-
动脉夹层(arterial dissection,AD)是指动脉内膜出现破裂口,血液经破裂口进入动脉内膜下及中膜,致使动脉内膜与中膜分离。壁面剪切力(wall shear stress,WSS)是指血流与血管内皮间的摩擦所作用于血管壁单位面积的力,也称切应力。近年来随着计算机流体模拟技术的发展,WSS 在 AD 形成中的作用与机制逐渐被明确[1⁃2]。为了更好地了解 AD的发病机制,本文对WSS在AD发病中的作用与机制进行汇总分析。
-
1 WSS与AD
-
WSS 的实质是血液流动过程中与血管内皮之间的摩擦力,其大小与血液的黏度、流速和血管内径直接相关,其计算公式为τw=4 μQ/πa3,其中μ为血液黏度,Q为平均血流量,a为血管内径。人体大血管的 WSS 在 10~70 dyn/cm2 之间。WSS 直接作用于动脉内皮,之后内皮细胞(endothelial cell,EC)通过多种信号通路对动脉壁的组成成分产生影响。此外,当血液流经不同形状的动脉而加速或减速时,WSS 会因此发生改变,产生壁面剪切力梯度(wall shear stress gradient,WSSG),加速血流产生的 WSS 逐渐增大,即正WSSG,反之则产生负WSSG,不同的 WSSG对动脉壁组成成分的影响不同。
-
EC通过感知WSS和WSSG的变化,动态调节动脉管壁的组成成分。当WSS和WSSG异常时,可导致动脉壁发生病理性改变,如EC功能障碍、内弹力板断裂、平滑肌细胞(smooth muscle cell,SMC)数量减少和表型转化、细胞外基质(extracellular matrix, ECM)降解等,导致动脉的顺应性、弹性下降和动脉硬化,最终导致AD的发生。
-
2 WSS引起AD的机制
-
异常 WSS 引起动脉壁病理性改变,进而促进 AD的发生,以下对相关机制进行详细阐述。
-
2.1 WSS与动脉内膜
-
动脉内膜的组成包括EC、SMC、ECM和成纤维细胞(fibroblast,FB),以EC为主。异常WSS引起的内膜撕裂是 AD 形成的关键[3]。以下将详细介绍 WSS引起内膜病理改变的机制(图1)。
-
2.1.1 WSS与EC
-
EC可以通过其力学感受器将WSS转导为可以影响基因表达和细胞功能(如形态异常、排列紊乱、增殖、凋亡及通透性升高)的细胞内信号[4]。
-
WSS影响EC的形态及排列。生理状态下,WSS 通过激活血管内皮生长因子(vascular endothelial growth factor,VEGF)受体等多种信号通路重组 EC 内的肌动蛋白骨架,使其沿血流方向呈梭形排列,这种特殊的形态和排列提高了内膜应对血流“冲击”的能力[5-6]。而当WSS降低或消失后,EC形态呈现椭圆形或多边形,且细胞排列紊乱,使内膜变得 “脆弱”[6]。
-
WSS影响EC的增殖与凋亡。生理状态下,WSS 不但可以激活G1/S特异性细胞周期蛋白C和E,从而使EC停滞在G0期;还可以下调相关的EC生长因子,如骨形态发生蛋白4(bone morphogenetic protein 4,BMP4)、转化生长因子(transforming growth factor, TGF)⁃ β2、肝癌衍生生长因子(hepatoma ⁃ derived growth factor,HDGF)和成纤维细胞生长因子 6 (fibroblast growth factor 6,FGF6),从而抑制 EC 增殖[7]。高/低和扰动 WSS 均会促进 EC 细胞周期加速,从而促进EC增殖[8]。另外,正常WSS还可以抑制EC凋亡,而异常WSS则促进EC凋亡[9]。
-
WSS还会影响EC的通透性。生理状态下,WSS可以通过上调一氧化氮合酶 3(nitric oxide synthase3,NOS3)和酪氨酸激酶(tyrosine kinase,TEK)的表达来降低 EC 的通透性,维持血管内稳态[10]。而 WSS高/低和扰动均可使EC的通透性增加[11]。
-
总之,异常WSS会导致EC结构和功能障碍,这与AD的发生密切相关[12]。
-
2.1.2 WSS与内弹力板
-
内弹力板介于内膜和中膜之间,主要由网状弹力纤维构成,是动脉壁的重要支撑结构,一旦损伤断裂便不能再修复,其不可逆性损伤是 AD 形成的病理学基础[13]。
-
异常 WSS 是内弹力板损伤的重要原因。高 WSS 促进 EC 产生尿激酶,而尿激酶可产生纤溶蛋白进而激活基质金属蛋白酶(matrix metalloprotein⁃ ases,MMP)家族成员,MMP可降解弹力纤维和胶原纤维,继而导致内弹力板损伤、断裂[10]。异常 WSS 可以刺激EC和SMC分泌MMP⁃2、MMP⁃9、血小板反应蛋白解整合素金属肽酶1(a disintegrin and metallo⁃ proteinase with thrombospondin motif 1,ADAMTS1)和 ADAMTS6,进而导致内弹力板损伤[14]。
-
2.1.3 WSSG与EC
-
WSSG和WSS类似,也可以调控EC的功能。正 WSSG 增强 WSS 对 EC 基因表达的调控作用,而负 WSSG则削弱WSS的影响[15]。WSSG与WSS协同调节EC的结构和功能。
-
正WSSG促进EC的增殖、凋亡、ECM的降解及内弹力板损伤。正WSSG不但下调阻滞EC的细胞周期蛋白,还可以上调与增殖相关的基因,如细胞骨架关联蛋白 2(cytoskeleton associated protein 2, CKAP2)、染色体结构维持蛋白 2(structural mainte⁃ nance of chromosomes 2,SMC2)、DNA拓扑异构酶Ⅱ α(topoisomeraseⅡA,TOP2A)和着丝粒蛋白 F(cen⁃ tromere protein F,CENPF),进而促进 EC 增殖[16-17]。正WSSG下调抑制细胞凋亡的基因,如单核细胞趋化蛋白 1(monocyte chemotactic protein 1,MCP1)、集落刺激因子2(colony stimulating factor 2,CSF2)、BMP4 和凝血酶敏感蛋白 1(thrombospondins 1,THBS1),进而促进 EC 凋亡[18]。正 WSSG 还可以下调MMP⁃9 的抑制因子转运蛋白(transgelin,TAGLN)来促进 ECM的降解[19]。此外,正WSSG可以引起内弹力板损伤,导致动脉管壁的破坏性重塑,继而引起AD的发生[20]。
-
负 WSSG 可以激活转录因子细胞核因子κB (nuclear factor kappa B,NF⁃κB)和早期生长反应因子⁃1(early growth responsive gene⁃1,Egr⁃1),以及转录基因 c⁃Jun和c⁃Fos,进而引起EC的增殖、迁移和通透性升高[17]。
-
总之,异常的WSSG和WSS共同导致内膜功能障碍,引起动脉内膜病理性改变,进而导致动脉壁强度减弱,最终促进AD的发生。
-
2.2 WSS与动脉中膜
-
中膜的组成成分包括SMC、ECM(胶原纤维、弹性纤维、糖蛋白和糖胺聚糖等),以SMC和弹性纤维为主。SMC 的主要功能是维持和调节血管张力。 SMC具有较低的增殖能力,并表达细胞收缩所需的收缩蛋白。SMC还具有较高的可塑性,可以在收缩型和合成型之间相互转化,从而在血管的修复和重塑中发挥关键作用[21]。中膜的病理性改变在AD的发生中起到关键作用,以下将详细介绍WSS引起中膜病理性改变的机制。
-
2.2.1 EC与SMC
-
WSS 通过 EC 与 SMC/ FB 间的信号通路间接调控中膜SMC的结构和功能[22]。SMC通过与EC间的细胞因子、一氧化氮(nitric oxide,NO)和 miRNA 等信号转导途径感受WSS的变化并做出反应[23]。
-
EC 可以通过细胞因子途径影响 SMC 的增殖、迁移和表型转化。高WSS促进EC分泌血管紧张素转化酶、内皮素⁃1(endothelin⁃1,ET⁃1)和TGFβ1,它们会引起 SMC的功能障碍与表型转化[24]。低WSS 促进 EC 通过旁分泌途径分泌血小板衍生因子 (platelet derived growth factor,PDGF)⁃BB,其可以调节EC本身和SMC的增殖与迁移[25-26]。
-
图1 剪切力通过调节EC中信号分子引起多种病理性改变
-
Figure1 Shear stress regulates the signaling molecules in EC,leading to various pathological changes
-
EC 能够通过 NO 调节 SMC 的增殖与迁移。异常WSS能够激活EC的内皮型一氧化氮合酶并上调其基因表达,使EC产生大量NO[27]。NO能够激活鸟苷酸环化酶及其下游的一系列通路抑制 SMC 增殖与迁移[28]。
-
EC还能够通过其表达的miRNA来调控SMC的形态和功能。体外实验证实:对EC施加WSS后,会抑制其分泌的miRNA⁃126对SMC的调控作用[29]。此外,异常WSS还可以上调miR⁃132⁃3p、miR⁃370⁃3p、 miR⁃650,进而引起SMC增殖和表型转化[30-31]。
-
总之,异常的 WSS 可以通过 EC 与 SMC 之间的信号通路引起 SMC 功能障碍,使动脉中膜发生退化,应力及抗撕裂强度减弱,最终导致AD的发生。
-
2.2.2 WSS与SMC
-
异常 WSS 会引起 SMC 的病理性改变,包括增殖、迁移、细胞坏死/凋亡和收缩能力下降[1]。
-
异常 WSS 可以引起 SMC 的增殖和收缩能力下降。当WSS降低为3~25 dyn/cm2 时,SMC释放PDGF 和 FGF 增加,进而升高血管紧张素转换酶的活性,促进自身增殖[32-33]。当WSS进一步降低到1 dyn/cm2 时,会诱导前列腺素的显著升高,继而引起SMC 的舒张,导致动脉管腔扩张[32,34]。
-
异常 WSS 会引起 SMC 从中膜迁移到内膜。正常层流 WSS 可以通过下调 SMC 表达的 MMP 和 PDGF受体⁃β来抑制SMC的迁移[35-36];反之,血流湍流产生的扰动 WSS 可以通过激活细胞外调节蛋白激酶(extracellular regulated protein kinases,ERK)⁃1/2 与肌球蛋白轻链激酶途径促进SMC的迁移[37]。
-
异常 WSS 还可以引起 SMC 的数量减少。高 WSS可以引起SMC凋亡,导致其数量减少,继而引起中膜变薄,降低血管中膜的结构强度,促进AD的发生[39]。
-
总之,异常WSS也可以直接导致SMC数量减少和功能障碍,进而导致AD发生。
-
2.2.3 跨壁间隙WSS
-
在内膜完整的情况下,中膜 SMC 和外膜 FB 也会暴露在非常微弱的生理性跨壁间隙血流下,即透过正常内膜和内弹力板窗孔流入中膜和外膜间隙的微弱血流,这些微弱血流也会产生 WSS,靠近内膜侧的间隙 WSS 较靠近外膜侧的大。过去由于这些WSS较小而常被忽略,然而随着计算机流体模拟技术的发展,间隙WSS对血管中膜和外膜的影响逐渐被重视[39]。不仅如此,当内皮因各种因素导致通透性升高后,间隙WSS会进一步升高[40]。
-
间隙WSS可以调控SMC的表型转化、迁移和收缩。间隙 WSS 可以通过硫酸乙酰肝素蛋白多糖介导的 ERK1/2 通路调控 SMC 的表型转化[41]。间隙 WSS可以活化SMC,在EC剥脱早期,中膜的SMC便受到间隙 WSS 的影响迅速活化并去分化,活化的 SMC 会加速增殖并最终向内膜迁移导致内膜增厚[42]。间隙 WSS 可以通过 Rho 相关的卷曲蛋白激酶⁃肌球蛋白轻链磷酸酶(Rho kinase ⁃myosin light chain phosphatase,ROCK⁃MLCP)途径和Ca2+ 途径来诱导SMC的收缩,以此来维持正常的血管张力[43-44]。间隙WSS可以通上调MMP⁃3促进SMC和肌成纤维细胞的迁移[45]。总之,不应忽视间隙WSS对AD发生的重要作用。
-
2.2.4 WSS与ECM
-
ECM 是一大类不断动态变化的基质成分,包括结构蛋白(弹性纤维、胶原纤维)和非结构蛋白 (各种糖蛋白、糖胺聚糖、各种生长因子和滞留在基质中的蛋白酶)。其中沿血管壁走行呈网状结构分布的弹力纤维网是动脉中膜ECM的主要组成成分,其强大的结构及功能属性赋予了动脉管壁良好的弹性。异常 WSS 可以导致中膜弹力纤维降解、断裂,弹力纤维一旦损伤便不可修复,并最终引起动脉管壁的弹性减弱,脆性增加,促进动脉壁结构的破坏,从而导致AD的发生[46]。
-
2.3 WSS与动脉外膜
-
外膜的组成包括FB、胶原纤维、弹性纤维,较大的动脉外膜还有滋养血管,以FB和胶原纤维为主。外膜的病理性改变同样在AD的发展中起到了重要作用。
-
首先,外膜中也存在跨壁间隙 WSS,但由于相对“疏松”的外膜通透性高于“致密”的中膜,外膜FB 受到的间隙WSS会相对更低[39]。此外,大动脉外膜有自己的滋养血管,由于动脉管腔内的血压远高于外膜滋养血管,产生了从动脉管腔向外膜滋养血管流动的间隙血流[47-48]。这种间隙血流流动模式非常复杂,外膜 FB 主要通过这种间隙血流感受 WSS 的变化。
-
WSS会影响FB的活化、增殖和迁移[49]。生理状态下,外膜的FB及由其活化形成的肌成纤维细胞都能促进血管损伤后的新生内膜形成,继而抑制 AD的发生[50]。异常 WSS 能够抑制 FB 的迁移,促进肌成纤维细胞的迁移,尤其是当内皮破损致FB暴露在较强的间隙WSS环境下时,可进一步促进其迁移,加速AD的发生[7]。
-
3 小结
-
异常 WSS 是 AD 发生的重要始动因素,其通过多种信号通路引起动脉内膜、中膜和外膜病理性改变,进而诱导AD的发生。了解异常WSS诱导AD发生的机制有利于深入认识 AD,从而更好地预防和治疗AD。
-
参考文献
-
[1] 周旻,符伟国.主动脉疾病相关基础研究最新进展及未来突破点[J].中国实用外科杂志,2021,41(1):89-94
-
[2] WILLIAMS J G,MARLEVI D,BRUSE J L,et al.Aortic dissection is determined by specific shape and hemody⁃ namic interactions[J].Ann Biomed Eng,2022,50(12):1771-1786
-
[3] CHI Q Z,HE Y,LUAN Y,et al.Numerical analysis of wall shear stress in ascending aorta before tearing in type A aortic dissection[J].Comput Biol Med,2017,89:236-247
-
[4] DABAGH M,JALALI P,BUTLER P J,et al.Mechano⁃ transmission in endothelial cells subjected to oscillatory and multi ⁃ directional shear flow[J].J R Soc Interface,2017,14(130):20170185
-
[5] HUNG H S,CHU M Y,LIN C H,et al.Mediation of the migration of endothelial cells and fibroblasts on polyure⁃ thane nanocomposites by the activation of integrin ⁃ focal adhesion kinase signaling[J].J Biomed Mater Res A,2012,100(1):26-37
-
[6] VION A C,PEROVIC T,PETIT C,et al.Endothelial cell orientation and polarity are controlled by shear stress and VEGF through distinct signaling pathways[J].Front Physiol,2020,11:623769
-
[7] GARANICH J S,MATHURA R A,SHI Z D,et al.Effects of fluid shear stress on adventitial fibroblast migration:implications for flow⁃mediated mechanisms of arterializa⁃ tion and intimal hyperplasia[J].Am J Physiol Heart Circ Physiol,2007,292(6):H3128-H3135
-
[8] SALMAN H E,RAMAZANLI B,YAVUZ M M,et al.Bio⁃ mechanical investigation of disturbed hemodynamics ⁃ induced tissue degeneration in abdominal aortic aneu⁃ rysms using computational and experimental techniques [J].Front Bioeng Biotechnol,2019,7:111
-
[9] SUNDERLAND K,JIANG J.Multivariate analysis of he⁃ modynamic parameters on intracranial aneurysm initia⁃ tion of the internal carotid artery[J].Med Eng Phys,2019,74:129-136
-
[10] DOLAN J M,SIM F J,MENG H,et al.Endothelial cells express a unique transcriptional profile under very high wall shear stress known to induce expansive arterial remodeling[J].Am J Physiol Cell Physiol,2012,302(8):1109-1118
-
[11] WEINBERG P D.Haemodynamic wall shear stress,endo⁃ thelial permeability and atherosclerosis ⁃a triad of contro⁃ versy[J].Front Bioeng Biotechnol,2022,10:836680
-
[12] SUN J,DENG H,ZHOU Z,et al.Endothelium as a poten⁃ tial target for treatment of abdominal aortic aneurysm[J].Oxid Med Cell Longev,2018,2018:6306542
-
[13] AKUTSU K.Etiology of aortic dissection[J].Gen Thorac Cardiovasc Surg,2019,67(3):271-276
-
[14] ANDREUCCI M,PROVENZANO M,FAGA T,et al.Aortic aneurysms,chronic kidney disease and metalloproteinases [J].Biomolecules,2021,11(2):194
-
[15] ZIMNY M,KAWLEWSKA E,HEBDA A,et al.Wall shear stress gradient is independently associated with middle cerebral artery aneurysm development:a case⁃con⁃ trol CFD patient ⁃ specific study based on 77 patients[J].BMC Neurol,2021,21(1):281
-
[16] CORRIERE M A,ROGERS C M,ELIASON J L,et al.Endothelial Bmp4 is induced during arterial remodeling:effects on smooth muscle cell migration and proliferation [J].J Surg Res,2008,145(1):142-149
-
[17] DOLAN J M,MENG H,SINGH S,et al.High fluid shear stress and spatial shear stress gradients affect endothelial proliferation,survival,and alignment[J].Ann Biomed Eng,2011,39(6):1620-1631
-
[18] JANK M,VON NIESSEN N,OLIVIER C B,et al.Platelet bone morphogenetic protein ⁃ 4 mediates vascular inflam⁃ mation and neointima formation after arterial injury[J].Cells,2021,10(8):2027
-
[19] NAIR R R,SOLWAY J,BOYD D D.Expression cloning identifies transgelin(SM22)as a novel repressor of 92⁃kDa type Ⅳ collagenase(MMP⁃9)expression[J].J Biol Chem,2006,281(36):26424-26436
-
[20] DOLAN J M,MENG H,SIM F J,et al.Differential gene expression by endothelial cells under positive and nega⁃ tive streamwise gradients of high wall shear stress[J].Am J Physiol Cell Physiol,2013,305(8):C854-C866
-
[21] PANKRATZ F,MAKSUDOVA A,GOESELE R,et al.BMPER improves vascular remodeling and the contrac⁃ tile vascular SMC phenotype[J].Int J Mol Sci,2023,24(5):4950
-
[22] SHI Z D,TARBELL J M.Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts[J].Ann Biomed Eng,2011,39(6):1608-1619
-
[23] 任长辉,刘肖,康红艳,等.剪切力条件下血管内皮细胞与平滑肌细胞的相互作用[J].医用生物力学,2015,30(2):185-191
-
[24] HAN X B,SAKAMOTO N,TOMITA N,et al.Influence of TGF⁃β1 expression in endothelial cells on smooth muscle cell phenotypes and MMP production under shear stress in a co⁃culture model[J].Cytotechnology,2019,71(2):489-496
-
[25] QI Y X,JIANG J,JIANG X H,et al.PDGF⁃BB and TGF⁃ {beta}1 on cross⁃talk between endothelial and smooth mus⁃ cle cells in vascular remodeling induced by low shear stress[J].PNAS,2011,108(5):1908-1913
-
[26] KANG H,AHN D H,PAK J H,et al.Magnobovatol inhi⁃ bits smooth muscle cell migration by suppressing PDGF ⁃ Rβ phosphorylation and inhibiting matrix metalloprotein⁃ ase⁃2 expression[J].Int J Mol Med,2016,37(5):1239-1246
-
[27] ZENG X,XUE C D,LI Y J,et al.A mathematical model for intracellular NO and ROS dynamics in vascular endo⁃ thelial cells activated by exercise ⁃ induced wall shear stress[J].Math Biosci,2023,359:109009
-
[28] WANG L,CHENG C K,YI M,et al.Targeting endotheli⁃ al dysfunction and inflammation[J].J Mol Cell Cardiol,2022,168:58-67
-
[29] JI R R,CHENG Y H,YUE J M,et al.MicroRNA expres⁃ sion signature and antisense⁃mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation[J].Circ Res,2007,100(11):1579-1588
-
[30] KIM Y,YU N,JANG Y E,et al.Conserved miR⁃370⁃3p/BMP ⁃ 7 axis regulates the phenotypic change of human vascular smooth muscle cells[J].Sci Rep,2023,13(1):2404
-
[31] HUANG M X,PIAO H L,WANG Y,et al.Circ_0022920 maintains the contractile phenotype of human aortic vas⁃ cular smooth muscle cells via sponging microRNA ⁃ 650 and promoting transforming growth factor beta receptor 1 expression in angiotensin Ⅱ ⁃ induced models for aortic dissection[J].J Am Heart Assoc,2023,12(7):e027425
-
[32] TARBELL J M,SHI Z D,DUNN J,et al.Fluid mecha ⁃ nics,arterial disease,and gene expression[J].Annu Rev Fluid Mech,2014,46:591-614
-
[33] JADLI A S,BALLASY N N,GOMES K P,et al.Attenua⁃ tion of smooth muscle cell phenotypic switching by angio⁃ tensin 1 ⁃ 7 protects against thoracic aortic aneurysm[J].Int J Mol Sci,2022,23(24):15566
-
[34] ALSHIHABI S N,CHANG Y S,FRANGOS J A,et al.Shear stress⁃induced release of PGE2 and PGI2 by vascu⁃ lar smooth muscle cells[J].Biochem Biophys Res Com⁃ mun,1996,224(3):808-814
-
[35] SAKAMOTO N,OHASHI T,SATO M.Effect of fluid shear stress on migration of vascular smooth muscle cells in cocultured model[J].Ann Biomed Eng,2006,34(3):408-415
-
[36] LIU Y,LI W,YE C S,et al.Gambogic acid induces G0/G1 cell cycle arrest and cell migration inhibition via sup⁃ pressing PDGF receptor β tyrosine phosphorylation and Rac1 activity in rat aortic smooth muscle cells[J].J Atheroscler Thromb,2010,17(9):901-913
-
[37] CHEN J B,ZHOU Y,LIU S Y,et al.Biomechanical sig⁃ nal communication in vascular smooth muscle cells[J].J Cell Commun Signal,2020,14(4):357-376
-
[38] VEETURI S S,PATEL T R,BAIG A A,et al.Hemody⁃ namic analysis shows high wall shear stress is associated with intraoperatively observed thin wall regions of intra⁃ cranial aneurysms[J].J Cardiovasc Dev Dis,2022,9(12):424
-
[39] FUKUI W,UJIHARA Y,NAKAMURA M,et al.Direct visualization of interstitial flow distribution in aortic walls [J].Sci Rep,2022,12(1):5381
-
[40] RIZZO V.Enhanced interstitial flow as a contributing fac⁃ tor in neointima formation:(shear)stressing vascular wall cell types other than the endothelium[J].Am J Physiol Heart Circ Physiol,2009,297(4):H1196-1197
-
[41] JENSEN L F,BENTZON J F,ALBARRÁN ⁃ JUÁREZ J.The phenotypic responses of vascular smooth muscle cells exposed to mechanical cues[J].Cells,2021,10(9):2209
-
[42] LIU B,WANG X,JIANG L,et al.Extracellular fluid flow induces shallow quiescence through physical and bio⁃ chemical cues[J].Front Cell Dev Biol,2022,10:792719
-
[43] KIM M H,HARRIS N R,KORZICK D H,et al.Control of the arteriolar myogenic response by transvascular fluid fil⁃ tration[J].Microvasc Res,2004,68(1):30-37
-
[44] KANG H Y,LIU J J,SUN A Q,et al.Vascular smooth muscle cell glycocalyx mediates shear stress⁃induced con⁃ tractile responses via a Rho kinase(ROCK)⁃myosin light chain phosphatase(MLCP)pathway[J].Sci Rep,2017,7:42092
-
[45] SHI Z D,JI X Y,QAZI H,et al.Interstitial flow promotes vascular fibroblast,myofibroblast,and smooth muscle cell motility in 3D collagen I via upregulation of MMP ⁃1[J].Am J Physiol Heart Circ Physiol,2009,297(4):H1225-H1234
-
[46] SIGNORELLI F,SELA S,GESUALDO L,et al.Hemody⁃ namic stress,inflammation,and intracranial aneurysm de⁃ velopment and rupture:a systematic review[J].World Neurosurg,2018,115:234-244
-
[47] RITMAN E L,LERMAN A.The dynamic Vasa vasorum [J].Cardiovasc Res,2007,75(4):649-658
-
[48] MICHEL J B,THAUNAT O,HOUARD X,et al.Topologi⁃ cal determinants and consequences of adventitial respons⁃ es to arterial wall injury[J].Arterioscler Thromb Vasc Biol,2007,27(6):1259-1268
-
[49] TINAJERO M G,GOTLIEB A I.Recent developments in vascular adventitial pathobiology:the dynamic adventitia as a complex regulator of vascular disease[J].Am J Pathol,2020,190(3):520-534
-
[50] CHEN J,WEI J Q,HONG M N,et al.Mitogen ⁃activated protein kinases mediate adventitial fibroblast activation and neointima formation via GATA4/Cyclin D1 axis[J].Cardiovasc Drugs Ther,2023,10:1007
-
摘要
动脉夹层(arterial dissection,AD)的发生是多因素共同作用的结果,壁面剪切力(wall shear force,WSS)是血流与血管壁的摩擦力,是AD发生的重要始动因素。异常WSS通过多种机制引起动脉壁各层结构(内膜、中膜、外膜)的病理性改变,如内皮细胞结构和功能障碍、内弹力板损伤、平滑肌细胞数量减少和表型转化、细胞外基质降解等,最终导致AD的发生。为了更好地了解AD的发病机制,本文对异常WSS引起动脉壁各层结构病理性改变的调控机制进行综述。
Abstract
The occurrence of arterial dissection(AD)is the result of multiple factors. Wall shear force(WSS),an important initiating factor for AD,is the friction between blood flow and vessel wall. Abnormal WSS can cause pathological changes of arterial wall(intima,media,adventitia)through various mechanisms,such as endothelial cell structure and dysfunction,internal elastic lamina injury,reduction and phenotypic transformation of smooth muscle cells,extracellular matrix degradation,and eventually lead to the occurrence of AD. In order to better understand the pathogenesis of AD,this article reviews the regulatory mechanisms of pathological changes in each layer of arterial wall caused by abnormal WSS.