-
肠道是机体中主要的消化器官以及重要的防御器官。肠上皮是哺乳动物中更新最快的组织之一,在食物消化与营养吸收、黏膜屏障维持、免疫调节以及肠道微生物防御等方面发挥着重要作用[1-2]。肠上皮功能受损会引起相关疾病的发生发展,如炎症性肠病(inflammatory bowel disease,IBD)及肠道肿瘤等[3-4]。肠上皮中存在着丰富的肠上皮细胞(intesti⁃ nal epithelial cell,IEC)类型,这些细胞各自发挥着独特的作用共同维持肠上皮稳态。这些细胞的分化发育是一个精密调控的过程,任何一个环节的失调都会引起肠上皮功能损伤。IEC的发育受到多种机制共同调控,包括 Wnt、Notch、表皮生长因子(epi⁃ dermal growth factor,EGF)、骨形态发生蛋白(bone morphogenetic protein,BMP)以及 Hippo 等信号通路,同时,营养状态、免疫炎症信号、肠道共生菌以及线粒体调节等也参与肠上皮发育稳态的维持,进而对肠上皮发育产生深远的影响。了解这些肠上皮发育调节信号对肠道疾病防治具有重要意义。
-
1 肠上皮功能
-
位于肠道内壁的IEC吸收有益物质进入体内并限制有害物质进入,参与机体营养吸收过程。同时,肠上皮通过其固有的先天免疫功能形成肠黏膜屏障,调节肠道共生菌稳态,并参与机体免疫应答。
-
1.1 营养吸收功能
-
肠道是消化和吸收营养物质的主要器官[5],几乎 95%的营养物质都被小肠吸收[6]。在人类小肠中,吸收食物成分的部位长约 6 m,内壁上有 0.5~1.5 mm长的绒毛。每个绒毛被一层IEC覆盖,表面有约1 μm长的微绒毛[7]。肠道内壁可以有效吸收包括营养素和非营养素在内的食物成分,肠道上皮每天分泌大量液体,其中含有消化酶、离子、水和黏液,用于对摄入食物的消化和吸收。蛋白质、脂肪、碳水化合物被消化酶分解成更小的单位,被位于小肠绒毛上的小肠上皮细胞吸收到毛细血管和淋巴管网络中。任何未被小肠吸收的剩余物质通过回盲瓣进入结肠。大肠上皮细胞负责吸收水分,将结肠内容物凝固成粪便,并在排出前储存[6]。因此, IEC在机体营养物质吸收过程中发挥着至关重要的作用。
-
1.2 黏膜屏障功能
-
肠道也是重要的免疫器官,处于机体免疫防御的最前线。共生菌、病原体以及食物中多种抗原的持续暴露,促进了肠道黏膜免疫系统的发育和功能形成[8]。黏膜屏障在消化、吸收和代谢等许多生理功能中发挥关键作用。这个屏障允许营养物质通过和吸收,但与此同时,将不需要的产物限制在管腔内[9]。肠道黏膜屏障主要由肠上皮、黏液层、肠道免疫细胞、肠道共生菌、肠道抗菌肽等组成[10],其中肠上皮是肠道黏膜屏障的主要构成部分,对维持肠道黏膜免疫系统的稳态至关重要。
-
1.2.1 肠上皮
-
肠上皮是人体最大的黏膜,约覆盖400 m2 的表面积,是肠黏膜屏障的关键组成部分[11]。它由不同类型细胞组成。肠细胞最丰富,形成保护内部环境的有效屏障。除了保护功能外,肠细胞还从管腔选择性摄取有益离子、营养物质和其他物质到体内[9]。尽管与肠腔相邻的大多数细胞是吸收性肠细胞,但肠上皮执行功能多样,存在不同的IEC谱系。分泌性 IEC,包括肠内分泌细胞(endocrine cell, EC)、杯状细胞和潘氏细胞,专门用于维持上皮的消化或屏障功能。EC通过分泌多种消化功能激素调节剂,介导神经内分泌系统和肠神经内分泌系统之间的联系。杯状细胞和潘氏细胞分别在腔内分泌黏蛋白和抗菌蛋白,为微生物与上皮表面和下层免疫细胞接触建立物理和生化屏障[12-14]。总的来说,多种功能的IEC形成了动态屏障,保护宿主免受感染和潜在的炎症刺激。
-
1.2.2 其他黏膜屏障组成部分
-
除肠上皮外,肠道共生菌、黏液层、抗菌肽及肠道免疫细胞也是构成黏膜屏障的组成部分。肠道微生物是肠道内复杂的微生物群落,塑造肠道免疫反应并抑制病原菌定植[15],在健康人体和疾病的免疫防御机制中发挥着重要作用。黏液层将管腔内容物与肠上皮分开,阻止微生物群和大分子接触上皮细胞,但同时允许小分子通过,避免上皮接触酸、消化酶和微生物[16]。潘氏细胞分泌的抗菌肽(antimicrobial peptide, AMP)可防止微生物附着在上皮细胞边界,并通过破坏革兰阳性菌和革兰阴性菌细胞膜的完整性达到抗菌目的[15]。在肠道中还存在着树突状细胞(dendritic cell,DC)、巨噬细胞、中性粒细胞、肥大细胞和嗜酸性粒细胞等固有免疫细胞,这些固有免疫细胞在应对病原体负荷和维持肠道屏障功能方面发挥至关重要的作用[17],共同保护机体免受外来刺激的伤害。
-
1.3 肠上皮对免疫细胞的调节
-
IEC 产生大量免疫调节信号,这些信号对于诱导适当的先天性和适应性免疫反应以对抗病原体和共生细菌是必需的。
-
1.3.1 影响单核巨噬细胞和DC抗原递呈
-
IEC 通过与抗原递呈单核巨噬细胞的持续对话,对细胞和体液适应性免疫反应的启动产生影响。IEC分泌的细胞因子胸腺基质淋巴细胞生成素 (thymic stromal lymphopoietin,TSLP)、转化生长因子 (transforming growth factor,TGF)⁃β和视黄酸受共生细菌影响,促进具有致耐受性的 DC 和巨噬细胞的发育,产生白细胞介素(interleukin,IL)⁃10 和视黄酸[18-20]。CD103+ DC作为迁移性抗原递呈细胞在激活后被运输到次级淋巴组织,包括肠系膜淋巴结和 Peyer淋巴结,将携带的抗原物质递呈给适应性免疫细胞。这些迁移性DC通过TGF⁃β和视黄酸依赖性机制促进调节性T细胞(regulatory T cell,Treg)产生,从而促进免疫耐受[21-22]。与CD103+ DC相比,CX3CR1hi 肠道驻留巨噬细胞在稳定状态下缺乏迁移特性,与 IEC保持密切的物理接触,通过吞噬功能介导病原体和共生细菌的清除[22]。CX3CR1hi巨噬细胞通过产生IL⁃10促进肠道固有层的耐受性,从而抑制致结肠炎T细胞产生炎性细胞因子并促进Treg功能[23-24]。 IEC 通过产生可溶性因子(如 TSLP、TGF⁃β和视黄酸)来维持这种致耐受性,诱导 CX3CR1hi巨噬细胞表达IL⁃10并促进肠道稳态[19-20]。
-
1.3.2 影响先天性淋巴细胞功能
-
先天性淋巴样细胞(innate lymphocyte,ILC)在肠道免疫稳态中起着至关重要的作用。ILC缺乏适应性淋巴细胞的特性,如重组的抗原特异性受体[25]。 ILC存在于屏障表面,包括小鼠和人类的肺[26]、皮肤[27] 和肠道[28],作为组织稳态、炎症和对感染的早期先天反应的调节剂而发挥作用。ILC部分受上皮细胞发出的免疫调节信号调节。ILC2产生T辅助细胞2 (T helper 2,Th2)相关细胞因子IL⁃5和IL⁃13[29],这些因素有助于对肠道蠕虫感染的早期先天性反应,并引发保护性上皮反应,包括杯状细胞增生和黏液分泌增强[30-32]。IEC 分泌的 IL⁃25、IL⁃33 和 TSLP 对 ILC2 有刺激作用[32],因此在抗蠕虫感染中发挥积极作用。ILC3 产生 Th17 和 Th22 相关细胞因子,包括 IL⁃17A 和 IL⁃22,以响应 IL⁃23 的刺激[29]。ILC3 分泌的 IL⁃17 在肠道中主要起促炎作用,与小鼠结肠炎的发生相关[33]。IEC 分泌的IL⁃25会抑制巨噬细胞产生 IL⁃23,并减少 ILC3 产生的 IL⁃22,进而抑制过度炎症反应[34]。
-
1.3.3 影响组织驻留T细胞
-
在次级淋巴组织中被肠源性抗原递呈细胞启动后,常规效应T细胞在体内循环,然后进入肠道对局部环境发挥致耐受性或炎症作用。在这里,成熟的T细胞在固有层中的存活和功能维持受到IEC的直接影响。上皮内淋巴细胞(intraepithelial lympho⁃ cytes,IEL)与 IEC 密切接触,IEL 和 IEC 之间的双向作用维持肠道屏障的免疫稳态[35],IEC产生的信号促进IEL的维持和功能,维持肠道免疫微环境稳态。
-
1.3.4 影响IgA浆细胞分泌
-
幼稚 B 细胞通过重链类别转换重组(class ⁃ switch recombination,CSR)成熟为分泌 IgA 的浆细胞,这个过程受携带抗原的黏膜 DC 和来自肠上皮的活细菌调节[36-37]。IEC 分泌的信号调节 DC 细胞产生一氧化氮(nitric oxide,NO)、IL⁃10 和视黄酸,促进 IgA 类别转换和肠道归巢[36-37]。此外,IEC 通过 TSLP 信号诱导黏膜 DC 产生增殖诱导配体(aproli⁃ feration⁃inducing ligand,APRIL)和 B 细胞激活因子 (B cell⁃activating factor,BAFF),放大对 B 细胞的刺激作用,进而促进IgA的产生。
-
1.4 介导微生物与宿主免疫之间的串扰
-
肠道微环境,包括肠道微生物群及其代谢物,很容易因饮食、药物、压力、细菌或病毒病原体感染甚至时差反应而迅速改变[38-39]。宿主免疫必须适应肠道环境的变化,如生态失调和致病菌感染。上皮细胞是协调肠道防御的核心。肠上皮不仅是微生物易位的屏障,还是宿主与微生物群之间的传感器和管道。
-
分节丝状菌(Segmented filamentous bacteria, SFB)是在小鼠或大鼠肠道中发现的共生细菌,其中大部分附着在回肠中的IEC上。SFB通过诱导IEC 产生血清淀粉样蛋白 A(serum amyloid A,SAA)促进 Th17 细胞分化[40-41]。SFB还通过激活的ILC3刺激IL⁃23受体依赖性IL⁃22的产生[42]。此外,柠檬酸杆菌参与活性氧(reactive oxygen species,ROS)的产生,促进结肠固有层中Th1细胞的分化[40]。来自Th17 细胞或ILC3的IL⁃17和IL⁃22促进抗菌分子的产生,以控制肠道微生物。IL⁃22还通过诱导岩藻糖基转移酶2(fucosyltransferase,Fut2)的表达来影响IEC表面蛋白的糖基化[43],对阻止鼠伤寒沙门菌等肠道病原体感染至关重要。
-
IEC可通过分泌细胞因子和趋化因子调节宿主免疫反应。由革兰阴性杆状细菌(如埃希氏菌和变形杆菌)的鞭毛蛋白刺激的TLR5/MyD88 信号转导促进上皮细胞产生IL⁃8,从而将中性粒细胞募集到固有层[44]。IEC还产生调节肠道免疫反应的细胞因子和趋化因子以外的介质。黏蛋白 2(mucin 2, MUC2)由杯状细胞产生,不仅是黏液层的重要组成部分,还可以通过向 DC 传递致耐受性信号来限制肠道抗原的免疫原性[45]。除了产生调节肠道免疫的体液因子外,IEC还可以通过向肠道免疫细胞递送抗原来促进肠道适应性免疫反应。M细胞专门负责从管腔摄取抗原并递送至抗原递呈细胞,在抗原特异性IgA的诱导中具有关键作用[46]。
-
因此,IEC 产生各种黏膜屏障以“隔离”肠道微生物和肠道免疫细胞,并感知来自两个群体的信号并分泌体液因子以“调节”两个群体之间的平衡,维持肠道稳态[47]。
-
2 肠上皮功能异常与疾病
-
肠道屏障的破坏与多种疾病密切相关,研究表明肠上皮黏膜屏障功能失调会导致多种肠道系统疾病发生,如 IBD、结直肠癌(colorectal cancer,CRC) 等[3-4]。因此,肠上皮对维持肠道健康至关重要,其功能异常与肠道疾病的发生密切相关。
-
2.1 IBD
-
IBD主要包括克罗恩病(Crohn’s disease,CD)和溃疡性结肠炎(ulcerative colitis,UC),是一组慢性、复发性消化道炎症性疾病[48]。IBD主要累及回肠、直肠和结肠等部位,患者会出现腹痛、呕吐、腹泻、便血等临床症状[49]。其中 UC 的特征是炎症弥漫,主要累及结肠、直肠的黏膜表层和黏膜下层并反复发作;CD 则是累及从口腔到肛周部位的整个消化道或任意部分消化道。UC 和 CD 虽在病因及临床表现上有所差别,但都是肠道黏膜免疫异常引起的疾病[50]。现有IBD治疗方法主要是使用激素、抗生素和免疫抑制剂等控制炎症[51],但这些药物在恢复肠上皮屏障功能方面效果有限,都不能有效治愈该病。近年来,我国IBD发病率呈持续增长趋势,已成为影响国民健康的常见消化系统疾病。IBD的发病率和患病率随着时间的推移而增加,表明阐明IBD 的发病机制已迫在眉睫[52]。
-
长期以来,IBD 的病理生理学机制研究一直集中在免疫细胞上。然而,最近证据表明,肠上皮屏障功能受损是 IBD 发生和复发的重要诱因,IEC 在 IBD的发展和长期存在中发挥重要作用[53]。屏障功能障碍定义为肠上皮连续层的丢失,以及上皮间连接和上皮间隙的中断,进而破坏肠上皮屏障完整性,增加肠上皮通透性。肠上皮通透性的增加促使微生物、膳食抗原和其他有害颗粒渗透到黏膜固有层[54],导致黏膜免疫系统激活并最终诱发肠道炎症[55]。因此,肠上皮屏障完整性在IBD的发生过程中具有保护作用。
-
2.2 腹泻
-
腹泻为每天排出≥3次稀便,持续数天,并且会使身体失去所必需的水和盐分。2017年世界卫生组织统计结果显示,在全球范围内,每年有近17亿儿童腹泻病例,腹泻是导致 5 岁以下儿童死亡的第二大原因,每年约525 000名儿童死于腹泻。感染性腹泻由多种细菌、病毒和寄生虫等引起,是最常见的腹泻,也是儿童死亡的主要原因[56]。
-
肠上皮的主要功能之一是将液体和电解质进行跨上皮转运。在正常情况下,吸收和分泌过程受到严格调节,因此吸收占主导地位,从而能够保存每天通过肠道的大量水分。然而,腹泻时这种平衡被打破,液体的分泌量超过吸收量,导致粪便中水分增加[57]。志贺菌、沙氏菌、耶尔森菌和肠侵袭性大肠杆菌感染肠道时,会侵入上皮细胞并在细胞内繁殖,破坏表面上皮细胞并引起炎症,诱发腹泻[58]。同时,肠上皮的渗透作用、主动分泌、渗出和运动改变也会导致腹泻[58]。因此,肠上皮屏障受损是腹泻易感的重要原因之一。
-
2.3 肠道肿瘤
-
CRC是世界上最常见的3种癌症之一,临床症状主要有便秘、便血、食欲不振、疲倦、体重减轻等,与其他癌症相似,可侵袭或扩散到身体其他部位。近年来我国CRC的发病率和病死率持续上升,2020年我国有超过55万人被确诊为CRC,占新确诊癌症人数的12.2%[59]。
-
目前CRC发病机制尚未完全明晰,但越来越多的证据表明,遗传易感性、环境暴露、代谢功能障碍、免疫和炎症因子、微生物组成和肠道屏障完整性破坏在CRC病因学中起着重要作用[60],其中肠上皮屏障稳态失调是结肠癌发生的重要原因。结肠屏障完整性破坏可能会增加结肠细胞对结肠环境毒素的暴露,从而增强结肠上皮细胞的炎症和氧化应激,诱导上皮细胞过度修复,引发CRC[61-62]。此外,研究发现肠道干细胞(intestinal stem cell,ISC)是 CRC 的起源细胞[63],ISC 异常增殖也可引起肠道肿瘤发生[4]。因此,肠上皮屏障功能异常是引起肠道肿瘤发生的重要原因,探讨肠上皮发育调节机制对CRC 防治具有重要指导意义。
-
3 肠上皮结构和细胞组成
-
肠上皮是哺乳动物中更新最快的组织之一,具有广泛的适应性[64]。肠上皮的隐窝⁃绒毛结构以及丰富的细胞组成是其维持机体稳态并对外来刺激做出反应的基础。
-
3.1 隐窝⁃绒毛结构
-
肠上皮表面由数百万个特殊结构组成:小肠中的隐窝⁃绒毛单位或大肠中的隐窝单位[65],由IEC单层紧密有序排列并折叠形成[66]。隐窝⁃绒毛结构促进了营养物质的有效吸收。绒毛是指状突起,伸入管腔以增加表面积进而促进营养吸收,并含有功能性非分裂细胞。绒毛长度从近端十二指肠的1.5 mm以上逐渐减少到远端回肠的0.5 mm。隐窝是围绕绒毛基部的上皮内陷,是细胞增殖的场所。在小肠中,每个肠绒毛都被至少6个隐窝包围,这些隐窝容纳专门的干细胞和祖细胞群,这些细胞自我更新以维持上皮功能[67]。
-
3.2 肠道细胞类型及各自功能
-
肠上皮主要由各种IEC构成,包括ISC、过渡态扩增(transit⁃amplifying,TA)细胞、吸收谱系细胞(肠细胞)、分泌谱系细胞(潘氏细胞、杯状细胞、EC、Tuft 细胞)等[67]。
-
3.2.1 ISC
-
肠上皮的更新由位于隐窝底部的ISC每日增殖推动,以产生快速分裂的子细胞[68]。ISC具有持续增殖分化能力,负责肠上皮在整个生命过程中的有效更新和自我修复。肠道隐窝底部分布着一类不断分裂的隐窝基底部柱状细胞(crypt base columnar cells,CBC),被称为Lgr5+(Leu⁃rich repeat⁃containing G protein⁃coupled receptor 5)干细胞[69-70]。Lgr5+ 干细胞具有多潜能性,可自我更新。研究表明Lgr5+ 干细胞可不断快速增殖分化以补充绒毛顶端失巢凋亡脱落的上皮细胞[67]。
-
3.2.2 TA细胞
-
TA 细胞是由 ISC 定期分裂产生的高度增殖祖细胞。新生的TA细胞分裂2~3次并逐渐形成吸收或分泌谱系细胞,同时向上迁移至绒毛基部[67]。
-
3.2.3 肠细胞
-
肠细胞是肠道吸收型细胞,是排列在小肠和大肠内表面的简单柱状上皮细胞。肠细胞是肠道中的主要细胞类型,负责食物消化和营养吸收。肠细胞表面有微绒毛结构,同时分泌多种蛋白质降解酶,可对肠腔中的蛋白质等进行充分降解和吸收[19]。肠细胞的主要功能有吸收离子,摄取糖、氨基酸、脂质、维生素,再吸收胆汁酸盐以及分泌免疫球蛋白等[71]。
-
3.2.4 潘氏细胞
-
潘氏细胞是高度特化的分泌性上皮细胞,位于小肠隐窝中。潘氏细胞产生的致密颗粒中含有丰富的抗菌肽和免疫调节蛋白,在抗菌过程中具有重要作用。潘氏细胞可分泌Wnt信号分子和乳酸代谢分子等来调节ISC增殖和分化[72],在维持肠上皮屏障更新中发挥重要作用。潘氏细胞仅存在于小肠中,结肠中包含深部分泌细胞(deep secretory cell, DSC),这些细胞插入CBC之间并高表达再生家族成员 4(regenerating family member 4,REG4)分子。这些细胞可能在分泌EGF和表达Notch配体方面履行与潘氏细胞相似的功能,但它们不产生Wnt配体,而 Wnt配体完全来源于结肠间质。
-
3.2.5 杯状细胞
-
杯状细胞是IEC中最丰富的分泌谱系细胞,占小肠上皮细胞的 10%~15%和结肠上皮细胞的 50%。杯状细胞可分泌多种黏液蛋白,组成肠上皮组织黏液屏障,并通过疏水作用结合肠道细菌抗原,来限制细菌侵入肠黏膜[73-74]。不同的杯状细胞在肠道中具有不同的功能。在小肠中,隐窝和绒毛中的杯状细胞形成杯状细胞相关抗原通道,将抗原传递至固有层中的单核巨噬细胞。在远端结肠中,隐窝杯状细胞分泌致密的黏液层来保护隐窝,而隐窝间杯状细胞分泌更具渗透性的黏液,隔离细菌[75]。
-
3.2.6 EC
-
肠道EC约占小肠和大肠上皮细胞的1%,作为单个细胞散布在整个黏膜中。据报道,EC包含8个不同的亚类,表达促胰液素、胆囊收缩素、胰高血糖素原、葡萄糖依赖性促胰岛素多肽、生长抑素、神经降压素、生长素释放肽和血清素,传统上分别称为 S、I、L、K、D、N、A 和肠嗜铬细胞[76]。EC在抗原刺激下会释放小分子递质如 5⁃羟色胺、组胺等,促进肠道神经和免疫系统发挥功能,进而帮助肠道蠕动和消化吸收营养物质,并调节肠道黏膜免疫防御[77]。 EC 可释放 20 多种激素,这些激素可以局部作用于其他细胞、神经末梢或远处的器官,包括胰岛和中枢神经系统[78]。
-
3.2.7 Tuft细胞
-
Tuft 细胞是一种罕见且未被充分研究的肠细胞,具有特征性形状,包括长而厚的微绒毛,可将肌动蛋白束延伸到其顶端细胞质中。Tuft细胞是黏膜上皮细胞中罕见的孤立化学感应细胞,可作为“感受器”被肠道内寄生虫激活,继而促进Ⅱ型固有免疫细胞增殖和分泌IL⁃13,最终清除寄生虫[79-80]。在肠道中,Tuft细胞是分泌型 IL⁃25 的唯一来源[81]。而IL⁃25 则是ILC2的关键激活剂,有助于清除寄生虫[81]。
-
4 IEC分化发育过程
-
在小鼠中,成体上皮快速更新以维持最佳功能。暴露于严酷管腔环境的上皮细胞死亡,并通过复杂的细胞骨架重塑过程从绒毛尖端排出[83]。每天仅在小肠中就必须产生超过 3 亿个新的上皮细胞,以代偿死亡的绒毛上皮细胞[67]。这种细胞再生过程发生于隐窝基底部,研究表明Lgr5+ 干细胞可不断快速产生增殖的 TA 细胞。新生的 TA 细胞分裂 2~3次并逐渐形成吸收或分泌细胞谱系,同时向上迁移至绒毛基部。当分化细胞离开隐窝时,细胞增殖停止,然后这些上皮细胞继续沿着绒毛向上迁移,形成具有特定功能的肠细胞、EC、杯状细胞、Tuft 细胞。这种上皮细胞更新周期需要3~5 d,在近交小鼠的平均2 年寿命期间会重复数百次[67],而小肠潘氏细胞例外,潘氏细胞每3~6周从位于TA室底部的分泌细胞祖细胞更新1次,这些祖细胞成熟为完全分化的潘氏细胞,同时沿着向下迁移路径到达隐窝[84]。
-
早期研究认为,位于隐窝底部的Lgr5+ 细胞是肠道中唯一的干细胞来源[69]。然而,将小鼠肠道Lgr5+ 细胞去除后,肠道组织仍能从中底部进行自我更新修复,说明存在其他干细胞或者机制参与调节IEC发育和组织修复[85]。最近研究发现一种Clu+ 细胞可在肠道受损状态下发挥肠组织修复功能,这一过程受 Yes 相关蛋白(Yes⁃associated protein,YAP)信号调控[86];此外,组织损伤和应激条件下,如炎症和肿瘤发生过程中,导致Lgr5+ 细胞丢失的急性损伤会触发再生反应以恢复自我更新,此时,IEC内的各种细胞类型可以去分化,并作为干细胞的替代来源发挥作用[64]。IEC在应激状态下表现出较强的可塑性,这种可塑性在肠上皮应对外来损伤信号并保护机体中具有重要作用。
-
5 肠上皮发育分子调节信号
-
在生理状态下,为了维持肠上皮屏障的完整性,小鼠 IEC 每 3~5 d 沿着隐窝⁃绒毛轴自我更新 1 次[14,67]。肠上皮快速更替的特性由 ISC 持续增殖、分化取代凋亡的终末分化细胞来完成,这种动态平衡是肠道结构和功能维持以及损伤后修复的关键环节,并且依赖细胞内外信号的精密调控。因此,探究IEC分化发育过程中的关键信号通路和分子事件对理解肠上皮屏障形成机制有重要作用。
-
肠上皮中存在多种调节信号,共同维持肠道发育稳态:Wnt 信号促进 TA/干细胞的增殖并驱动潘氏细胞成熟;Notch信号与Wnt协同驱动ISC的增殖并调节未分化 TA/干细胞的维持;EGF 促进 IEC 增殖;Hippo和BMP抑制增殖并诱导所有分泌谱系细胞的成熟[87]。
-
5.1 Wnt信号
-
Wnt通路对于上皮增殖和隐窝维持至关重要[89]。 7 次跨膜卷曲蛋白(frizzled,FZD)和低密度脂蛋白受体相关蛋白(low ⁃ density lipoprotein receptor related protein,LRP)⁃5/⁃6 的复合物是分泌型 Wnt 的受体[90]。当Wnt配体与FZD⁃LRP5/6受体复合物结合时,腺瘤性大肠息肉(adenomatous polyposis coli, Apc)破坏复合物受到抑制,导致Wnt信号的关键介质β⁃连环蛋白积累。未磷酸化的β⁃连环蛋白易位到细胞核中,与 TCF/LEF 家族的转录因子结合,从而将Wnt信号转化为TCF靶基因的转录[91]。
-
在小肠 ISC 生态位中,Wnt 由潘氏细胞和隐窝底部周围的间质细胞产生。Wnt的活性在隐窝底部的 ISC 中最高,Wnt 是 ISC 自我更新和分化的主要调节因子,并沿隐窝⁃绒毛轴呈梯度下降[92]。Wnt 信号的负调节因子Apc的基因突变会导致上皮细胞过度增殖,随后发生腺瘤[93]。同时,潘氏细胞作为构成ISC生态位的一部分,也需要高 Wnt 信号水平才能成熟[94]。因此,Wnt 信号在调节 ISC 增殖及潘氏细胞分化中具有重要作用。
-
5.2 Notch信号
-
Notch 通路是维持 IEC 增殖和分化之间平衡的关键信号通路之一[95]。Notch通过相邻细胞之间的通讯调节关键的细胞过程,例如增殖和分化。Notch 信号可在相邻细胞之间传递,并通过侧向抑制来快速调节细胞的动态转化,以维持生理动态平衡[96]。
-
潘氏细胞表达Notch受体的配体Delta⁃like1和 Delta⁃like4(Dll1和Dll4),Notch受体与其配体结合时,Notch 胞内结构域(Notch intracellular domain, NCID)通过蛋白水解释放。NCID 随后转移到细胞核进而激活目标基因,如HES⁃1、HES⁃3和HES⁃5,促进吸收细胞的分化。转录因子 MATH⁃1 是肠道中 HES⁃1抑制的下游靶标,其活性导致分泌谱系细胞的产生。同时,Notch抑制导致所有增殖性细胞快速转化为杯状细胞。因此,Notch信号调控吸收性与分泌性上皮细胞类型。
-
5.3 BMP信号
-
BMP 包含一类属于 TGF⁃β蛋白超家族的细胞外信号分子。BMP 通过经典的Smad依赖性通路发出信号,也可以诱导各种非经典信号通路。在经典途径中,BMP通过与形成异四聚体复合物的BMP Ⅰ 型和Ⅱ型受体结合启动信号转导。BMP 受体是单次跨膜蛋白,其胞内结构域中携带丝氨酸/苏氨酸激酶活性。BMP与之结合后,使Smad1/5/8磷酸化,磷酸化的Smad1/5/8与Smad4结合,Smad4随后入核并诱导靶基因的表达。
-
BMP信号可作为隐窝分化的诱导剂。ISC周围的间充质通过分泌 BMP抑制剂进而在隐窝附近创建一个“低 BMP 信号”的环境,而在绒毛中表达的 BMP 创建一个“高 BMP 信号”环境以促进分化[97]。与此一致,BMP 抑制剂Noggin的表达导致过度的隐窝形成,因此Noggin是类器官培养基的重要成分[98]。
-
5.4 EGF信号
-
EGF是一种细胞外配体,通过与其同源受体表皮生长因子受体(epidermal growth factor receptor, EGFR)结合来刺激细胞生长、增殖和分化。EGFR 也称为ErbB1/HER,是受体酪氨酸激酶ErbB家族的成员。EGFR二聚化刺激其细胞内蛋白酪氨酸激酶活性,进而驱动下游通路激活[99]。
-
EGFR在ISC中高表达,而其配体在潘氏细胞中表达[100]。EGF 信号通过激活 Ras/Raf/Mek/Erk 信号轴对 ISC 和 TA 细胞发挥强烈的促有丝分裂作用,是 ISC和IEC在整个隐窝⁃绒毛轴上增殖的有效刺激物[101]。因此,EGF是肠道类器官培养的重要成分[98]。
-
5.5 Hippo信号
-
Hippo 通路是调节器官大小的关键参与者。 Hippo通路激活后,下游效应分子YAP在S127位被 LAT1/2激酶磷酸化。磷酸化的YAP保留在细胞质中并抑制其在细胞核中的增殖和抗凋亡功能。YAP是该通路的最终效应蛋白,它作为TEAD转录因子的共激活因子,促进TEAD靶基因的表达,进而促进细胞增殖[102]。
-
在正常小鼠的小肠和结肠上皮细胞中,YAP 蛋白存在于隐窝中,正常情况下,YAP对IEC增殖没有贡献[103]。然而,YAP蛋白在损伤引起的组织再生中发挥着重要作用。肠上皮具有高度的灵活性和可塑性,可以应对不同类型的损伤。当干细胞受损时,许多源自Lgr5+ 干细胞的隐窝后代具有去分化和重新获得多能性的能力[104]。YAP信号在此再生过程中起着不可或缺的作用[104-105]。
-
Ayyaz 等[86]使用单细胞 RNA 测序(single ⁃ cell RNA sequencing,scRNA⁃seq)表征小鼠在辐照前后的肠道再生。该分析揭示了一种独特的损伤诱导细胞群,其特征是表达高凝聚素(clusterin,Clu),这与稳态期间存在的Lgr5 + 干细胞不同。对scRNA⁃seq数据的分析表明Clu+ 细胞YAP特征激活,表明Clu表达可能是YAP依赖性的。YAP的缺失消除了隐窝中辐射诱导的 Clu 表达,而单独激活 YAP 能够诱导 Clu。 YAP介导的促存活基因Clu在损伤后的表达可能是 YAP依赖性再生的机制。
-
Serra 等[106] 研究了单个 Lgr5+ 干细胞如何生长、发育和自我组织成复杂的肠道类器官,并探索了具有看似相同细胞的初始对称球状结构如何在均质培养条件下打破对称性并形成第一个潘氏细胞。该研究发现类器官的发育遵循一种再生模型,该模型需要从早期瞬时激活 YAP。YAP 亚细胞定位的变异通过 Notch⁃Dll1 激活驱动潘氏细胞分化,进而诱导对称性破坏。
-
这些发现证实了 YAP 在再生特异性反应中的关键和独特作用,同时也凸显了精确调节 YAP 蛋白在肠道分化和发育启动中的重要性。
-
6 其他调节肠上皮发育的重要机制
-
肠道发育是一个精密调控的过程,在这个过程中,除了关键信号分子起作用外,还有其他调节肠上皮发育的重要机制,营养状态、炎症信号、微生物代谢物以及线粒体功能等在调节肠上皮发育中都发挥着重要作用。
-
6.1 营养状态调节肠上皮发育
-
食物和营养对机体健康和疾病有着深远的影响,新证据表明,成体ISC会根据饮食和营养状态主动调整其功能及发育,以驱动肠道适应[108]。
-
热量限制(caloric restriction,CR)是在没有营养缺乏的情况下限制食物的摄入[109]。CR扩增ISC和邻近的生态位细胞数量并增强干细胞自我更新能力,以响应来自潘氏细胞的哺乳动物雷帕霉素靶标 (mammalian target of rapamycin,mTOR)信号转导的降低[110]。CR促进潘氏细胞骨基质抗原1(bone stro⁃ mal antigen 1,Bst ⁃1)的表达,以产生环 ADP ⁃核糖 (cyclic ADP⁃ribose,cADPR),进而以 mTORC1 依赖性方式促进ISC增殖[111]。
-
高糖饮食会导致肥胖、糖尿病和癌症[112]。在小鼠饮用水中补充葡萄糖(13%葡萄糖,持续 4 周)减少了ISC的数量和功能,并促进了它们向潘氏细胞和杯状细胞的分化。此外,葡萄糖补充剂还会抑制ISC在辐射诱导损伤后肠道再生的能力。葡萄糖通过胰岛素介导的抑制肠道生酮机制来抑制肠道干性[108]。
-
过量的高脂肪食物摄入被认为在肥胖和多种危及生命的疾病(如心血管疾病、2型糖尿病、高胆固醇血症、代谢综合征和人类癌症)的发展中起重要作用。高脂肪饮食(high⁃fat diet,HFD)通过PPAR⁃d 信号转导来诱导 Lgr5+ 细胞数量增多和自我更新功能,HFD 喂养小鼠的肠隐窝在体外和体内受到辐射诱导损伤后再生能力增强[113]。在小鼠中,促肥胖的 HFD 会增加肿瘤发病率,这可能与 ISC 过度增殖相关[114]。
-
6.2 炎症信号参与肠上皮再生调节
-
肠道炎症后,存活的 ISC 剧烈扩增进而促进肠上皮修复,提示ISC可以感知肠道中炎症信号并作出反应,因此,炎症信号对ISC状态具有调节作用[115]。最近研究表明免疫细胞参与肠道再生,免疫细胞分泌的细胞因子也参与ISC调节[116-119]。
-
哺乳动物的肠道ILC3细胞位于肠隐窝附近,是 IL⁃22的有效生产者,IL⁃22先前已被证明在受伤后上调并支持随后的上皮再生[120]。在肠道类器官中, IL⁃22增加ISC中信号转导和转录激活因子3(signal transducer and activator of transcription 3,Stat3)的磷酸化并促进增殖[117]。Treg细胞产生IL⁃10促进 ISC 更新,而 T 辅助细胞 1(T helper 1,Th1)产生的干扰素(interferon,IFN)⁃γ、Th2产生的IL⁃4和IL⁃13、T辅助细胞 17(T helper 17,Th17)产生的 IL ⁃17α以及 ILC2产生的IL⁃4和IL⁃13抑制ISC更新并促进向杯状细胞和Tuft细胞的特异性分化。在IBD小鼠模型中,巨噬细胞已被证明可通过激活Wnt信号来促进黏膜修复[121]。骨髓来源DC释放的细胞因子可以通过NF⁃κB信号调节肠屏障完整性、肠细胞增殖和细胞死亡[122]。总的来说,肠道中的免疫细胞参与肠上皮发育调节,并在维持肠上皮屏障稳态中具有重要作用。
-
6.3 肠道微生物参与肠上皮发育调节
-
人体肠道内大约有100万亿个细菌,其中大部分寄居在结肠中。厌氧菌,尤其是那些只能在缺氧情况下存活的细菌(即专性厌氧菌)占大多数。这些共生细菌一起形成了一个复杂的营养网,不仅支持它们自身的生存,还参与塑造胃肠道系统的生理环境和免疫反应[2]。
-
肠道微生物群被证明具有影响 IEC 发育的能力。与常规饲养的小鼠相比,无菌和抗生素处理的小鼠绒毛高度缩短和隐窝深度减少[124]。此外,接触共生微生物群可促进无菌动物的肠细胞增殖[125]。特定的细菌种类影响上皮增殖。益生菌如乳酸杆菌可以通过加速上皮增殖来保护肠上皮免受辐射损伤[126],相反,致病菌株,如沙门菌,可能会导致上皮细胞增殖减少。
-
微生物群通过微生物代谢物实现对上皮增殖的调节。这些微生物代谢物可以作为ISC生态位信号的配体,调节上皮增殖[2]。据报道,乳酸杆菌和双歧杆菌等产乳酸菌能促进急性肠道炎症小鼠的ISC 增殖[127]。事实证明,乳酸刺激了ISC增殖的主要驱动因素,即Wnt信号[128]。3⁃吲哚乙醛是另一种由乳酸杆菌产生的代谢物,它可以刺激固有层淋巴细胞分泌IL⁃22,IL⁃22刺激JAK/STAT信号以加速ISC的扩张,从而促进上皮再生以应对线粒体功能紊乱,是胃肠道功能障碍的基础,甚至可能导致肠道炎症[129]。在葡聚糖硫酸钠(dextran sodium sulfate, DSS)诱导的结肠炎[130],抗生素治疗可能会扰乱肠道细菌的组成和代谢,进而干扰上皮细胞增殖。研究表明,氨苄西林和万古霉素的联合治疗会干扰谷氨酸的代谢,谷氨酸是肠细胞的能量来源,能刺激细胞增殖,抗生素引起的谷氨酸水平降低可能导致上皮细胞增殖缺陷[131]。以上研究说明,肠道微生物的存在对肠上皮发育有重要调节作用。
-
6.4 线粒体功能——肠上皮稳态的守门人
-
IEC经历连续的增殖、分化步骤,最后在向上迁移到绒毛尖端的过程中失巢凋亡。在这些细胞转变过程中,IEC具有不同的代谢特征,反映在线粒体活性变化上。线粒体功能成为决定细胞命运以及协调细胞代谢、免疫、应激反应和细胞凋亡的关键因素。线粒体信号转导伴随的新陈代谢变化有助于肠道稳态维持[132]。
-
线粒体信号转导的介质包括 ATP 和 ROS 等分子,并与线粒体未折叠蛋白反应(mitochondrial un⁃ folded protein response,MT⁃UPR)和AMP激酶信号转导等途径相互关联,进而影响细胞周期进程和干性。线粒体功能改变和MT⁃UPR激活是IBD和癌症发生不可缺少的环节。线粒体通过MT⁃UPR、ATP和ROS 等介质不仅控制细胞功能和可塑性,还调节表型转变。线粒体伴侣 HSP60 的 IEC 特异性缺失导致 MT⁃UPR 激活和线粒体功能障碍,诱导谷氨酰胺向瓜氨酸的转化,导致肠隐窝中干细胞的完全丧失[133]。此外,线粒体能够调节肠细胞内ROS的含量,过量的 ROS可以阻断细胞增殖和促进细胞死亡,进而控制细胞凋亡过程。以上结论表明线粒体功能在Lgr5+ ISC 和IEC增殖中起着重要作用[132]。
-
与此相一致,从小鼠小肠中分离出的Lgr5+ ISC表现出高线粒体氧化磷酸化(oxidative phosphorylation, OXPHOS)活性,而潘氏细胞具有糖酵解表型, OXPHOS的抑制减少了小鼠肠道类器官中的干细胞功能[72]。类器官培养实验揭示潘氏细胞产生的乳酸可能提供呼吸链底物以维持 Lgr5 + ISC 中的 OXPHOS,进而维持ISC的功能[72],表明线粒体代谢在肠上皮稳态中也发挥着重要作用。综上所述,线粒体通过多种机制参与肠上皮发育调节并在上皮稳态中发挥重要作用[132]。
-
7 肠上皮发育调节信号与肠道疾病发生
-
多种信号参与IEC发育调节,这些信号的异常会导致肠上皮功能受损,进而引起相关疾病的发生发展,如IBD及肠道肿瘤等。了解这些调节信号在肠道相关疾病中的角色对疾病防治具有重要指导意义。
-
7.1 IBD中的线粒体功能
-
线粒体功能紊乱可能是胃肠道功能障碍的基础,甚至可能导致肠道炎症[134]。在 DSS诱导的结肠炎小鼠模型中观察到线粒体动力学受到干扰。在小鼠的结肠组织中检测到参与线粒体变化的蛋白质(如 FIS1、OPA1、MFN1和 MFN2)的mRNA水平升高,表明在结肠炎中线粒体裂变和融合过程受到干扰[135]。此外在UC中发现线粒体呼吸链复合物的功能明显降低[136]。这一系列证据证明线粒体功能紊乱参与IBD的发生发展。研究发现,促炎细胞因子和细菌毒素与IBD期间的线粒体改变有关。在IBD 患者的上皮线粒体中,电子传递链(electron trans⁃ port chain,ETC)复合物活性降低、ATP 水平降低、 mtROS积累、基质中错误折叠或未折叠蛋白质的积累以及溶解嵴等超微结构变化已被报道[136-139]。上皮细胞中的线粒体功能障碍导致上皮屏障完整性丧失、上皮细胞凋亡和细菌入侵[140]。此外,受损的线粒体可以产生炎症小体激活信号,从而导致促炎细胞因子的产生,加重炎症进展[141]。因此,线粒体功能障碍通过多种机制促进IBD的发展。
-
7.2 IBD中的肠道微生物
-
IBD 的一个典型特征是肠道菌群失调,有益菌群和有害菌群的失衡导致肠道微生物屏障受损[142]。与健康对照相比,UC患者肠道中长双歧杆菌、直肠真杆菌,CD和UC患者肠道中的普拉梭菌、罗氏菌等有益菌显著减少,而脆弱拟杆菌等有害菌的相对丰度和生长速度增加[143]。研究发现无菌环境可防止遗传易感小鼠发生结肠炎,将促炎细菌或微生物群从患病小鼠转移到健康小鼠会诱发炎症[144],说明肠道微生物群的组成和多样性是导致 IBD 发展的关键因素[142,145]。肠道微生物的变化通过多种机制导致IBD发展:菌群改变破坏肠上皮屏障完整性,增加感染性细菌的入侵;微生物与免疫细胞间进行串扰,激活炎性免疫细胞及其应答;微生物代谢物调控IEC发育,影响肠上皮功能完整性[146]。因此,维持肠道微生物稳态以及避免滥用抗生素在 IBD防治中具有重要指导意义。
-
7.3 IBD中的营养摄入
-
饮食对微生物组成、肠道屏障形态功能的完整性和宿主免疫力有重要影响[147]。改变特定食物组的摄入量可能会促进肠道菌群失调,导致肠道屏障改变、免疫激活和组织损伤,并在IBD的发展中发挥作用[148]。动物模型表明,膳食血红素[149]、饱和脂肪酸[149]、盐[150]、糖[151] 以及纤维不足的饮食[152] 可通过微生物群途径激活炎性细胞,如激活Th17细胞进而促进炎症。此外,其他研究发现,在食品制备过程中加入的化学物质,如抗菌添加剂[153]、乳化剂[154] 和人造甜味剂[155],会增加黏液溶解细菌和内毒素,从而增加肠道通透性和肠道炎症。另外,纤维[156] 和色氨酸[157] 的摄入增加通常有助于与结肠健康相关的免疫反应。因此,合理健康的饮食习惯对防止IBD 发生具有重要作用。
-
7.4 CRC中的Wnt信号
-
绝大多数遗传性、散发性和炎症相关的CRC在 Wnt通路中携带突变,导致β⁃连环蛋白的核积累或直接影响β⁃连环蛋白的其他突变[158]。此外,CRC中发现了高水平的β⁃连环蛋白和E⁃钙黏蛋白缺陷[159], E⁃钙黏蛋白与细胞核中的β⁃连环蛋白共定位,通过募集β⁃连环蛋白抑制β⁃连环蛋白与LEF⁃1之间的相互作用,减少Wnt下游靶基因的激活,进而防止IEC 过度增殖[160]。E⁃钙黏蛋白的丢失导致细胞质中游离β⁃连环蛋白的积累,并促进其与LEF⁃1的相互作用。β⁃连环蛋白的这种异常核积累或突变进一步激活其下游靶基因的表达,主要包括细胞周期蛋白 D1(cyclin D1,CCND1)、c⁃Myc、基质金属蛋白酶 (matrix metalloproteinase,MMP)⁃ 7、CD44 和 Axin2 等[120,161-163],这些基因破坏上皮分化和干细胞稳态,促进上皮干细胞区异常扩张并出现肠增生,导致腺瘤性息肉和腺瘤的发生[164]。
-
7.5 CRC中的Hippo信号
-
Hippo 信号是调控干细胞增殖、形态、存活、迁移、自我更新、组织稳态和器官大小的重要信号通路[165-166]。最近,Hippo 信号被认为是肿瘤发生中最重要的信号通路之一[167]。在CRC中,Hippo信号通路被抑制后促进YAP的表达增加,从而诱导结肠癌细胞的迁移、侵袭、增殖[168]。YAP1/KLF5可以结合 Wnt 信号靶标 Achaete⁃Scute 家族 BHLH 转录因子 2 (Achaete Scute⁃like2,Ascl2)的启动子,并增强其转录表达,从而提高CRC 祖细胞的自我更新能力,促进 CRC 的发展[169]。此外,YAP 信号的下游分子如 SCA1、CCND2 以及 SOX9 均促进 IEC 增殖并在 CRC 组织中高表达[170-172]。因此,在Hippo信号通路受到抑制的情况下,过度表达的YAP通过其靶标分子促进CRC的发生发展。
-
7.6 CRC中的EGF信号
-
EGFR 属于 ErbB 酪氨酸激酶受体家族,该家族包含 4 种由 c⁃ErbB 原癌基因编码的蛋白质[99]。 EGFR可激活促进肿瘤生长过程的多种信号级联通路,并已被证明在CRC患者中过度表达[173]。EGFR 激活的两个主要途径是RAS⁃RAF⁃MAP激酶途径和 PI3K⁃PTEN⁃Akt途径。这些途径通过调节几种转录因子将促有丝分裂信号传递到细胞核中,进而促进 CRC的发生发展[174]。
-
7.7 CRC中的Notch信号
-
由于点突变、基因扩增、染色体易位和其他表观遗传修饰,Notch通路在多种类型癌症中被激活[175],以调节细胞增殖、分化、凋亡和干细胞维持[176]。不同研究表明,Notch通路与CRC的发展有关。Notch 细胞内结构域(Notch intracellular domain,NICD)通过γ⁃分泌酶复合物从受体上切割下来,裂解的 NICD 从细胞质转移到细胞核[177-178],NICD 与无毛重组结合蛋白抑制因子(recombining binding protein suppressor of hairless,RBPJ)相互作用,激活致癌基因,如分裂毛发增强子(hairy enhancer of split,HES) 家族蛋白、CDKN1A(也称为 p21)、HES 相关蛋白 (HES⁃related protein,HEY)、Notch 调节的锚蛋白重复蛋白、细胞周期蛋白D1/3、c⁃Myc和HER2,进而促进CRC的发生发展[179-180]。
-
8 总结与展望
-
近年来,随着科学技术的进步,人们对于肠上皮功能的探索越发深入,发现了肠上皮一些其他有趣的功能,如肠上皮可以通过迷走神经和免疫内分泌途径作用于大脑,对神经中枢功能进行调节[181]。因此,探索IEC其他未知功能是该领域研究的一个方向。
-
IEC 的发育受到多种关键分子信号调节:Wnt 信号促进 TA/干细胞的增殖并驱动潘氏细胞成熟; Notch信号与Wnt协同驱动ISC的增殖并调节未分化 TA/干细胞的维持;EGF促进IEC增殖;Hippo和BMP 抑制增殖并诱导所有分泌谱系细胞的成熟。此外,还有其他关键机制参与肠上皮发育调控,营养状态、免疫炎症信号、肠道共生菌以及线粒体功能等,均参与ISC活性的调节,进而对肠上皮发育产生深远影响。肠上皮发育调节是一个多种机制共同参与的过程,然而,众多机制如何协同调控进而维持机体稳态尚不明确,探索各调控信号间关联及其 “总开关”具有重要意义。
-
将这些关于IEC的丰富知识应用到疾病治疗仍然是一项具有挑战性的任务。营养素影响ISC行为和生态位的概念为治疗干预提供了另一个可能。例如,生酮饮食可能缓解化疗期间胃肠道发症[82],降低肠道吸收致肥胖营养素的能力进而控制ISC过度增殖,避免肿瘤发生。
-
确定控制肠道细胞命运的因素和机制能够建立富含特定细胞类型的类器官,进而用于研制新药。例如,EC通过它们在肠⁃脑轴中的作用影响食欲、胰岛素释放和肠道运动[82]。因此,类器官培养物可用于发现“促分泌素”,即改变激素分泌的分子[82]。同理,潘氏细胞产生的抗菌肽在抗菌中具有重要作用,可以通过体外诱导产生富含潘氏细胞的类器官,为抗肠道微生物感染提供新思路。
-
与传统的干细胞理论相反,ISC 不是一个静态群体,具有较强的可塑性,并且在组织损伤时,更多分化的细胞可以恢复到干细胞状态并促进肠道再生[182]。但是,若再生过度,则会引起肠上皮发育紊乱。很多肠道性疾病的发生与肠上皮发育失调相关,如ISC过度增殖或IEC过度去分化,将会促进肠道肿瘤的发生发展[183]。因此,对肠上皮发育情况进行监测并评估其分化阶段,将为防治肠道肿瘤提供新策略。
-
参考文献
-
[1] ABREU M T.Toll ⁃like receptor signalling in the intesti⁃ nal epithelium:how bacterial recognition shapes intesti⁃ nal function[J].Nat Rev Immunol,2010,10(2):131-144
-
[2] ALLAIRE J M,CROWLEY S M,LAW H T,et al.The in⁃ testinal epithelium:central coordinator of mucosal immu⁃ nity[J].Trends Immunol,2018,39(9):677-696
-
[3] THOO L,NOTI M,KREBS P.Keep calm:the intestinal barrier at the interface of peace and war[J].Cell Death Dis,2019,10(11):849
-
[4] ZEUNER A,TODARO M,STASSI G,et al.Colorectal can⁃ cer stem cells:from the crypt to the clinic[J].Cell Stem Cell,2014,15(6):692-705
-
[5] ANDERSON K J,CORMIER R T,SCOTT P M.Role of ion channels in gastrointestinal cancer[J].World J Gas⁃ troenterol,2019,25(38):5732-5772
-
[6] GREENWOOD ⁃ VAN MEERVELD B,JOHNSON A C,GRUNDY D.Gastrointestinal pharmacology[M].Cham:Springer International Publishing,2017:1-16
-
[7] SATSU H.Molecular and cellular studies on the absorp⁃ tion,function,and safety of food components in intestinal epithelial cells[J].Biosci Biotechnol Biochem,2017,81(3):419-425
-
[8] MAYNARD C L,ELSON C O,HATTON R D,et al.Re⁃ ciprocal interactions of the intestinal microbiota and im⁃ mune system[J].Nature,2012,489(7415):231-241
-
[9] FARRÉ R,FIORANI M,ABDU RAHIMAN S,et al.Intes⁃ tinal permeability,inflammation and the role of nutrients [J].Nutrients,2020,12(4):1185
-
[10] TURNER J R.Intestinal mucosal barrier function in health and disease[J].Nat Rev Immunol,2009,9(11):799-809
-
[11] GIERYŃSKA M,SZULC⁃DABROWSKA L,STRUZIK J,et al.Integrity of the intestinal barrier:the involvement of epithelial cells and microbiota ⁃a mutual relationship[J].Animals,2022,12(2):145
-
[12] AYABE T.The role of Paneth cells and their antimicrobial peptides in innate host defense[J].Trends Microbiol,2004,12(8):394-398
-
[13] KIM J,KHAN W.Goblet cells and mucins:role in innate defense in enteric infections[J].Pathogens,2013,2(1):55-70
-
[14] PETERSON L W,ARTIS D.Intestinal epithelial cells:regu⁃ lators of barrier function and immune homeostasis[J].Nat Rev Immunol,2014,14(3):141-153
-
[15] SCHUIJT T J,VAN DER POLL T,DE VOS W M,et al.The intestinal microbiota and host immune interactions in the critically ill[J].Trends Microbiol,2013,21(5):221-229
-
[16] JOHANSSON M E V,PHILLIPSON M,PETERSSON J,et al.The inner of the two Muc2 mucin⁃dependent mucus layers in colon is devoid of bacteria[J].Proc Natl Acad Sci U S A,2008,105(39):15064-15069
-
[17] SANTAOLALLA R,ABREU M T.Innate immunity in the small intestine[J].Curr Opin Gastroenterol,2012,28(2):124-129
-
[18] MONICA R,MARCELLO C,VALENTINA S,et al.Intes⁃ tinal immune homeostasis is regulated by the crosstalk be⁃ tween epithelial cells and dendritic cells[J].Nat Immu⁃ nol,2005,6(5):507-514
-
[19] ZEUTHEN L H,FINK L N,FROKIAER H.Epithelial cells prime the immune response to an array of gut ⁃ de⁃ rived commensals towards a tolerogenic phenotype through distinct actions of thymic stromal lymphopoietin and transforming growth factor⁃β[J].Immunology,2008,123(2):197-208
-
[20] TAYLOR B C,ZAPH C,TROY A E,et al.TSLP regulates intestinal immunity and inflammation in mouse models of helminth infection and colitis[J].J Exp Med,2009,206(3):655-667
-
[21] COOMBES J L,SIDDIQUI K R R,ARANCIBIA⁃CÁRCA⁃ MO C V,et al.A functionally specialized population of mucosal CD103 + DCs induces Foxp3 + regulatory T cells via a TGF⁃β and retinoic acid⁃dependent mechanism[J].J Exp Med,2007,204(8):1757-1764
-
[22] SCHULZ O,JAENSSON E,PERSSON E K,et al.Intesti⁃ nal CD103+,but not CX3CR1+,antigen sampling cells mi⁃ grate in lymph and serve classical dendritic cell functions [J].J Exp Med,2009,206(13):3101-3114
-
[23] MURAI M,TUROVSKAYA O,KIM G,et al.Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis[J].Nat Immunol,2009,10(11):1178-1184
-
[24] KAYAMA H,UEDA Y,SAWA Y,et al.Intestinal CX3C chemokine receptor 1high(CX3CR1high)myeloid cells pre⁃ vent T⁃cell⁃dependent colitis[J].Proc Natl Acad Sci U S A,2012,109(13):5010-5015
-
[25] SPITS H,CUPEDO T.Innate lymphoid cells:emerging insights in development,lineage relationships,and func⁃ tion[J].Annu Rev Immunol,2012,30:647-675
-
[26] MONTICELLI L A,SONNENBERG G F,ARTIS D.Innate lymphoid cells:critical regulators of allergic in⁃ flammation and tissue repair in the lung[J].Curr Opin Immunol,2012,24(3):284-289
-
[27] KIM B S,SIRACUSA M C,SAENZ S A,et al.TSLP elicits IL⁃33⁃independent innate lymphoid cell responses to promote skin inflammation[J].Sci Transl Med,2013,5(170):e3005374
-
[28] ELIA D,WOJNO T.Innate lymphoid cells:balancing immunity,inflammation,and tissue repair in the intestine [J].Cell Host Microbe,2012,12(4):445-457
-
[29] SPITS H,ARTIS D,COLONNA M,et al.Innate lymphoid cells ⁃ a proposal for uniform nomenclature[J].Nat Rev Immunol,2013,13(2):145-149
-
[30] MORO K,YAMADA T,TANABE M,et al.Innate produc⁃ tion of TH2 cytokines by adipose tissue⁃associated c⁃Kit + Sca ⁃ 1 + lymphoid cells[J].Nature,2010,463(7280):540-544
-
[31] NEILL D R,WONG S H,BELLOSI A,et al.Nuocytes represent a new innate effector leukocyte that mediates type ⁃ 2 immunity[J].Nature,2010,464(7293):1367-1370
-
[32] PRICE A E,LIANG H E,SULLIVAN B M,et al.Systemi⁃ cally dispersed innate IL ⁃13⁃expressing cells in type 2 immunity[J].Proc Natl Acad Sci U S A,2010,107(25):11489-11494
-
[33] BUONOCORE S,AHERN P P,UHLIG H H,et al.Innate lymphoid cells drive interleukin ⁃ 23 ⁃ dependent innate intestinal pathology[J].Nature,2010,464(7293):1371-1375
-
[34] HANASH A M,DUDAKOV J A,HUA G,et al.Interleu⁃ kin⁃22 protects intestinal stem cells from immune⁃mediated tissue damage and regulates sensitivity to graft versus host disease[J].Immunity,2012,37(2):339-350
-
[35] CHEROUTRE H,LAMBOLEZ F,MUCIDA D.The light and dark sides of intestinal intraepithelial lymphocytes [J].Nat Rev Immunol,2011,11(7):445⁃456
-
[36] MACPHERSON A J,UHR T.Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria [J].Science,2004,303(5664):1662-1665
-
[37] MORA J R,IWATA M,EKSTEEN B,et al.Generation of gut ⁃ homing IgA ⁃ secreting B cells by intestinal dendritic cells[J].Science,2006,314(5802):1157-1160
-
[38] FUJISAKA S,USSAR S,CLISH C,et al.Antibiotic effects on gut microbiota and metabolism are host depen⁃ dent[J].J Clin Investig,2016,126(12):4430-4443
-
[39] THAISS C A,ZEEVI D,LEVY M,et al.Transkingdom con⁃ trol of microbiota diurnal oscillations promotes metabolic homeostasis[J].Cell,2014,159(3):514-529
-
[40] ATARASHI K,TANOUE T,ANDO M,et al.Th17 cell in⁃ duction by adhesion of microbes to intestinal epithelial cells[J].Cell,2015,163(2):367-380
-
[41] IVANOV I I,ATARASHI K,MANEL N,et al.Induction of intestinal Th17 cells by segmented filamentous bacteria [J].Cell,2009,139(3):485-498
-
[42] SANO T,HUANG W,HALL J A,et al.An IL⁃23R/IL⁃22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses[J].Cell,2015,163(2):381-393
-
[43] GOTO Y,OBATA T,KUNISAWA J,et al.Innate lym⁃ phoid cells regulate intestinal epithelial cell glycosylation [J].Science,2014,345(6202):e1254009
-
[44] YU Y M,ZENG H,LYONS S,et al.TLR5⁃mediated acti⁃ vation of p38 MAPK regulates epithelial IL ⁃8 expression via posttranscriptional mechanism[J].Am J Physiol Gas⁃ trointest Liver Physiol,2003,285(2):G282-G290
-
[45] SHAN M M,GENTILE M,YEISER J R,et al.Mucus en⁃ hances gut homeostasis and oral tolerance by delivering immunoregulatory signals[J].Science,2013,342(6157):447-453
-
[46] MABBOTT N A,DONALDSON D S,OHNO H,et al.Microfold(M)cells:important immunosurveillance posts in the intestinal epithelium[J].Mucosal Immunol,2013,6(4):666-677
-
[47] OKUMURA R,TAKEDA K.Roles of intestinal epithelial cells in the maintenance of gut homeostasis[J].Exp Mol Med,2017,49(5):e338
-
[48] BRAKENHOFF L K P M,VAN DER HEIJDE D M,HOM⁃ MES D W,et al.The joint⁃gut axis in inflammatory bowel diseases[J].J Crohn’s Colitis,2010,4(3):257-268
-
[49] XAVIER R J,PODOLSKY D K.Unravelling the pathogen⁃ esis of inflammatory bowel disease[J].Nature,2007,448(7152):427-434
-
[50] MALOY K J,POWRIE F.Intestinal homeostasis and its breakdown in inflammatory bowel disease[J].Nature,2011,474(7351):298-306
-
[51] BAUMGART D C,SANDBORN W J.Inflammatory bowel disease:clinical aspects and established and evolving therapies[J].Lancet,2007,369(9573):1641-1657
-
[52] MOLODECKY N A,SOON S,RABI D M,et al.Increas⁃ ing incidence and prevalence of the inflammatory bowel diseases with time,based on systematic review[J].Gas⁃ troenterology,2012,142(1):46-54
-
[53] LICHTA D R,GRAHAM D B,SUBRAMANIAN S,et al.Therapeutic opportunities in inflammatory bowel dis⁃ ease:mechanistic dissection of host⁃microbiome relation⁃ ships[J].Cell,2019,178(5):1041-1056
-
[54] QUIGLEY E M M.Leaky gut ⁃ concept or clinical entity?[J].Curr Opin Gastroenterol,2016,32(2):74-79
-
[55] GRAHAM W V,HE W Q,MARCHIANDO A M,et al.Intracellular MLCK1 diversion reverses barrier loss to restore mucosal homeostasis[J].Nat Med,2019,25(4):690-700
-
[56] CASBURN ⁃ JONES A C.Management of infectious diar⁃ rhoea[J].Gut,2004,53(2):296-305
-
[57] KEELY S J,BARRETT K E.Intestinal secretory mecha⁃ nisms and diarrhea[J].Am J Physiol Gastrointest Liver Physiol,2022,322(4):405-420
-
[58] FIELD M.Intestinal ion transport and the pathophysiology of diarrhea[J].J Clin Invest,2003,111(7):931-943
-
[59] 苏文雨,房静远.2020年结直肠癌的研究新进展[J].中华医学信息导报,2021,36(3):12-13
-
[60] MURPHY N,MORENO V,HUGHES D J,et al.Lifestyle and dietary environmental factors in colorectal cancer sus⁃ ceptibility[J].Mol Aspects Med,2019,69:2-9
-
[61] COUTURIER⁃MAILLARD A,SECHER T,REHMAN A,et al.NOD2⁃mediated dysbiosis predisposes mice to trans⁃ missible colitis and colorectal cancer[J].J Clin Invest,2013,123(2):1-13
-
[62] HU B,ELINAV E,HUBER S,et al.Microbiota ⁃induced activation of epithelial IL⁃6 signaling links inflammasome⁃ driven inflammation with transmissible cancer[J].Proc Natl Acad Sci U S A,2013,110(24):9862-9867
-
[63] BARKER N,RIDGWAY R A,VAN ES J H,et al.Crypt stem cells as the cells ⁃ of ⁃ origin of intestinal cancer[J].Nature,2009,457(7229):608-611
-
[64] EMELO F D C,DESAUVAGE F J.Cellular plasticity in intestinal homeostasis and disease[J].Cell Stem Cell,2019,24(1):54-64
-
[65] WANG Y L,SONG W L,YU S C,et al.Intestinal cellular heterogeneity and disease development revealed by single⁃ cell technology[J].Cell Regen,2022,11(1):1-23
-
[66] BARKER N,VAN DE WETERING M,CLEVERS H.The intestinal stem cell[J].Genes Dev,2008,22(14):1856-1864
-
[67] BARKER N.Adult intestinal stem cells:critical drivers of epithelial homeostasis and regeneration[J].Nat Rev Mol Cell Biol,2014,15(1):19-33
-
[68] TETTEH P W,FARIN H F,CLEVERS H.Plasticity within stem cell hierarchies in mammalian epithelia[J].Trends Cell Biol,2015,25(2):100-108
-
[69] BARKER N,VAN ES J H,KUIPERS J,et al.Identifica⁃ tion of stem cells in small intestine and colon by marker gene Lgr5[J].Nature,2007,449(7165):1003-1007
-
[70] CHENG H,LEBLOND C P.Origin,differentiation and re⁃ newal of the four main epithelial cell types in the mouse small intestine V.Unitarian theory of the origin of the four epithelial cell types[J].Am J Anat,1974,141(4):537-561
-
[71] MIRON N,CRISTEA V.Enterocytes:active cells in tole⁃ rance to food and microbial antigens in the gut[J].Clin Exp Immunol,2012,167(3):405-412
-
[72] RODRÍGUEZ⁃COLMAN M J,SCHEWE M,MEERLO M,et al.Interplay between metabolic identities in the intesti⁃ nal crypt supports stem cell function[J].Nature,2017,543(7645):424-427
-
[73] KIM Y S,HO S B.Intestinal goblet cells and mucins in health and disease:recent insights and progress[J].Curr Gastroenterol Rep,2010,12(5):319-330
-
[74] SPECIAN R D,OLIVER M G.Functional biology of intes⁃ tinal goblet cells[J].Am J Physiol Cell Physiol,1991,260(2):C183-C193
-
[75] GUSTAFSSON J K,JOHANSSON M E V.The role of gob⁃ let cells and mucus in intestinal homeostasis[J].Nat Rev Gastroenterol Hepatol,2022,19(12):785-803
-
[76] GRIBBLE F M,REIMANN F.Enteroendocrine cells:che⁃ mosensors in the intestinal epithelium[J].Annu Rev Physiol,2016,78:277-299
-
[77] MACE O J,TEHAN B,MARSHALL F.Pharmacology and physiology of gastrointestinal enteroendocrine cells[J].Pharmacol Res Perspect,2015,3(4):1-26
-
[78] FURNESS J B,RIVERA L R,CHO H J,et al.The gut as a sensory organ[J].Nat Rev Gastroenterol Hepatol,2013,10(12):729-740
-
[79] HOWITT M R,LAVOIE S,MICHAUD M,et al.Tuft cells,taste ⁃chemosensory cells,orchestrate parasite type 2 im⁃ munity in the gut[J].Science,2016,351(6279):1329-1333
-
[80] GERBE F,SIDOT E,SMYTH D J,et al.Intestinal epithe⁃ lial tuft cells initiate type 2 mucosal immunity to helminth parasites[J].Nature,2016,529(7585):226-230
-
[81] HARRIS N.The enigmatic tuft cell in immunity[J].Sci⁃ ence,2016,351(6279):1264-1265
-
[82] BEUMER J,CLEVERS H.Cell fate specification and differentiation in the adult mammalian intestine[J].Nat Rev Mol Cell Biol,2021,22(1):39-53
-
[83] WATSON A J M,HUGHES K R.TNF⁃α⁃induced intesti⁃ nal epithelial cell shedding:implications for intestinal barrier function[J].Ann N Y Acad Sci,2012,1258(1):1-8
-
[84] IRELAND H,HOUGHTON C,HOWARD L,et al.Cellu⁃ lar inheritance of a Cre ⁃activated reporter gene to deter⁃ mine paneth cell longevity in the murine small intestine [J].Dev Dyn,2005,233(4):1332-1336
-
[85] METCALFE C,KLJAVIN N M,YBARRA R,et al.Lgr5+ stem cells are indispensable for radiation⁃induced intesti⁃ nal regeneration[J].Stem Cell,2014,14(2):149-159
-
[86] AYYAZ A,KUMAR S,SANGIORGI B,et al.Single⁃cell transcriptomes of the regenerating intestine reveal a revival stem cell[J].Nature,2019,569(7754):121-125
-
[87] JEON M K.Intestinal barrier:molecular pathways and modifiers[J].World J Gastrointest Pathophysiol,2013,4(4):94
-
[88] HONG S N,DUNN J C Y,STELZNER M,et al.Concise review:the potential use of intestinal stem cells to treat patients with intestinal failure[J].Stem Cells Transl Med,2017,6(2):666-676
-
[89] PINTO D,GREGORIEFF A,BEGTHEL H,et al.Canoni⁃ cal Wnt signals are essential for homeostasis of the intesti⁃ nal epithelium[J].Genes Dev,2003,17(14):1709-1713
-
[90] GILES R H,VAN ES J H,CLEVERS H.Caught up in a Wnt storm:wnt signaling in cancer[J].Biochim Biophys Acta,2003,1653(1):1-24
-
[91] CZERWINSKI M,SHROYER N F,SPENCE J R.WNT physiology of the gastrointestinal tract[M].Amsterdam:Elsevier,2018:185-196
-
[92] GREGORIEFF A,PINTO D,BEGTHEL H,et al.Expres⁃ sion pattern of Wnt signaling components in the adult in⁃ testine[J].Gastroenterology,2005,129(2):626-638
-
[93] KWONG L N,DOVE W F.Advances in experimental medi⁃ cine and biology[M].New York,NY:Springer New York,2009:85-106
-
[94] VAN ES J H,JAY P,GREGORIEFF A,et al.Wnt signal⁃ ling induces maturation of Paneth cells in intestinal crypts [J].Nat Cell Biol,2005,7(4):381-386
-
[95] SANCHO R,CREMONA C A,BEHRENS A.Stem cell and progenitor fate in the mammalian intestine:Notch and lateral inhibition in homeostasis and disease[J].EMBO Rep,2015,16(5):571-581
-
[96] KOCH U,LEHAL R,RADTKE F.Stem cells living with a Notch[J].Development,2013,140(4):689-704
-
[97] HARAMIS A P G,BEGTHEL H,VAN DEN BORN M,et al.De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine[J].Science,2004,303(5664):1684-1686
-
[98] SATO T,VRIES R G,SNIPPERT H J,et al.Single Lgr5 stem cells build crypt ⁃ villus structures in vitro without a mesenchymal niche[J].Nature,2009,459(7244):262-265
-
[99] JORISSEN R N,WALKER F,POULIOT N,et al.The EGF receptor family[M].Amsterdam:Elsevier,2003:33-55
-
[100] SATO T,VAN ES J H,SNIPPERT H J,et al.Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts [J].Nature,2011,469(7330):415-418
-
[101] DIGNASS A U,STURM A.Peptide growth factors in the intestine[J].Eur J Gastroenterol Hepatol,2001,13(7):763-770
-
[102] PAN D.The hippo signaling pathway in development and cancer[J].Dev Cell,2010,19(4):491-505
-
[103] CAI J,ZHANG N L,ZHENG Y G,et al.The Hippo signal⁃ ing pathway restricts the oncogenic potential of an intesti⁃ nal regeneration program[J].Genes Dev,2010,24(21):2383-2388
-
[104] BEUMER J,CLEVERS H.Regulation and plasticity of intestinal stem cells during homeostasis and regeneration [J].Development,2016,143(20):3639-3649
-
[105] GREGORIEFF A,LIU Y,INANLOU M R,et al.Yap ⁃ dependent reprogramming of Lgr5+ stem cells drives intes⁃ tinal regeneration and cancer[J].Nature,2015,526(7575):715-718
-
[106] SERRA D,MAYR U,BONI A,et al.Self⁃organization and symmetry breaking in intestinal organoid development [J].Nature,2019,569(7754):66-72
-
[107] LI V S W.Yap in regeneration and symmetry breaking [J].Nat Cell Biol,2019,21(6):665-667
-
[108] CALIBASI ⁃ KOCAL G,MASHINCHIAN O,BASBINAR Y,et al.Nutritional control of intestinal stem cells in homeostasis and tumorigenesis[J].Trends Endocrinol Metab,2021,32(1):20-35
-
[109] MADEO F,CARMONA⁃GUTIERREZ D,HOFER S J,et al.Caloric restriction mimetics against age ⁃ associated disease:targets,mechanisms,and therapeutic potential [J].Cell Metab,2019,29(3):592-610
-
[110] YILMAZ Ö H,KATAJISTO P,LAMMING D W,et al.mTORC1 in the Paneth cell niche couples intestinal stem⁃ cell function to calorie intake[J].Nature,2012,486(7404):490-495
-
[111] IGARASHI M,GUARENTE L.mTORC1 and SIRT1 cooperate to foster expansion of gut adult stem cells dur⁃ ing calorie restriction[J].Cell,2016,166(2):436-450
-
[112] TEODORO J S,VARELA A T,ROLO A P,et al.High⁃fat and obesogenic diets:current and future strategies to fight obesity and diabetes[J].Genes Nutr,2014,9(4):1-15
-
[113] BEYAZ S,MANA M D,ROPER J,et al.High⁃fat diet enhances stemness and tumorigenicity of intestinal pro⁃ genitors[J].Nature,2016,531(7592):53-58
-
[114] DECLERCQ V,MCMURRAY D N,CHAPKIN R S.Obe⁃ sity promotes colonic stem cell expansion during cancer initiation[J].Cancer Lett,2015,369(2):336-343
-
[115] CHEN Y,YE Z H,SEIDLER U,et al.Microenvironmen⁃ tal regulation of intestinal stem cells in the inflamed intes⁃ tine[J].Life Sci,2021,273:119298
-
[116] SAHA S,ARANDA E,HAYAKAWA Y,et al.Macrophage ⁃ derived extracellular vesicle ⁃ packaged WNTs rescue intestinal stem cells and enhance survival after radiation injury[J].Nat Commun,2016,7:13096
-
[117] LINDEMANS C A,CALAFIORE M,MERTELSMANN A M,et al.Interleukin⁃22 promotes intestinal⁃stem⁃cell⁃me⁃ diated epithelial regeneration[J].Nature,2015,528(7583):560-564
-
[118] GRONKE K,HERNÁNDEZ P P,ZIMMERMANN J,et al.Interleukin⁃22 protects intestinal stem cells against geno⁃ toxic stress[J].Nature,2019,566(7743):249-253
-
[119] BITON M,HABER A L,ROGEL N,et al.T helper cell cytokines modulate intestinal stem cell renewal and differ⁃ entiation[J].Cell,2018,175(5):1307-1320
-
[120] SONNENBERG G F,ARTIS D.Innate lymphoid cells in the initiation,regulation and resolution of inflammation [J].Nat Med,2015,21(7):698-708
-
[121] COSÍN⁃ROGER J,ORTIZ⁃MASIÁ D,CALATAYUD S,et al.The activation of Wnt signaling by a STAT6 ⁃ depen⁃ dent macrophage phenotype promotes mucosal repair in murine IBD[J].Mucosal Immunol,2016,9(4):986-998
-
[122] JONES L G,VAIDA A,THOMPSON L M,et al.NF⁃κB2 signalling in enteroids modulates enterocyte responses to secreted factors from bone marrow⁃derived dendritic cells [J].Cell Death Dis,2019,10(12):896
-
[123] HOU Q H,HUANG J X,AYANSOLA H,et al.Intestinal stem cells and immune cell relationships:potential thera⁃ peutic targets for inflammatory bowel diseases[J].Front Immunol,2021,11:623691
-
[124] SMITH K,MCCOY K D,MACPHERSON A J.Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota[J].Semin Immu⁃ nol,2007,19(2):59-69
-
[125] NOWACKI M R.Cell proliferation in colonic crypts of germ ⁃free and conventional mice ⁃ preliminary report[J].Folia Histochem Cytobiol,1993,31(2):77-81
-
[126] CIORBA M A,RIEHL T E,RAO M S,et al.Lactobacillus probiotic protects intestinal epithelium from radiation in⁃ jury in a TLR ⁃ 2/cyclo ⁃ oxygenase ⁃ 2 ⁃ dependent manner [J].Gut,2012,61(6):829-838
-
[127] LEE Y S,KIM T Y,KIM Y,et al.Microbiota⁃derived lac⁃ tate accelerates intestinal stem ⁃ cell ⁃ mediated epithelial development[J].Cell Host Microbe,2018,24(6):833-846
-
[128] HOU Q H,YE L L,LIU H F,et al.Lactobacillus accele⁃ rates ISCs regeneration to protect the integrity of intesti⁃nal mucosa through activation of STAT3 signaling path⁃ way induced by LPLs secretion of IL ⁃ 22[J].Cell Death Differ,2018,25(9):1657-1670
-
[129] CHAPMAN T P,HADLEY G,FRATTER C,et al.Unex⁃ plained gastrointestinal symptoms:think mitochondrial disease[J].Dig Liver Dis,2014,46(1):1-8
-
[130] SONODA A,KAMIYAMA N,OZAKA S,et al.Oral administration of antibiotics results in fecal occult bleed⁃ ing due to metabolic disorders and defective proliferation of the gut epithelial cell in mice[J].Genes Cells,2018,23(12):1043-1055
-
[131] RATH E,MOSCHETTA A,HALLER D.Mitochondrial function⁃gatekeeper of intestinal epithelial cell homeosta⁃ sis[J].Nat Rev Gastroenterol Hepatol,2018,15(8):497-516
-
[132] BERGER E,RATH E,YUAN D T,et al.Mitochondrial function controls intestinal epithelial stemness and proli ⁃ feration[J].Nat Commun,2016,7:13171
-
[133] KLUCK R M,BOSSY ⁃WETZEL E,GREEN D R,et al.The release of cytochrome c from mitochondria:a primary site for bcl ⁃2 regulation of apoptosis[J].Science,1997,275(5303):1132-1136
-
[134] GUERBETTE T,BOUDRY G,LAN A.Mitochondrial func⁃ tion in intestinal epithelium homeostasis and modulation in diet⁃induced obesity[J].Mol Metab,2022,63:101546
-
[135] MANCINI N L,GOUDIE L K,XU W,et al.Perturbed mitochondrial dynamics is a novel feature of colitis that can be targeted to lessen disease[J].Cell Mol Gastroen⁃ terol Hepatol,2020,10(2):287-307
-
[136] SIFRONI K G,DAMIANI C R,STOFFEL C,et al.Mito⁃ chondrial respiratory chain in the colonic mucosal of pa⁃ tients with ulcerative colitis[J].Mol Cell Biochem,2010,342(1/2):111-115
-
[137] HELLER S,PENROSE H M,CABLE C,et al.Reduced mitochondrial activity in colonocytes facilitates AMPKα2⁃ dependent inflammation[J].FASEB J,2017,31(5):2013-2025
-
[138] SANTHANAM S,RAJAMANICKAM S,MOTAMARRY A,et al.Mitochondrial electron transport chain complex dysfunction in the colonic mucosa in ulcerative colitis[J].Inflamm Bowel Dis,2012,18(11):2158-2168
-
[139] SCHÜRMANN G,BRÜWER M,KLOTZ A,et al.Transepi⁃ thelial transport processes at the intestinal mucosa in inflammatory bowel disease[J].Int J Colorectal Dis,1999,14(1):41-46
-
[140] JACKSON D N,THEISS A L.Gut bacteria signaling to mitochondria in intestinal inflammation and cancer[J].Gut Microbes,2020,11(3):285-304
-
[141] PRÓCHNICKI T,LAIZ E.Inflammasomes on the cross⁃ roads of innate immune recognition and metabolic control [J].Cell Metab,2017,26(1):71-93
-
[142] SCHIRMER M,GARNER A,VLAMAKIS H,et al.Micro⁃ bial genes and pathways in inflammatory bowel disease [J].Nat Rev Microbiol,2019,17(8):497-511
-
[143] HALFVARSON J,BRISLAWN C J,LAMENDELLA R,et al.Dynamics of the human gut microbiome in inflammatory bowel disease[J].Nat Microbiol,2017,2(5):17004
-
[144] GLASSNER K L,ABRAHAM B P,QUIGLEY E M M.The microbiome and inflammatory bowel disease[J].J Allergy Clin Immunol,2020,145(1):16-27
-
[145] LAVELLE A,HOFFMANN T W,PHAM H P,et al.Base⁃ line microbiota composition modulates antibiotic ⁃mediat⁃ ed effects on the gut microbiota and host[J].Microbiome,2019,7(1):1-13
-
[146] MATSUOKA K,KANAI T.The gut microbiota and inflam⁃ matory bowel disease[J].Semin Immunopathol,2015,37(1):47-55
-
[147] 董杰,邢娟,路国涛,等.肠内营养对质子泵抑制剂导致的胃肠道不良反应的保护作用[J].南京医科大学学报(自然科学版),2019,39(1):77-83
-
[148] LEVINE A,SIGALL B R,WINE E.Evolving role of diet in the pathogenesis and treatment of inflammatory bowel diseases[J].Gut,2018,67(9):1726-1738
-
[149] CONSTANTE M,FRAGOSO G,CALVÉ A N,et al.Dietary heme induces gut dysbiosis,aggravates colitis,and potentiates the development of adenomas in mice[J].Front Microbiol,2017,8:1809
-
[150] WILCK N,MATUS M G,KEARNEY S M,et al.Salt⁃ responsive gut commensal modulates TH17 axis and dis⁃ ease[J].Nature,2017,551(7682):585-589
-
[151] RACINE A,CARBONNEL F,CHAN S S M,et al.Dietary patterns and risk of inflammatory bowel disease in Europe [J].Inflamm Bowel Dis,2016,22(2):345-354
-
[152] DESAI M,SEEKATZ A M,KOROPATKIN N M,et al.A dietary fiber⁃deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility[J].Cell,2016,167(5):1339-1353
-
[153] YANG H X,WANG W C,ROMANO K A,et al.A com⁃ mon antimicrobial additive increases colonic inflamma⁃ tion and colitis ⁃ associated colon tumorigenesis in mice [J].Sci Transl Med,2018,10(443):eaan4116
-
[154] CHASSAING B,KOREN O,GOODRICH J K,et al.Dietary emulsifiers impact the mouse gut microbiota pro⁃ moting colitis and metabolic syndrome[J].Nature,2015,519(7541):92-96
-
[155] SUEZ J,KOREM T,ZEEVI D,et al.Artificial sweeteners induce glucose intolerance by altering the gut microbiota [J].Nature,2014,514(7521):181-186
-
[156] KOH A,DE VADDER F,KOVATCHEVA ⁃DATCHARY P,et al.From dietary fiber to host physiology:short⁃chain fatty acids as key bacterial metabolites[J].Cell,2016,165(6):1332-1345
-
[157] LAMAS B,RICHARD M L,LEDUCQ V,et al.CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands[J].Nat Med,2016,22(6):598-605
-
[158] RHODES J M,CAMPBELL B J.Inflammation and colorec⁃ tal cancer:IBD⁃associated and sporadic cancer compared [J].Trends Mol Med,2002,8(1):10-16
-
[159] PÁLMER H G,GONZÁLEZ ⁃SANCHO J M,ESPADA J,et al.Vitamin D3 promotes the differentiation of colon car⁃ cinoma cells by the induction of E⁃cadherin and the inhi⁃ bition of β⁃ catenin signaling[J].J Cell Biol,2001,154(2):369-388
-
[160] SADOT E,SIMCHA I,SHTUTMAN M,et al.Inhibition of β ⁃ catenin ⁃ mediated transactivation by cadherin deriva⁃ tives[J].Proc Natl Acad Sci U S A,1998,95(26):15339-15344
-
[161] BERNKOPF D B,DAUM G,BRÜCKNER M,et al.Sul⁃ foraphane inhibits growth and blocks Wnt/β⁃catenin sig⁃ naling of colorectal cancer cells[J].Oncotarget,2018,9(74):33982-33994
-
[162] WANG S,YANG H,CHEN X,et al.Effects of SOX15 on the colorectal cancer cells via downregulation of the Wnt/β⁃catenin signaling pathway[J].Future Oncol,2018,14(19):1921-1932
-
[163] 郑金榆,张丽华,屈峰,等.β⁃catenin在肠系膜纤维瘤病与其他胃肠道间叶性肿瘤鉴别诊断中的作用[J].南京医科大学学报(自然科学版),2007,27(7):721-723
-
[164] TAN S,BARKER N.Epithelial stem cells and intestinal cancer[J].Semin Cancer Biol,2015,32:40-53
-
[165] ZHAO B,TUMANENG K,GUAN K L.The Hippo path⁃ way in organ size control,tissue regeneration and stem cell self⁃renewal[J].Nat Cell Biol,2011,13(8):877-883
-
[166] PAN D J.Hippo signaling in organ size control[J].Genes Dev,2007,21(8):886-897
-
[167] JOHNSON R,HALDER G.The two faces of Hippo:target⁃ ing the Hippo pathway for regenerative medicine and can⁃ cer treatment[J].Nat Rev Drug Discov,2014,13(1):63-79
-
[168] SUN M,SONG H B,WANG S Y,et al.Integrated analysis identifies microRNA ⁃195 as a suppressor of Hippo ⁃YAP pathway in colorectal cancer[J].J Hematol Oncol,2017,10(1):1-16
-
[169] WEI X L,YE J,SHANG Y Y,et al.Ascl2 activation by YAP1/KLF5 ensures the self⁃renewability of colon cancer progenitor cells[J].Oncotarget,2017,8(65):109301-109318
-
[170] PARK S Y,LEE C J,CHOI J H,et al.The JAK2/STAT3/CCND2 axis promotes colorectal cancer stem cell persis⁃ tence and radioresistance[J].J Exp Clin Cancer Res,2019,38(1):1-18
-
[171] MATHEU A,COLLADO M,WISE C,et al.Oncogenicity of the developmental transcription factor Sox9[J].Cancer Res,2012,72(5):1301-1315
-
[172] WANG X M,YANG Y H,HUYCKE M M.Commensal bacteria drive endogenous transformation and tumour stem cell marker expression through a bystander effect [J].Gut,2015,64(3):459-468
-
[173] SPANO J P,FAGARD R,SORIA J C,et al.Epidermal growth factor receptor signaling in colorectal cancer:pre⁃ clinical data and therapeutic perspectives[J].Ann Oncol,2005,16(2):189-194
-
[174] FRATTINI M,SALETTI P,MOLINARI F,et al.EGFR signaling in colorectal cancer:a clinical perspective[J].Gastrointest Cancer Targets Ther,2015,5:21-38
-
[175] ARTAVANIS⁃TSAKONAS S,MATSUNO K,FORTINI M E.Notch signaling[J].Science,1995,268(5208):225-232
-
[176] KOCH U,RADTKE F.Notch and cancer:a double⁃edged sword[J].Cell Mol Life Sci,2007,64(21):2746-2762
-
[177] KOPAN R,ILAGAN M X G.The canonical Notch signal⁃ ing pathway:unfolding the activation mechanism[J].Cell,2009,137(2):216-233
-
[178] GODALAKRISHNAN N,SIVASITHAMPARAM N D,DE⁃ VARAJ H.Synergistic association of Notch and NFκB sig⁃ naling and role of Notch signaling in modulating epithelial to mesenchymal transition in colorectal adenocarcinoma [J].Biochimie,2014,107:310-318
-
[179] ALLENSPACH E,MAILLARD I,ASTER J,et al.Notch signaling in cancer[J].Cancer Biol Thera,2002,1(5):466-476
-
[180] BRZOZOWA M,WOJNICZ R,KOWALCZYK ⁃ ZIOMEK G,et al.The Notch ligand delta⁃like 4(DLL4)as a target in angiogenesis ⁃ based cancer therapy?[J].Contemp Oncol,2013,17(3):234-237
-
[181] XIE Z,ZHANG X,ZHAO M,et al.The gut⁃to⁃brain axis for toxin⁃induced defensive responses[J].Cell,2022,185(23):4298-4316
-
[182] HEIJDEN M,VERMEULEN L.Stem cells in homeostasis and cancer of the gut[J].Mol Cancer,2019,18(1):1-15
-
[183] RAMADAN R,VAN DRIEL M S,VERMEULEN L,et al.Intestinal stem cell dynamics in homeostasis and cancer [J].Trends Cancer,2022,8(5):416-425
-
摘要
肠上皮是哺乳动物中更新最快的组织之一,在食物消化与营养吸收、黏膜屏障维持、免疫调节以及肠道微生物防御等方面发挥着重要作用。肠上皮中丰富的细胞类型是其发挥多种功能的基础,其分化发育过程受到精密调控,关键调节信号的失调会引起肠上皮屏障功能受损并导致多种肠道疾病的发生。本文将对肠上皮的功能、细胞组成以及调控信号进行阐述。
Abstract
The intestinal epithelium is one of the fastest renewing tissues in mammals and plays a critical role in food digestion and nutrient absorption,maintenance of mucosal barrier,immune regulation,and defense against intestinal microbiota. The diverse cell types within the intestinal epithelium provide the foundation for its multifunctional roles,and their differentiation and development are tightly controlled. Dysregulation of key regulatory signals can compromise the intestinal epithelial barrier function and contribute to the occurrence of various intestinal diseases. This review discusses the functions,cellular composition,and regulatory signals of the intestinal epithelium.