI B,DONGIOVANNI P,COREY K E,et al.Macro⁃ phage MerTK promotes liver fibrosis in nonalcoholic steatohepatitis[J].Cell Metab,2020,31(2):406-421
-
[72] QING J,REN Y,ZHANG Y,et al.Dopamine receptor D2 antagonism normalizes profibrotic macrophage⁃endothelial crosstalk in non ⁃ alcoholic steatohepatitis[J].J Hepatol,2022,76(2):394-406
-
摘要
肝脏是人体的重要器官,负责许多关键的生理过程,包括代谢、解毒和免疫。正常情况下,肝脏中巨噬细胞的稳态维持着肝脏的功能。而巨噬细胞稳态的破坏、不同细胞亚群之间的演变以及功能改变,促进非酒精性脂肪性肝病的进展。单细胞测序技术可在治疗非酒精性脂肪性肝病的过程中用于识别特定的巨噬细胞亚群。本文从肝脏巨噬细胞的分类、异质性以及在非酒精性脂肪性肝病中的作用等方面进行了综述。
Abstract
The liver is an important organ in the human body which is in charge of many key physiological processes,including metabolism,detoxification,and immunity. Normally,homeostasis of macrophages in the liver maintains liver function. Disruption of macrophage homeostasis,evolution among different cell subsets,and altered function contribute to the progression of non - alcoholic fatty liver diseases(NAFLD). Single cell RNA-seq technology is used to identify specific macrophage subsets for the treatment of non- alcoholic fatty liver diseases. This article will review the classification,heterogeneity,and role of hepatic macrophages in non-alcoholic fatty liver diseases.