-
支气管肺发育不良(bronchopulmonary dysplasia BPD)是早产儿最常见的慢性肺病之一[1]。BPD 本质是在遗传易感性的基础上,氧中毒、气压伤或容量伤以及感染或炎症等各种不利因素对发育不成熟肺(囊泡期或早期肺泡期)导致的不同程度的肺泡间隔损伤、肺纤维化及异常血管发育和重塑等[2]。尽管产前预防性皮质类固醇激素的使用,生后气管内表面活性物质替代治疗,保护性的通气策略和目标氧饱和度策略等都极大提高了BPD患儿生存率[3],但是 BPD 患儿在其成长过程中会出现持续的肺功能恶化,反复呼吸道感染,以及因呼吸道疾病再入院的风险增加,并可能在成年时期发展为慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)[4]。随着非培养方法鉴定细菌技术的成熟及运用,已可在肺部检测出微量细菌定植[5]。越来越多的证据表明,BPD 患儿会受到肺部微生物菌群失调的影响,并可能与疾病的发生和发展有关[6]。目前对BPD 患儿肺部菌群的研究更多关注疾病早期[7],缺乏对远期特点的相关研究。此外,有研究显示 BPD 存在性别易感性的差异[8]。本研究通过高通量测序探究高氧暴露 BPD 模型小鼠青春期(生后 6 周)肺部菌群的特点及性别因素对其影响。
-
1 材料和方法
-
1.1 材料
-
32 只出生时间相差30 min以内的新生 C57BL/ 6J 小鼠(SPF级),购自南京医科大学医药动物实验中心,饲养于南京医科大学附属淮安第一医院动物实验中心。环境温度恒定(24±2)℃,相对湿度60%~70%,昼夜光照各12 h,自由饮水及采食,饮水及饲料由动物中心提供。本实验已获得南京医科大学附属淮安第一医院伦理委员会批准(批号:DW⁃P⁃ 2023⁃001⁃06)。
-
1.2 方法
-
1.2.1 实验分组
-
32 只 C57BL/6J新生小鼠,分为4组,每组8只,即空气雌性组(Ⅰa)、空气雄性组(Ⅰb)、高氧雌性组 (Ⅱa)、高氧雄性组(Ⅱb)。高氧组小鼠生后即置于吸入氧浓度>95%的环境中7 d,空气组小鼠置于同室内空气(FiO2=21%)环境;母鼠每24 h在高氧组和空气组之间轮换,以避免母鼠出现氧中毒。之后高氧及空气组新生小鼠与各自母鼠饲养在相同空气环境下直至6周,且所有小鼠在此期间所食饲料完全相同。6周龄小鼠其身体各个器官逐渐成熟,相当于青春期,研究显示小鼠肺部菌群在5~6周龄时多样性更高,6~8周龄时保持稳定[9]。
-
1.2.2 样本采集
-
生后第 43 天小鼠经 100% CO2吸入法处死,无菌条件下开胸,取肺叶组织,用无菌PBS冲洗。右肺上叶用4%多聚甲醛固定,石蜡包埋后连续切片,厚度为 4 μm,制备 HE 染色病理切片,其余肺组织立即在液氮中冷冻,转移至-80℃冰箱保存。
-
1.2.3 肺部组织微生物区系分析
-
样品16S rDNA 检测由南京枫梓生物医药科技有限公司完成,选取细菌 16S rRNA 基因 V3~V4 可变区进行 PCR 扩增。通过对测序序列(reads)进行拼接、质控和过滤,以97%的相似度聚类为分类操作单元(operational taxonomic units,OTU),利用 RDP classifier 对每条序列进行物种分类注释[10],根据物种注释情况进一步分析 Alpha 多样性、Beta 多样性、物种丰度。
-
1.2.4 肺组织形态分析及肺损伤病理学评估
-
根据本实验室之前的方法,计算辐射状肺泡计数(radical alveolar count,RAC)值评估肺泡化程度,由光学显微镜采集图像,以双盲方式光学显微镜下每张切片随机选取6个视野进行观察并测量RAC,最终取平均值,并进行组间比较。
-
1.3 统计学方法
-
采用 SPSS25.0 统计软件进行分析。实验数据以均数±标准差()表示,两组间用独立样本t检验进行比较分析,多组间比较采用双因素方差分析。Anosim 相似性分析可检验组间差异是否大于组内,判断实验分组是否存在意义。P<0.05为差异有统计学意义。
-
2 结果
-
2.1 肺部组织病理改变
-
2.1.1 小鼠肺组织病理
-
两组空气组小鼠肺泡结构正常,大小均匀,肺泡壁及支气管结构正常;两组高氧组肺泡结构不规则,肺泡间隔断裂及炎性细胞浸润,支气管壁增厚 (图1A)。
-
2.1.2 RAC值
-
高氧组RAC 值下降(P <0.001);双因素方差分析显示性别对小鼠 RAC 变化无显著差异(F=2.001, P=0.173,图1B)。
-
2.2 肺部菌群测序数据质控与OTU分析
-
共 32 例小鼠肺部标本进行 16S rDNA 基因测序。对下机fastq数据进行质控得到clean tags,抽平处理后每个样本得到28 907条tags,Shannon⁃Wiener 曲线显示测序数据量可以反映样本中绝大多数的微生物信息(图2A);使用 uparse 软件 unoise3 降噪方法0.97相似度对celan tags进行Featurs聚类,32个样本共产生784个Featurs。基于OTU的Venn 图中, 4种不同颜色的圆对应4组小鼠肺部所含的菌群,重叠部分则为共同含有的菌群(图2B)。
-
图1 小鼠肺组织病理改变
-
Figure1 The histopathological changes of lung tissues in mice
-
2.3 小鼠肺部菌群组间差异分析
-
4 组小鼠肺部菌群组间与组内差异性分析 Anosim 相似性分析结果显示,空气组和高氧组雌性小鼠肺部菌群差异无统计学意义(r=-0.094,P= 0.722),空气组和高氧组雄性小鼠菌群差异有统计学意义(r=0.906,P=0.03)。说明BPD模型小鼠青春期肺部微生物存在性别差异,主要集中在雄性小鼠肺部菌群的改变(表1)。
-
2.4 小鼠肺部菌群Alpha多样性分析
-
小鼠肺部菌群Shannon 指数综合体现物种的丰富度和均匀度,指数的高低还会受均匀度影响,即样本中的物种分布越均匀,多样性越高。4组肺部菌群丰富度及Shannon 指数差异无统计学意义(P= 0.713,图3A)。这意味着4组之间的肺部菌群丰富度没有统计学意义。
-
2.5 小鼠肺部菌群Beta多样性分析
-
PCoA图显示,4组样本基本上分别聚集在不同的象限,样本群落组成有差异性(P<0.05,图3B)。
-
2.6 小鼠肺部菌群差异物种分析
-
2.6.1 小鼠肺部菌群群落特征
-
通过对比数据库对 OTU 进行物种分类,绘制物种相对丰度柱状图。在门水平,肺部菌群的主要成员为放线菌门(Actinobacteriota),变形菌门(Proteo⁃ bacteria)、厚壁菌门(Firmicutes)、拟杆菌门(Bacte⁃ roidota);在属水平主要为红球菌属(Rhodococcus),不动杆菌属(Acinetobacter),气单胞菌属(Aeromon⁃ as),假单胞菌属(Pseudomona),葡萄球菌属(Staphy⁃ lococcus)(图4)。
-
2.6.2 肺部菌群差异物种分析
-
在门水平,与空气组相比,高氧组变形菌门 (Proteobacterial)丰度减少,差异有统计学意义(P <0.05),其中以雄性组变化为主,高氧雄性组相比于空气雄性组变形菌门(Proteobacteria)减少,放线菌门(Actinobacteriota)升高。在属水平,高氧组气单胞菌属(Aeromonas)、不动杆菌属(Acinetbacter)丰度减少。高氧雄性组气单胞菌属(Aeromonas)、不动杆菌属(Acinetbacter)减少,红球菌属(Rhodococcus)升高 (图5)。
-
2.6.3 小鼠肺部菌群LEfSe分析
-
LEfSe 分析结果显示,气单胞菌种(Aeromonas)、棒状杆菌属(Corynebacterium)、梭状芽孢杆菌属 (Clostridium)丰度在空气组高;葡萄球菌种(Staphy⁃ lococcus)、耐盐咸海鲜球菌种/属(Jeotgalicoccus)丰度在高氧组升高(图6)。
-
3 讨论
-
肺部微量的微生物定植,在健康状况下可以调节机体免疫系统,在部分呼吸系统疾病中,肺部微生物群失调与疾病进展有关[11]。本组空气对照组青春期小鼠肺部优势菌群在门水平是变形杆菌门 (Proteobacteria),厚壁菌门(Firmicutes)和放线菌门 (Actinobacteriota),这与文献报道一致[9]。但在属水平,主要是红球菌属(Rhodococcus)、不动杆菌属 (Acinetobacter)、气单胞菌属(Aeromonas),假单胞菌属(Pseudomonas)、葡萄球菌属(Staphylococcus)。而 Kenneth 等[12] 报道8周小鼠中最丰富的属为葡萄球菌属(Staphylococcus)、棒状杆菌属(Corynebacterium) 和假单胞菌属(Pseudomonas)。这表明在门水平上小鼠的主要微生物组是相同的,但在属水平上不同,这可能是受小鼠种类、年龄、性别、体重或不同的生活环境的影响所致[13]。
-
图2 肺部菌群测序数据质控与OTU分析
-
Figure2 Pulmonary microbiome sequencing data quality control and OTU analysis
-
本研究显示 BPD 模型小鼠青春期肺部菌群中葡萄球菌属较空气组升高,棒状杆菌属丰度减少,存在微生物群失调。有研究显示,金黄色葡萄球菌可通过其蛋白质调控气道黏膜的免疫反应,诱导气道上皮细胞活化并且释放 TSLP、IL⁃25和 IL⁃33等细胞因子,引起 DC 和 ILC2 细胞的持续免疫应答和 2 型免疫应答的活化,进而促进过敏性气道疾病的发展[14]。而棒状杆菌会抑制肺炎链球菌的呼吸道定植和感染活性,同时棒状杆菌也是被证明可通过 Toll样受体3(TLR3)介导产生保护作用和产生抗菌肽抑制潜在的病毒和细菌病原体[15]。早期高氧暴露BPD小鼠动物模型显示,BPD小鼠其肺部正常微生物群的建立会遭到破坏,其中链球菌(Streptococ⁃ cus)显著升高,丹毒丝菌(Erysipelotrichaceae)明显降低[16]。临床研究显示新生儿出生后气道微生物群落失调与 BPD 的发生有关,变形杆菌(Proteobacte⁃ ria)增加和乳酸杆菌(Iactobacillus)丰度降低与BPD 的风险增加有关[17]。肺部微生物群失调可以参与到急性肺部损伤中,而一旦非有益的呼吸道微生物群的建立起来,会引发一个促炎症途径的自我强化循环,这种状态可能通过气道结构的改变而永久改变呼吸道微环境,可能导致长期后遗症,包括哮喘和慢性阻塞性肺病[18]。
-
图3 小鼠肺部菌群多样性分析
-
Figure3 Analysis of pulmonary microbiome diversity in mice
-
图4 小鼠肺部菌群在门、属水平物种组成及相对丰度
-
Figure4 The relative abundance of pulmonary microbiome inmice at the phylum and genus level
-
图5 小鼠肺部菌群在门、属水平的差异分析
-
Figure5 Difference analysis of pulmonary flora in mice at phylum and genus level
-
图6 小鼠肺部菌群 LEfSe 分析柱状图
-
Figure6 Histogram of LEfSe analysis of pulmonary microbiome in mice
-
性别差异存在于许多肺部疾病的整个周期中,已有研究发现 BPD 肺损伤存在性别差异[19]。本研究显示,BPD 模型小鼠青春期肺组织 HE 染色显示肺泡数目和肺泡密度均降低,与之前研究结果一致[20-21],早期肺部氧化应激可以改变肺发育的分子通路,导致肺泡化受损、肺微血管重塑、平滑肌过度增生和中度纤维化,导致晚期肺发育改变、肺损伤和肺功能受损[22]。然而RAC值不存在性别差异,这可能与追赶生长有关[23]。在对 BPD 模型小鼠青春期肺部菌群Anosim 组间差异分析时,发现肺部菌群存在性别差异。目前 Shastri 等[24] 发现了肠道发酵中存在性别差异的证据,雌性小鼠在喂食补充低聚果糖的食物饮食后,与雄性相比,拟杆菌门的表达增加。也有研究发现慢性烟雾暴露导致雄性和雌性小鼠盲肠微生物群落存在显著差异[25]。随着肠⁃ 肺轴概念的提出,已经知道肠⁃肺轴是双向的,这种双向通讯是可能是通过微生物直接产生或经免疫触发后生成的化学信号实现的,这些信号分子可以通过血液和淋巴游走全身,帮助调节免疫系统[26-27]。本研究显示,BPD模型小鼠的青春期肺部菌群存在性别差异,但其肺损伤无性别差异,可能是由于肺部微环境差异引起的[28],但其是否有意义还需进一步研究确定。
-
综上所述,本研究发现BPD模型小鼠的青春期肺部存在微生物群失调,并且肺部菌群存在性别差异,这项研究只是初步探讨,还需要进一步验证针对肺部菌群的进一步研究有可能为 BPD 远期预后产生积极影响。
-
参考文献
-
[1] GILFILLAN M,BHANDARI A,BHANDARI V.Diagno⁃ sis and management of bronchopulmonary dysplasia[J].BMJ,2021,375:n1974
-
[2] SCHMIDT A R,RAMAMOORTHY C.Bronchopulmonary dysplasia[J].Paediatric Anaesth,2022,32(2):174-180
-
[3] BONADIES L,ZARAMELLA P,PORZIONATO A,et al.Present and future of bronchopulmonary dysplasia[J].J Clin Med,2020,9(5):1539
-
[4] COLLACO J M,MCGRATH⁃MORROW S A.Bronchopul⁃ monary dysplasia as a determinant of respiratory out⁃ comes in adult life[J].Pediatr Pulmonol,2021,56(11):3464-3471
-
[5] WHITESIDE S A,MCGINNISS J E,COLLMAN R G.The lung microbiome:progress and promise[J].J Clin Invest,2021,131(15):e150473
-
[6] PAMMI M,LAL C V,WAGNER B D,et al.Airway micro⁃ biome and development of bronchopulmonary dysplasia in preterm infants:a systematic review[J].J Pediatr,2019,204:126⁃133.e2
-
[7] SUN T,YU H,FU J.Respiratory tract microecology and bronchopulmonary dysplasia in preterm infants[J].Front Pediatr,2021,9:762545
-
[8] GRIMM S L,DONG X,ZHANG Y,et al.Effect of sex chromosomes versus hormones in neonatal lung injury [J].JCI Insight,2021,6(13):e146863
-
[9] SINGH N,VATS A,SHARMA A,et al.The development of lower respiratory tract microbiome in mice[J].Microbi⁃ ome,2017,5(1):61
-
[10] WANG Q,GARRITY G M,TIEDJE J M,et al.Naive Bayesian classifier for rapid assignment of rRNA sequenc⁃ es into the new bacterial taxonomy[J].Appl Environ Mi⁃ crobiol,2007,73(16):5261-5267
-
[11] NATALINI J G,SINGH S,SEGAL L N.The dynamic lung microbiome in health and disease[J].Nat Rev Microbiol,2023,21(4):222-235
-
[12] LI K J,CHEN Z L,HUANG Y,et al.Dysbiosis of lower re⁃ spiratory tract microbiome are associated with inflamma⁃ tion and microbial function variety[J].Respir Res,2019,20(1):272
-
[13] DICKSON R P,ERB⁃DOWNWARD J R,FALKOWSKI N R,et al.The lung microbiota of healthy mice are highly variable,cluster by environment,and reflect variation in baseline lung innate immunity[J].Am J Respir Crit Care Med,2018,198(4):497-508
-
[14] CHEN H,ZHANG J,HE Y,et al.Exploring the role of staphylococcus aureus in inflammatory diseases[J].Tox⁃ ins,2022,14(7):464
-
[15] HORN K J,JABERI VIVAR A C,ARENAS V,et al.Co⁃ rynebacterium species inhibit streptococcus pneumoniae colonization and infection of the mouse airway[J].Front Microbiol,2021,12:804935
-
[16] ASHLEY S L,SJODING M W,POPOVA A P,et al.Lung and gut microbiota are altered by hyperoxia and contrib⁃ ute to oxygen ⁃induced lung injury in mice[J].Sci Transl Med,2020,12(556):eaau9959
-
[17] LAL C V,KANDASAMY J,DOLMA K,et al.Early air⁃ way microbial metagenomic and metabolomic signatures are associated with development of severe bronchopulmo⁃ nary dysplasia[J].Am J Physiol Lung Cell Mol Physiol,2018,315(5):L810-815
-
[18] DE STEENHUIJSEN PITERS W A A,BINKOWSKA J,BOGAERT D.Early life microbiota and respiratory tract infections[J].Cell Host Microbe,2020,28(2):223-232
-
[19] 王会芳,程怀平,吴蝉桐,等.CXCL4 与高氧诱导新生小鼠性别差异性肺损伤的相关研究[J].南京医科大学学报(自然科学版),2019,39(8):1142-1146
-
[20] DYLAG A M,HAAK J,YEE M,et al.Pulmonary mechan⁃ ics and structural lung development after neonatal hyper⁃ oxia in mice[J].Pediatr Res,2020,87(7):1201-1210
-
[21] 王维,朱海艳,郑亚斐,等.生后早期高氧暴露对卵清蛋白诱导支气管哮喘模型小鼠的影响[J].南京医科大学学报(自然科学版),2021,41(7):984-991
-
[22] CANNAVÒ L,PERRONE S,VIOLA V,et al.Oxidative stress and respiratory diseases in preterm newborns[J].Int J Mol Sci,2021,22(22):12504
-
[23] NARAYANAN M,BEARDSMORE C S,OWERS⁃BRAD⁃ LEY J,et al.Catch⁃up alveolarization in ex⁃preterm chil⁃ dren:evidence from(3)He magnetic resonance[J].Am J Respir Crit Care Med,2013,187(10):1104-1109
-
[24] SHASTRI P,MCCARVILLE J,KALMOKOFF M,et al.Sex differences in gut fermentation and immune parame⁃ ters in rats fed an oligofructose⁃supplemented diet[J].Bi⁃ ol Sex Differ,2015,6:13
-
[25] TAM A,FILHO F S L,RA S W,et al.Effects of sex and chronic cigarette smoke exposure on the mouse cecal mi⁃ crobiome[J].PloS One,2020,15(4):e0230932
-
[26] MJÖSBERG J,RAO A.Lung inflammation originating in the gut[J].Science,2018,359(6371):36⁃37
-
[27] STRICKER S,HAIN T,CHAO C M,et al.Respiratory and intestinal microbiota in pediatric lung diseases ⁃ cur⁃ rent evidence of the gut⁃lung axis[J].Int J Mol Sci,2022,23(12):6791
-
[28] FREY D L,BRIDSON C,DITTRICH S,et al.Changes in microbiome dominance are associated with declining lung function and fluctuating inflammation in people with cys⁃ tic fibrosis[J].Front Microbiol,2022,13:885822
-
摘要
目的:探究支气管肺发育不良(bronchopulmonary dysplasia,BPD)模型小鼠青春期肺部菌群特点。方法:32 只 C57BL/6J 新生小鼠,分为空气雌性组、空气雄性组、高氧雌性组、高氧雄性组,每组8只。高氧组小鼠生后即置于FiO2>95%的环境中7 d,空气组小鼠置于同室内空气(FiO2=21%)环境;之后所有小鼠室内空气环境下饲养直至6周。苏木精-伊红(hema- toxylin-eosin,HE)染色法观察小鼠肺组织病理变化;16S rDNA测序分析肺组织菌群特点。结果:BPD模型小鼠青春期肺组织肺泡化程度降低(P<0.01),双因素方差分析显示性别对小鼠辐射状肺泡计数(radial alveolar count,RAC)变化无显著差异(F= 2.001,P>0.05)。Anosim相似性分析结果显示空气组和高氧组雄性小鼠肺部菌群差异有统计学意义(r=0.906,P=0.03),雌性小鼠菌群差异无统计学意义(r=-0.094,P=0.722)。Alpha多样性结果显示高氧组和空气组的肺部菌群物种丰富度无统计学差异(P>0.05),Beta多样性分析中,PCoA图显示4组肺部菌群存在统计学差异(P<0.05)。LEfSe分析结果显示,高氧组棒状杆菌属(Corynebacterium)丰度下降,葡萄球菌种(Staphylococcus)升高。结论:BPD模型小鼠青春期肺部微生物群失调,棒状杆菌属 (Corynebacterium)丰度下降,葡萄球菌种(Staphylococcus)升高,并且菌群失调可能与性别相关。
Abstract
Objective:To explore the pulmonary microbiome characteristics of adolescent mice model of bronchopulmonary dysplasia(BPD). Methods:Thirty-two C57BL/6J neonatal mice were divided into air female group,air male group,hyperoxic female group,and hyperoxic male group,with 8 mice in each group. The mice in the hyperoxic group were placed in the environment with FiO2>95% for 7 days immediately after birth,and the mice in the air group were placed in the same indoor air with FiO2=21%. All mice were then raised in indoor air environment until 6 weeks. The pathological changes of lung tissues were observed by hematoxylin-eosin staining(HE). The characteristics of pulmonary microbiome were analyzed by 16S rDNA sequencing. Results:The alveolation degree of lung tissue decreased in early hyperoxygen exposure group(P < 0.01). Two-factor ANOVA showed that radial alveolar count(RAC) had no significant difference between sex in mice(F=2.001,P > 0.05). The results of Anosim similarity analysis showed that there was statistical significance in pulmonary microbiome of male mice in the air group and the high oxygen group(r=0.906,P=0.03),while there was no statistical significance in the female mice(r=- 0.0938,P=0.722).Alpha diversity results showed that there was no statistical difference in the species richness of lung flora between the high oxygen group and the air group(P > 0.05),and in the analysis of Beta diversity,PCoA diagram showed that there were statistical differences in lung flora among the four groups(P < 0.05). LEfSe analysis showed that the abundance of Corynebacterium in the high oxygen group decreased and Staphylococcus increased. Conclusion:The lung microbiota of adolescent mice in the BPD model are disregulated,with a decrease in the abundance of Corynebacterium,and an increase in Staphylococcus,and the microbiota imbalance might be related to gender.
Keywords
bronchopulmonary dysplasia ; lung microbiome ; 16S rDNA ; mouse