-
小胶质细胞是大脑固有的免疫细胞,其可作为第一道免疫防线响应中枢神经系统内环境稳态的改变。小胶质细胞具有多重免疫功能,例如分泌神经保护因子、炎症因子,修剪发育异常的神经突触,以及吞噬凋亡细胞碎片等。在接收到炎症信号后,小胶质细胞通过多种复杂的信号转导迅速发生形态及表型的转变并迁移至炎症病灶周围,通过多种免疫作用调控神经炎症的发生与发展。近年来,关于免疫细胞功能和其代谢状态之间联系的研究引发了免疫代谢领域的关注。例如,T细胞、巨噬细胞等能够不断适应炎症状态下的代谢环境,并做出代谢的适应性转变从而改变其相关的免疫功能。新近研究表明,小胶质细胞表达多种能源底物代谢通路的关键基因,并且具有免疫代谢灵活性的特征,小胶质细胞在不同炎症环境下亦具有不同的代谢特征,而重塑小胶质细胞代谢亦可改变其免疫功能,甚至可影响神经炎性疾病的发展与转归。因此,本综述重点揭示小胶质细胞代谢灵活性的特征,阐明不同环境下小胶质细胞的代谢表型及参与代谢重塑的重要机制,并总结关于调控代谢重塑对小胶质细胞功能的影响及机制。
-
1 小胶质细胞的代谢灵活性
-
代谢灵活性是指细胞在应对微环境发生变化时改变其利用和代谢营养物质的能力。这种适应性的改变对于维持细胞功能至关重要。研究发现, T细胞、树突细胞和巨噬细胞等外周免疫细胞,在固有的营养物质含量发生变化时会积极改变它们的代谢模式,尤其是对糖酵解、谷氨酰胺分解或脂肪酸氧化的依赖[1-4]。神经细胞的活动是一个高代谢需求的过程。人类大脑虽然仅占体重的 2%左右,但却消耗约20%的葡萄糖和氧气[5-6],这表征了大脑微环境的代谢具有独特性。例如,因血脑屏障的存在,葡萄糖无法自由进入脑实质,而中枢神经系统特异性地通过葡萄糖转运体蛋白转运血液来源的葡萄糖,以供神经细胞的使用[7]。有研究认为,脂肪酸可通过扩散作用穿过血脑屏障进入脑实质,但亦有研究提出脂肪酸进入大脑有严格的转运蛋白的介导[8]。氨基酸及其相关衍生物,如谷氨酸、甘氨酸和 4⁃氨基丁酸(γ⁃aminobutyric acid,GABA)等被可介导神经元之间的突触通信,大脑同样存在关于氨基酸代谢的严格调控机制[9]。已有研究发现,神经细胞可通过调控自身代谢发挥相关的作用。例如,星形胶质细胞可利用、代谢糖原产生乳酸,从而为神经元供能[10]。但关于各类神经细胞的固有代谢特征、应对应激作出的代谢模式转变,以及不同代谢模式与神经细胞的特定功能的相关性仍缺乏研究。长期以来,人们认为葡萄糖及其氧化代谢是大脑神经细胞能量产生的基础。但新近研究发现,在特定情况下,神经细胞也具有代谢灵活性的特征,例如,神经元利用丙酮酸或酮体[11]、星形胶质细胞代谢谷氨酸[12],从而维持自身的形态和功能的相对稳态。
-
1.1 小胶质细胞表达多类营养物质代谢途径的关键基因
-
小胶质细胞积极参与机体多项生物过程的调控,包括血管发芽、神经前体细胞增殖、突触的形成和清除等[6,9,13]。为动态监测脑部微环境的变化,小胶质细胞通过连续的能量依赖的细胞骨架重排,从而驱动自身增殖、迁移和形态的变化,这一系列过程需要大量三磷酸腺苷(adenosine triphosphate, ATP)的支持[14]。但小胶质细胞如何满足自身的高能量需求,目前尚无定论。已有大量文献报道了外周巨噬细胞的代谢重编程和免疫功能之间的联系,有趣的是,小胶质细胞可以摄取并代谢不同的能源物质,提示小胶质细胞可能与外周巨噬细胞具有相似的代谢灵活性[15]。单细胞转录组学结果显示了小胶质细胞表达多种营养物质的转运蛋白及代谢通路的关键酶[16-17],提示小胶质细胞可能同时具有代谢葡萄糖、氨基酸和脂肪酸的可能。小胶质细胞表达多种葡萄糖转运体蛋白如葡萄糖转运蛋白 3(glucose transporter 3,Glut3)、葡萄糖转运蛋白5 (glucose transporter 5,Glut5),Glut5是特异性转运果糖的转运体蛋白,在神经系统中特异性地表达在小胶质细胞中[7];Glut5 对果糖具有较高的亲和力,而对葡萄糖亲和力较低,而果糖在大脑中含量低,目前尚不明确Glut5介导的小胶质细胞代谢特征及其介导的相关功能。研究发现,小胶质细胞可以通过单羧酸转运体1(monocarboxylic transporters,MCT1) 和单羧酸转运体 2(monocarboxylic transporters, MCT2)转运酮体和乳酸[18]。小胶质细胞上谷氨酰胺转运蛋白1(sodium⁃coupled neutral aminoacid transporter, SNAT1)的基因转录水平很高,并且在原代小胶质细胞中也检测到SNAT1的蛋白表达[19]。此外,小胶质细胞表达介导脂肪酸摄取的脂肪酸转位酶CD36;但研究指出,小胶质细胞缺乏介导脂肪酸转运至线粒体的关键酶肉毒碱棕榈酰基转移酶 1A(carnitine palmitoyl transferase1A,CPT1A),提示脂肪酸可能不是静息态小胶质细胞摄取和代谢的主要能源物质[20]。最近关于小胶质细胞转录组学的结果显示,静息态小胶质细胞表达糖酵解和氧化磷酸化 (oxidative phosphorylation,OXPHOS)代谢途径的绝大部分基因,提示小胶质细胞可能主要依赖于葡萄糖的氧化糖酵解代谢[15]。
-
1.2 不同微环境中小胶质细胞的代谢变化
-
目前,尚无法精准绘制静息态小胶质细胞的代谢谱。通过不同代谢检测手段研究小胶质细胞代谢特征的研究结果显示,静息态小胶质细胞的代谢依赖氧化糖酵解。在不同的培养环境下,小胶质细胞具有显著的代谢、基因转录以及表型的差异。例如,在富含葡萄糖的培养环境中小胶质细胞具有高糖酵解率;而在培养环境中仅含谷氨酰胺、丙酮酸、乳酸或酮体时,小胶质细胞同样表现出维持氧化代谢能力[15]。其中,谷氨酰胺在能源物质缺乏情况下维持小胶质细胞形态及功能稳态的能力最强,即使在无葡萄糖的培养环境下,谷氨酰胺仍然可以维持小胶质细胞活力以及稳定线粒体功能,并且可以维持小胶质细胞正常的吞噬功能和增殖速率[15]。小胶质细胞可摄取谷氨酰胺,并将谷氨酰胺分解转化为 α⁃酮戊二酸以介导三羧酸循环代谢,从而在低糖环境下维持小胶质细胞的线粒体氧化呼吸[15],揭示了谷氨酰胺对于维持小胶质细胞代谢及功能稳态的重要性。此外,还有证据表明乳酸被摄入小胶质细胞内经乳酸脱氢酶B氧化为丙酮酸,为三羧酸循环提供燃料,从而维持能量需求及控制细胞增殖、迁移和吞噬的功能[21-23]。以上研究表明小胶质细胞具有灵活调节其代谢途径的特征。
-
2 小胶质细胞极化与其代谢特征
-
2.1 小胶质细胞极化
-
小胶质细胞的极化主要分为两种功能类别,其中,M1 型为经典促炎性激活型,M2 型则是促修复和免疫抑制型[24] (目前认为,这种分类过度简化了复杂的小胶质细胞的免疫状态)。已有足够的证据表明,小胶质细胞可通过转变表型来响应大脑稳态的变化,而且每一种表型的转变都会影响神经炎症的发展和疾病的进程。在神经炎症环境下,大脑中上调的白介素、细胞因子、趋化因子和损伤模式相关分子(damage associated molecular pattern,DAMP) 介导的活化 Toll 受体信号会启动小胶质细胞的转录,从而诱导表型的转换和功能的改变[24]。这些促炎介质或信号通路一般会导致小胶质细胞往M1表型转化,并影响其增殖、迁移和吞噬行为。而白介素(interleukin,IL)⁃4 和 IL⁃10 的处理则会诱导小胶质细胞 M2 表型的转变,以促进小胶质细胞介导的神经保护作用[25-26]。研究发现,以上介质在诱导小胶质细胞表型转变的过程中,会同时影响其相关代谢的改变,而这种代谢的改变并不是瞬时的变化,这提示代谢的改变与小胶质细胞的极化过程有关。
-
2.2 不同极化状态小胶质细胞的代谢转变
-
暴露于促炎介质后的小胶质细胞可能由OXPHOS 转变为糖酵解代谢的特征。例如,脂多糖(lipopoly⁃ saccharide,LPS)处理后的BV2小胶质细胞,在M1型表型转变的过程会增加乳酸的产生、减少ATP的产生[27];LPS处理后的原代小胶质细胞展现出高水平的糖酵解活性和低水平的OXPHOS活性。由LPS和 γ干扰素(interferon γ,IFN⁃γ)同时处理的小胶质细胞增加了葡萄糖的摄取、上调了糖酵解关键酶的活性[28]。而由促炎介质 IL⁃1β和 IFN⁃γ同时处理上调了小胶质细胞葡萄糖和谷氨酰胺分解的相关基因的转录水平[27-28]。在脑片培养过程中,LPS 的处理缩短了原位小胶质细胞 NADH 荧光的平均寿命,表明LPS诱导原位小胶质细胞的糖酵解活性[15]。线粒体质量与 OXPHOS 代谢活性密切相关,研究发现 LPS 处理导致小胶质细胞线粒体过度分裂,从而负向调控线粒体呼吸[29]。以上的研究结果提示,与癌细胞中出现的 Warburg 效应相似的是,炎症环境下小胶质细胞呈现出糖酵解活性增强的特点。
-
在小胶质细胞 M2 型转变过程中往往伴随高水平的 OXPHOS 代谢活性。例如,IL⁃4 或 IL⁃10 处理后的小胶质细胞在表现出显著的抗炎表型的同时,会降低对葡萄糖的消耗并增加脂肪酸代谢和 OXPHOS。
-
综上所述,小胶质细胞的极化过程伴随代谢重编程,这种特征可以概括为促炎表型小胶质细胞糖酵解代谢活性上调,抗炎表型小胶质细胞OXPHOS 和脂肪酸氧化活性增强。
-
3 小胶质细胞代谢重编程的调控及作用
-
不同激活状态的小胶质细胞伴随着不同的糖、脂和氨基酸代谢的改变,重塑小胶质细胞代谢可影响小胶质细胞的活化状态及免疫功能,进而影响神经炎症进展及疾病病理。
-
3.1 糖代谢
-
调控小胶质细胞葡萄糖的摄取是最初被发现的可影响小胶质细胞免疫功能的干预策略之一。例如,敲低 GLUT⁃1 或者使用葡萄糖转运体抑制剂 2⁃脱氧⁃D⁃葡萄糖(2⁃deoxy⁃G⁃glucose,2⁃DG)和STF31 处理的干预策略均可通过减少葡萄糖的摄取以下调糖酵解代谢,进而抑制 LPS 诱导的小胶质细胞活化及其促炎因子的产生[30-33];这种干预策略在 LPS以及1⁃甲基⁃4⁃苯基⁃1,2,3,6⁃四氢吡啶(1⁃methyl⁃ 4⁃phenyl⁃1,2,3,6⁃tetrahydropyridine,MPTP)诱导的帕金森症模型和围手术期认知障碍(perioperative neurocognitive disorder,PND)小鼠模型得到进一步的验证,发现2⁃DG可抑制模型小鼠脑内小胶质细胞的活化和神经炎症,并减少神经元的死亡[30,32]。
-
糖酵解代谢的关键酶被证实具有调控小胶质细胞炎症反应及神经炎症的作用。己糖激酶 2(hexokinase2,HK2)是催化己糖使之磷酸化的酶,是糖酵解途径的限速酶。在多种神经炎性疾病模型中,小胶质细胞均会上调 HK2 的表达,HK2 可通过上调小胶质细胞糖酵解以驱动其本身的活化和神经炎症的进展;而下调小胶质细胞HK2的表达可抑制小胶质细胞的活化,提高其吞噬功能,并减轻神经炎症以及改善相关的神经病理[30,33-35]。丙酮酸激酶 2 型(pyruvate kinase2,PKM2)是糖酵解代谢的另一个关键酶,研究发现PKM2可通过不同的机制驱动病理情况下小胶质细胞的炎症反应。首先,PKM2 可作为核转录因子在入核后与 NF⁃κB 结合,进而直接增加促炎因子IL⁃1α和肿瘤坏死因子α (tumor necrosis factor α,TNF ⁃α)的转录[36];其次, PKM2 在入核后可与激活转录因子(activating tran⁃ scription factor 2,ATF2)结合,一方面直接调控糖酵解代谢,另一方面加速小胶质细胞的焦亡[37],以驱动小胶质细胞的促炎性活化和神经炎症;此外, PKM2通过驱动糖酵解代谢所产生大量乳酸可诱导核蛋白的乳酸化修饰,进而增加小胶质细胞关于 PKM2、乳酸脱氢酶(lactic dehydrogen,LDH)和低氧诱导因子(hypoxia⁃inducible factor,HIF)⁃1α的转录,进而形成小胶质细胞糖酵解—神经炎症的正反馈级联效应[38]。而通过抑制PKM2入核以及减少PKM2 的表达均被证实可抑制小胶质细胞的促炎性活化,增加其吞噬功能,从而发挥神经保护作用[36-38]。
-
已有初步证据表明线粒体动力学与小胶质细胞糖代谢密切相关。线粒体的形态学变化包括分裂与融合。其中,分裂可以清除功能失调的线粒体,并使细胞能够适应增加的糖酵解的需求,而线粒体融合可增加 OXPHOS 和脂肪酸氧化反应所需的线粒体嵴的数量[39-40]。因此,线粒体分裂可诱导糖酵解,而线粒体融合可下调糖酵解、促进 OXPHOS。在 LPS 诱导的小胶质细胞促炎性激活过程,出现大量点状、短棒状线粒体以及上调分裂相关蛋白⁃1(dynamin related protein 1)DRP⁃1的表达;而使用 Mdivi⁃1(线粒体分裂抑制剂)可抑制线粒体分裂,抑制小胶质细胞糖酵解代谢,并减轻小胶质细胞促炎性活化[29,41]。
-
3.2 脂质代谢
-
研究指出脂代谢异常是驱动小胶质细胞促炎性活化及神经炎症的机制之一。激活的小胶质细胞往往会改变脂质、脂蛋白代谢等相关基因的表达变化,而干预小胶质细胞脂质代谢可调控小胶质细胞炎症反应并影响其免疫功能[42-44]。脂蛋白脂肪酶 (lipoprotein lipase,LPL)是运输、传递和利用甘油三酯的关键酶之一,高碳水及高脂肪饮食增加小胶质细胞 LPL 的表达,特异性下调小胶质细胞 LPL 造成小胶质细胞低效摄取、利用脂质,进而导致小胶质细胞线粒体形态异常、ATP 供应不足以及负向调控其吞噬功能;在阿尔茨海默病中,上调小胶质细胞 LPL 的表达会通过增加脂肪酸代谢,从而减轻小胶质细胞炎症反应并促进其吞噬淀粉样蛋白(amyloid β,Aβ),进而减轻 Aβ 相关病理改变,减轻神经炎症[34-45]。酰基辅酶A合成酶长链家族成员 4(acyl ⁃CoA synthetase long ⁃ chain family member 4, ACSL4)是多不饱和脂肪酸代谢中的一种重要同工酶,小胶质细胞在LPS刺激下会上调ACSL4的表达, ACSL4 主要通过增加相关脂质介质的合成和活化 NF⁃κB信号通路激活小胶质细胞炎症反应,而下调 ACSL4的表达可以减少LPS刺激下小胶质细胞脂质的合成以及炎症因子的分泌[46]。
-
同时,激活的小胶质细胞会合成大量与炎症相关的脂质介质,例如,多不饱和脂肪酸和饱和脂肪酸等,这些物质被证实可直接参与驱动小胶质细胞的炎症反应,并且改变小胶质细胞的相关免疫功能。其中,ω⁃3 多不饱和脂肪酸被证实可直接调控小胶质细胞抑炎型表型转化、促进其吞噬作用[47]; 二十二碳五烯酸(elcosapentaenoic acid,EPA)或二十二碳六烯酸(docosahexaenoic acid,DHA)的处理在增加小胶质细胞CD206、氨基酸代谢关键酶精氨酸酶⁃1(arginase⁃1,Arg⁃1)和过氧化物酶体增殖物激活受体γ(peroxisome proliferator⁃activated receptor γ, PPAR⁃γ)等抗炎基因表达的同时会下调促炎相关基因的表达,显著减轻多发性硬化过程的脱髓鞘病理改变并改善相关的神经缺陷行为[48]。
-
3.3 氨基酸代谢
-
氨基酸代谢重编程对小胶质细胞炎症反应和免疫功能的影响的研究并不多,但已有证据表明小胶质细胞活化过程伴随氨基酸代谢的变化。例如:促炎性活化的小胶质细胞往往会增加谷氨酸的产生,谷氨酸可通过三羧酸循环产生大量琥珀酸,而琥珀酸的升高已被证实是促炎性小胶质细胞的典型特征[49];而抑炎性小胶质细胞往往会上调Arg⁃1的表达,尽管具体的作用尚不清楚,但高丰度的Arg⁃1 往往和小胶质细胞吞噬功能、神经保护作用以及组织修复增加等密切相关[50]。
-
氨基酸代谢的重编程亦被证实可实现小胶质细胞炎症表型及其免疫功能的改变。一方面,调控氨基酸代谢关键酶活性可影响小胶质细胞的炎症反应。天冬氨酸转氨酶(aspartate aminotransferase, AAT)是调控精氨酸琥珀酸分流中的关键酶之一,而抑制 AAT 酶活性可减少小胶质细胞一氧化氮 (nitric oxide,NO)和IL⁃6等促炎因子的产生[51];一氧化氮合成酶(NO synthase,NOS)可将L⁃精氨酸转化为L⁃瓜氨酸,而抑制NOS酶活性可减少小胶质细胞毒性 NO 的产生[52]。另一方面,谷氨酰胺可作为小胶质细胞的一种替代性的能源物质发挥免疫调节作用。在缺糖环境下,小胶质细胞可灵活地摄取谷氨酰胺,以维持其正常的形态及免疫功能[15];通过增加小胶质细胞对谷氨酰胺的摄取可上调谷氨酰胺分解代谢,增加小胶质细胞 ATP 的产生,从而促进小胶质细胞吞噬中性粒细胞以减轻缺血性脑卒中后神经炎症[53]。
-
4 小胶质细胞代谢重编程对中枢神经系统疾病的调节
-
在中枢神经系统疾病中,小胶质细胞会因基因损伤、Aβ斑块、Tau缠结和α⁃突触核蛋白(α⁃synuclein, α⁃syn)聚集体等病理刺激发生代谢重编程。这种代谢转变的特点是从OXPHOS向糖酵解的转变,葡萄糖摄取增加,乳酸、脂质和琥珀酸的产生增加,以及糖酵解酶的上调。这些代谢适应导致小胶质细胞炎症反应或吞噬等能力变化,进而调节中枢神经系统疾病。
-
4.1 缺血性脑卒中
-
脑卒中是由于脑部血管突然破裂或血管内阻塞导致血液不能正常流入大脑而引起脑组织损伤的一组疾病,其中缺血性脑卒中占75%以上。缺血性脑卒中最主要的病理改变是氧化应激、神经炎症、神经元的死亡以及血管再生障碍等[54-55]。当发生缺血缺氧时,小胶质细胞迅速增殖、活化并迁移至半影区和梗死灶内,呈现混合的促炎/抗炎激活表型[56],在随后的疾病进展过程中发挥免疫调节作用[57]。且这种混合激活状态有利于受损细胞和碎片的清除,以及促进组织修复和血管生成[58]。
-
缺血性脑卒中后,小胶质细胞会发生代谢的适应性变化,主要体现在代谢酶表达的变化以及代谢物含量的变化,这些代谢改变与小胶质细胞的炎症调控和吞噬作用密切相关[59]。例如,在永久性大脑中动脉闭塞小鼠的小胶质细胞中,与糖酵解和 OXPHOS 相关的基因在缺血急性期 24 h 内显著上调,而乳酸脱氢酶A(lactate dehydrogenase A,LDHA) 和 PKM2 的表达增加可持续到 72 h [60]。与之相类似,在体外缺氧情况下也发现糖酵解重编程与小胶质细胞促炎症激活同步发生,且HK2的敲低可降低糖酵解通量和ATP的产生,并抑制小胶质细胞自我更新的速率以减少局灶损伤后小胶质细胞迁移,并在体内具有神经保护作用[33]。除糖代谢外,脂肪酸代谢重编程也参与了缺血后小胶质细胞的表型转变,尤其是多不饱和脂肪酸。体内研究表明,ω⁃3脂肪酸受体GPR120在脑缺血损伤后的小胶质细胞中表达上调,其激活通过抑制炎症和细胞凋亡来减轻局灶性脑缺血损伤[61]。此外有研究发现缺血性脑卒中的急性期小鼠中,其循环脂肪细胞脂肪酸结合蛋白和脑脂肪细胞脂肪酸结合蛋白均增加,且该蛋白的主要来源是小胶质细胞[62]。以上研究证实小胶质细胞的糖脂代谢参与缺血性脑卒中后小胶质细胞的激活。
-
小胶质细胞的代谢转变不仅参与调解脑卒中后的神经炎症,还与卒中后白质损伤程度及认知功能有关。研究发现,特异性敲除小胶质细胞Na/H交换体可上调三羧酸循环和OXPHOS代谢酶、吞噬相关基因和小胶质细胞相关基因等的转录水平,并增强与组织重塑和中风后认知功能恢复相关的吞噬功能[63]。综上所述,小胶质细胞通过代谢重编程调控小胶质细胞表型和功能,而调控代谢重编程可改变小胶质细胞功能并影响脑卒中的疾病进展。
-
4.2 阿尔茨海默病(Alzheimer’s disease,AD)
-
AD 是一种常见的致死性神经退行性病变,患者主要的临床表现是认知和记忆功能的不断恶化,日常生活能力进行性减退,并有各种神经精神症状和行为障碍。AD 主要的病理特征是 Aβ蛋白异常蓄积形成的淀粉样斑块沉积,Tau 蛋白异常磷酸化形成的神经原纤维缠结,神经元丢失和神经炎性反应等[64]。
-
小胶质细胞吞噬功能障碍是脑内 Aβ斑块异常聚集的关键病理因素之一,近年来,AD 进展过程中小胶质细胞代谢重编程引起了越来越多的关注,研究发现 AD 发生时小胶质细胞伴随显著的代谢变化[65-66]。体外研究发现,IFN⁃γ和Aβ的共同刺激会诱导小胶质细胞糖酵解,这与HK2、PFKFB3和 HIF⁃1α的表达水平增加有关[67]。而当Aβ诱导的小胶质细胞急性活化时,会上调小胶质细胞糖酵解并激活 mTOR/HIF1⁃α信号通路;但 Aβ的持续处理会降低小胶质细胞的糖酵解[68]。体内研究揭示,从 APP/PS1小鼠分选的小胶质细胞不仅表现出向糖酵解和铁保留的代谢转变[67]。利用AD患者脑组织进行大规模蛋白质组学分析后也证实小胶质细胞糖代谢紊乱可能是AD发病的关键机制[66]。而调控糖代谢,例如抑制小胶质细胞糖酵解、促进其氧化磷酸化,可提高小胶质细胞吞噬Aβ的能力,减缓认知功能障碍[69]。糖酵解过程中的产物及限速酶在小胶质细胞重编程中也被证实在清除病理性的Aβ聚合物和斑块沉积的过程中发挥了重要作用。乳酸是糖酵解的终产物,研究发现乳酸通过调节小胶质细胞乳酸化修饰,形成糖酵解/H4K12la/PKM2 正反馈循环,促进相关糖酵解基因的转录,加重AD进程中小胶质细胞的炎症反应[38]。HK2 是糖酵解过程中的关键限速酶,研究发现抑制 HK2 信号导致小胶质细胞内脂蛋白脂肪酶表达上调,从而触发脂肪酸代谢,迅速提升胞内的 ATP 水平、促进小胶质细胞吞噬 Aβ。此外,HK2 的两种下游代谢物葡萄糖⁃6⁃磷酸和果糖⁃6⁃磷酸可通过磷酸戊糖途径调节 NADPH水平影响小胶质细胞吞噬功能[34]。
-
机制上,骨髓细胞上表达的触发受体2(triggering receptor expressed on myeloid cells 2,TREM2)对调节小胶质细胞在Aβ周围的积聚及吞噬至关重要[43,70-71]。研究发现TREM2缺陷的AD小鼠中,小胶质细胞内出现大量自噬囊泡,表明其能量代谢存在缺陷[72]。在 TREM2 缺陷的小胶质细胞中也显示出糖酵解、 ATP 水平、合成代谢和 mTOR 激活的障碍[73]。从外,具有 AD 相关变异 TREM2⁃R47H 的小胶质细胞表现出显著的代谢缺陷,线粒体呼吸能力降低进而难以产生ATP[74]。因此,TREM2缺失的小胶质细胞对Aβ的应激反应与代谢缺陷有关。除TREM2 在小胶质细胞代谢重编程中的关键作用,研究发现炎症小体也可通过影响小胶质细胞代谢参与AD病理进程[75]。小胶质细胞中 NLRP3 炎症小体的激活会导致炎症因子IL⁃1β和IL⁃18的释放,导致神经炎症和神经元损伤[76]。而抑制小胶质细胞的糖酵解可改善 Aβ诱导的 NLRP3 炎症小体激活[77]。此外,小胶质细胞中以活性氧(reactive oxygen species,ROS) 产生增加为特征的线粒体功能障碍也可以触发 NLRP3炎症小体的激活,加剧AD相关病理[78]。
-
总之,小胶质细胞代谢重编程过程在 AD 的发病机制中至关重要,它显著影响小胶质细胞的表型和功能。因此,针对小胶质细胞中的炎症小体和相关代谢变化可能代表一种潜在的AD治疗方法。
-
4.3 帕金森病(Parkinson’s disease,PD)
-
PD是一种常见的与年龄相关的神经退行性疾病,其特征是黑质纹状体多巴胺能神经元受损。 PD 的关键致病机制包括α⁃syn错误折叠和聚集、蛋白质清除受损、线粒体功能障碍、氧化应激和神经炎症[79]。
-
在体外和体内PD模型中均注意到小胶质细胞代谢变化,小胶质细胞代谢重编程的故障导致 PD 小鼠模型中α⁃ syn 的内化功能障碍[80]。最初在 MPTP诱导的PD小鼠模型中,小胶质细胞表现出糖酵解标记物增加和 OXPHOS 标记物减少[16]。小胶质细胞的这种代谢变化与细胞因子和趋化因子等促炎介质的释放有关,可能导致 PD 中多巴胺能神经元的丧失[81]。而通过抑制小胶质细胞糖酵解,可减少ROS的产生,并保护LPS诱导的大鼠PD模型中多巴胺神经元的丢失[82]。另一项研究表明,小胶质细胞中α⁃syn增强的NADPH氧化酶2介导的ROS产生会导致多巴胺能神经元的神经毒性[83]。小胶质细胞线粒体功能受损也可能在PD的神经炎症和神经元损伤中发挥作用。研究发现小胶质细胞线粒体功能障碍导致促炎细胞因子释放并放大 α⁃syn诱导的多巴胺能神经元毒性[84]。小胶质细胞中α⁃syn 的存在已被证明会引起代谢变化,导致神经炎症和多巴胺能神经元的退化。细胞外α⁃syn原纤维触发原代小胶质细胞的糖酵解转变,导致促炎细胞因子和ROS产生增加[27]。此外,小胶质细胞中 NLRP3、炎症小体的激活已被证明与代谢改变密切相关。研究证明小胶质细胞中α⁃syn诱导的NLRP3炎性体激活依赖于糖酵解重编程,从而增加乳酸产量和糖酵解酶表达[85]。α⁃syn激活小胶质细胞中的NLRP3 炎症小体,导致促炎细胞因子的释放和多巴胺能神经元的损伤[86]。研究发现,抑制小胶质细胞中的糖酵解可以减弱α⁃syn诱导的NLRP3炎症小体激活和随后的神经炎症,这表明针对糖酵解重编程可能是 PD 的潜在治疗策略[87]。此外,代谢重编程导致的小胶质细胞线粒体功能障碍和氧化应激也可以激活 NLRP3 炎症小体,进一步促进 PD 中的神经炎症和多巴胺能神经元损伤[88]。
-
小胶质细胞代谢变化也可能影响中枢神经系统内的其他细胞类型,进一步促进 PD 的进展。例如,星形胶质细胞会因小胶质细胞激活而经历代谢变化,从而加剧神经炎症和神经变性[89]。激活的小胶质细胞诱导星形胶质细胞的代谢变化,导致促炎介质增加并破坏星形胶质细胞—神经元代谢相互作用[90]。上述研究说明,小胶质细胞代谢变化可能通过调控自身炎症因子的释放的直接作用或与其他CNS细胞类型的相互作用的间接作用导致PD中的神经元损伤。
-
4.4 多发性硬化(multiple sclerosis,MS)
-
与神经退行性疾病相似,MS中小胶质细胞的代谢重编程转变以糖酵解酶的上调为标志,例如HK2 和LDHA[91],这种代谢变化主要与mTOR/HIF⁃1α轴激活有关[92],当使用雷帕霉素抑制mTOR则会导致小胶质细胞中HIF⁃1α稳定性降低和糖酵解基因表达减少[93]。上述研究强调了 mTOR/HIF⁃1α信号通路在 MS 中小胶质细胞代谢重编程中的关键作用。此外,使用2⁃DG抑制糖酵解会导致LPS刺激的小胶质细胞中促炎性极化减少,并减少促炎性细胞因子的产生[94]。这些发现强调了MS疾病中代谢与小胶质细胞极化之间的复杂关系。
-
总之,调整小胶质细胞代谢具有减少神经炎症、保护神经元和减缓疾病进展的潜力,为治疗神经退行性疾病提供了新的靶点和思路。尽管如此,仍需要进一步的研究来全面了解潜在机制,查明最相关的代谢途径和分子靶点,并优化干预时机和持续时间。随着该领域的不断进步,小胶质细胞代谢重编程可能成为中枢神经系统疾病的关键治疗靶标。
-
5 结论与展望
-
中枢神经细胞的免疫代谢是一个新兴的研究领域,不同代谢途径在免疫细胞的炎症活化和功能转变中具有重要作用。小胶质细胞免疫代谢在小胶质细胞功能及其介导的神经炎症调节中的重要地位逐渐受到研究者的关注,调控小胶质细胞代谢重编程对中枢神经系统疾病的发生、发展具有关键作用。研究并揭示小胶质细胞代谢重编程的作用及功能,将为中枢神经系统疾病的病理机制和治疗策略提供新靶点和新思路。
-
参考文献
-
[1] LIM S A,SU W,CHAPMAN N M,et al.Lipid metabolism in T cell signaling and function[J].Nat Chem Biol,2022,18(5):470-481
-
[2] LIU X,HARTMAN C L,LI L,et al.Reprogramming lipid metabolism prevents effector T cell senescence and en⁃ hances tumor immunotherapy[J].Sci Transl Med,2021,13(587):eaaz6314
-
[3] YAN J W,HORNG T.Lipid metabolism in regulation of macrophage functions[J].Trends Cell Biol,2020,30(12):979-989
-
[4] O’NEILL L A J,PEARCE E J.Immunometabolism governs dendritic cell and macrophage function[J].J Exp Med,2016,213(1):15-23
-
[5] MERGENTHALER P,LINDAUER U,DIENEL G A,et al.Sugar for the brain:the role of glucose in physiological and pathological brain function[J].Trends Neurosci,2013,36(10):587-597
-
[6] ZHENG J W,LU J N,MEI S H,et al.Ceria nanoparticles ameliorate white matter injury after intracerebral hemo ⁃ rrhage:microglia ⁃ astrocyte involvement in remyelination [J].J Neuroinflammation,2021,18(1):43
-
[7] JURCOVICOVA J.Glucose transport in brain⁃effect of in⁃ flammation[J].Endocr Regul,2014,48(1):35-48
-
[8] ROMANO A,KOCZWARA J B,GALLELLI C A,et al.Fats for thoughts:an update on brain fatty acid metabo⁃ lism[J].Int J Biochem Cell Biol,2017,84:40-45
-
[9] SCHÖNFELD P,REISER G.Why does brain metabolism not favor burning of fatty acids to provide energy?Reflec⁃ tions on disadvantages of the use of free fatty acids as fuel for brain[J].J Cereb Blood Flow Metab,2013,33(10):1493-1499
-
[10] ALBERINI C M,CRUZ E,DESCALZI G,et al.Astrocyte glycogen and lactate:new insights into learning and memory mechanisms[J].Glia,2018,66(6):1244-1262
-
[11] ZHANG J M,CHEN M J,HE J H,et al.Correction to:ke⁃ tone body rescued seizure behavior of LRP1 deficiency in Drosophila by modulating glutamate transport[J].J Mol Neurosci,2023,73(1):84
-
[12] ANDERSEN J V,MARKUSSEN K H,JAKOBSEN E,et al.Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration[J].Neurophar⁃ macology,2021,196:108719
-
[13] RAJENDRAN L,PAOLICELLI R C.Microglia ⁃mediated synapse loss in Alzheimer’s disease[J].J Neurosci,2018,38(12):2911-2919
-
[14] PAN R Y,MA J,KONG X X,et al.Sodium rutin amelio⁃ rates Alzheimer’s disease ⁃ like pathology by enhancing microglial amyloid⁃β clearance[J].Sci Adv,2019,5(2):eaau6328
-
[15] BERNIER L P,YORK E M,KAMYABI A,et al.Microglial metabolic flexibility supports immune surveillance of the brain parenchyma[J].Nat Commun,2020,11(1):1559
-
[16] ZHANG Y,CHEN K,SLOAN S A,et al.An RNA ⁃ se⁃ quencing transcriptome and splicing database of glia,neurons,and vascular cells of the cerebral cortex[J].J Neurosci,2014,34(36):11929-11947
-
[17] GHOSH S,CASTILLO E,FRIAS E S,et al.Bioenergetic regulation of microglia[J].Glia,2018,66(6):1200-1212
-
[18] KONG L,WANG Z,LIANG X,et al.Monocarboxylate transporter 1 promotes classical microglial activation and pro⁃inflammatory effect via 6⁃phosphofructo⁃2⁃kinase/fruc⁃ tose ⁃ 2,6 ⁃ biphosphatase 3[J].J Neuroinflammation,2019,16(1):240
-
[19] KOMM B,BEYREIS M,KITTL M,et al.Glycine modu⁃ lates membrane potential,cell volume,and phagocytosis in murine microglia[J].Amino Acids,2014,46(8):1907-1917
-
[20] RAWJI K S,YOUNG A M H,GHOSH T,et al.Niacin⁃me⁃ diated rejuvenation of macrophage/microglia enhances re⁃ myelination of the aging central nervous system[J].Acta Neuropathol,2020,139(5):893-909
-
[21] NAGY A M,FEKETE R,HORVATH G,et al.Versatility of microglial bioenergetic machinery under starving condi⁃ tions[J].Biochim Biophys Acta Bioenerg,2018,1859(3):201-214
-
[22] LIU Y,YANG S S,CAI E L,et al.Functions of lactate in the brain of rat with intracerebral hemorrhage evaluated with MRI/MRS and in vitro approaches[J].CNS Neurosci Ther,2020,26(10):1031-1044
-
[23] MONSORNO K,BUCKINX A,PAOLICELI R C.Microglial metabolic flexibility:emerging roles for lactate [J].Trends Endocrinol Metab,2022,33(3):186-195
-
[24] Guo S R,WANG H,YIN Y F.Microglia polarization from M1 to M2 in neurodegenerative diseases[J].Front Aging Neurosci,2022,14:815347
-
[25] HE Y,GAO Y,ZHANG Q,et al.IL⁃4 switches microglia/macrophage M1/M2 polarization and alleviates neurologi⁃ cal damage by modulating the JAK1/STAT6 pathway fol⁃ lowing ICH[J].Neuroscience,2020,437:161-171
-
[26] CHEN M,CHEN Q,TAO T.Tanshinone IIA promotes M2 microglia by ERβ/IL⁃10 pathway and attenuates neuronal loss in mouse TBI model[J].Neuropsychiatr Dis Treat,2020,16:3239-3250
-
[27] GU C,WANG F,ZHANG Y T,et al.Microglial MT1 acti⁃ vation inhibits LPS⁃induced neuroinflammation via regula⁃ tion of metabolic reprogramming[J].Aging Cell,2021,20(6):e13375
-
[28] SHEN H P,PEI H Y,ZHAI L P,et al.Salvianolic acid C improves cerebral ischemia reperfusion injury through suppressing microglial cell M1 polarization and promoting cerebral angiogenesis[J].Int Immunopharmacol,2022,110:109021
-
[29] NAIR S,SOBOTKA K S,JOSHI P,et al.Lipopolysaccha⁃ ride ⁃ induced alteration of mitochondrial morphology in⁃ duces a metabolic shift in microglia modulating the in⁃ flammatory response in vitro and in vivo[J].Glia,2019,67(6):1047-1061
-
[30] CHENG J,ZHANG R,XU Z,et al.Early glycolytic repro⁃ gramming controls microglial inflammatory activation[J].J Neuroinflammation,2021,18(1):129
-
[31] DOS⁃SANTOS⁃PEREIRA M,GUIMARÃES F S,DEL⁃BEL E,et al.Cannabidiol prevents LPS ⁃ induced microglial inflammation by inhibiting ROS/NF ⁃ κB ⁃ dependent sig⁃ naling and glucose consumption[J].Glia,2020,68(3):561-573
-
[32] LUO G,WANG X F,CUI Y C,et al.Metabolic reprogram⁃ ming mediates hippocampal microglial M1 polarization in response to surgical trauma causing perioperative neuro⁃ cognitive disorders[J].J Neuroinflammation,2021,18(1):267
-
[33] LI Y,LU B,SHENG L,et al.Hexokinase 2⁃dependent hy⁃ perglycolysis driving microglial activation contributes to ischemic brain injury[J].J Neurochem,2018,144(2):186-200
-
[34] LENG L,YUAN Z,PAN R,et al.Microglial hexokinase 2 deficiency increases ATP generation through lipid metab⁃ olism leading to β ⁃ amyloid clearance[J].Nat Metab,2022,4(10):1287-1305
-
[35] HU Y L,CAO K L,WANG F,et al.Dual roles of hexoki⁃ nase 2 in shaping microglial function by gating glycolytic flux and mitochondrial activity[J].Nat Metab,2022,4(12):1756-1774
-
[36] LI X L,ZHOU R,PENG H,et al.Microglia PKM2 me⁃ diates neuroinflammation and neuron loss in mice epilep⁃ sy through the astrocyte C3⁃neuron C3R signaling pathway [J].Brain Sci,2023,13(2):262
-
[37] LI M M,LU H J,WANG X Y,et al.Pyruvate kinase M2(PKM2)interacts with activating transcription factor 2(ATF2)to bridge glycolysis and pyroptosis in microglia [J].Mol Immunol,2021,140:250-266
-
[38] PAN R Y,HE L,ZHANG J,et al.Positive feedback regu⁃ lation of microglial glucose metabolism by histone H4 ly⁃ sine 12 lactylation in Alzheimer’s disease[J].Cell Metab,2022,34(4):634-648
-
[39] ANGAJALA A,LIM S,PHILLIPS J B,et al.Diverse roles of mitochondria in immune responses:novel insights into immuno⁃metabolism[J].Front Immunol,2018,9:1605
-
[40] BUCK M D,O’SULLIVAN D,KLEIN GELTINK R I,et al.Mitochondrial dynamics controls T cell fate through metabolic programming[J].Cell,2016,166(1):63-76
-
[41] KATOH M,WU B,NGUYEN H B,et al.Polymorphic regulation of mitochondrial fission and fusion modifies phenotypes of microglia in neuroinflammation[J].Sci Rep,2017,7(1):4942
-
[42] KRASEMANN S,MADORE C,CIALIC R,et al.The TREM2⁃APOE pathway drives the transcriptional pheno⁃ type of dysfunctional microglia in neurodegenerative dis⁃ eases[J].Immunity,2017,47(3):566-581
-
[43] WANG Y M,CELLA M,MALLINSON K,et al.TREM2 lipid sensing sustains the microglial response in an Al⁃ zheimer’s disease model[J].Cell,2015,160(6):1061-1071
-
[44] CASTELLANOS D B,MARTÍN ⁃JIMÉNEZ C A,ROJAS ⁃RODRÍGUEZ F,et al.Brain lipidomics as a rising field in neurodegenerative contexts:perspectives with machine learning approaches[J].Front Neuroendocrinol,2021,61:100899
-
[45] GAO Y Q,VIDAL⁃ITRIAGO A,KALSBEEK M,et al.Li⁃ poprotein lipase maintains microglial innate immunity in obesity[J].Cell Rep,2017,20(13):3034-3042
-
[46] ZHOU X,ZHAO R,LV M F,et al.ACSL4 promotes mi⁃ croglia ⁃ mediated neuroinflammation by regulating lipid metabolism and VGLL4 expression[J].Brain Behav Im⁃ mun,2023,109:331-343
-
[47] NADJAR A.Role of metabolic programming in the modu⁃ lation of microglia phagocytosis by lipids[J].Prostaglan⁃ dins Leukot Essent Fat Acids,2018,135:63-73
-
[48] CHEN S,ZHANG H Y,PU H J,et al.N⁃3 PUFA supple⁃ mentation benefits microglial responses to myelin patholo⁃ gy[J].Sci Rep,2014,4:7458
-
[49] NAKAJIMA K,KANAMATSU T,TAKEZAWA Y,et al.Up⁃ regulation of glutamine synthesis in microglia activated with endotoxin[J].Neurosci Lett,2015,591:99-104
-
[50] LANGE R A,CIGARROA R G,WELLS P J,et al.Influence of anterograde flow in the infarct artery on the incidence of late potentials after acute myocardial infarc⁃ tion[J].Am J Cardiol,1990,65(9):554-558
-
[51] JHA A K,HUANG S C C,SERGUSHICHEV A,et al.Net⁃ work integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization[J].Immunity,2015,42(3):419-430
-
[52] CALABRESE C,POPPLETON H,KOCAK M,et al.A perivascular niche for brain tumor stem cells[J].Cancer Cell,2007,11(1):69-82
-
[53] LI L,CHENG S Q,YU J B,et al.Resolvin D1 reprograms energy metabolism to promote microglia to phagocytize neutrophils after ischemic stroke[J].Cell Rep,2023,42(6):112617
-
[54] WU S M,WU B,LIU M,et al.Stroke in China:advances and challenges in epidemiology,prevention,and manage⁃ ment[J].Lancet Neurol,2019,18(4):394-405
-
[55] MOSCONI M G,PACIARONI M.Treatments in ischemic stroke:current and future[J].Eur Neurol,2022,85(5):349-366
-
[56] HU X M,LEAK R K,SHI Y J,et al.Microglial and mac⁃ rophage polarization ⁃ new prospects for brain repair[J].Nat Rev Neurol,2015,11(1):56-64
-
[57] GAIRE B P.Microglia as the critical regulators of neuro⁃ protection and functional recovery in cerebral ischemia [J].Cell Mol Neurobiol,2022,42(8):2505-2525
-
[58] IADECOLA C,ANRATHER J.The immunology of stroke:from mechanisms to translation[J].Nat Med,2011,17(7):796-808
-
[59] GIMENO⁃BAYÓN J,LÓPEZ⁃LÓPEZ A,RODRÍGUEZ M J,et al.Glucose pathways adaptation supports acquisition of activated microglia phenotype[J].J Neurosci Res,2014,92(6):723-731
-
[60] LAURO C,CHECE G,MONACO L,et al.Fractalkine modulates microglia metabolism in brain ischemia[J].Front Cell Neurosci,2019,13:414
-
[61] REN Z,CHEN L,WANG Y,et al.Activation of the Ome⁃ ga⁃3 fatty acid receptor GPR120 protects against focal ce⁃ rebral ischemic injury by preventing inflammation and apoptosis in mice[J].J Immunol,2019,202(3):747-759
-
[62] LIAO B Y,GENG L L,ZHANG F,et al.Adipocyte fatty acid⁃binding protein exacerbates cerebral ischaemia inju⁃ ry by disrupting the blood⁃brain barrier[J].Eur Heart J,2020,41(33):3169-3180
-
[63] SONG S S,YU L,HASAN M N,et al.Elevated microglial oxidative phosphorylation and phagocytosis stimulate post⁃ stroke brain remodeling and cognitive function recovery in mice[J].Commun Biol,2022,5(1):35
-
[64] SCHELTENS P,BLENNOW K,BRETELER K,et al.Al⁃ zheimer’s disease[J].Lancet,2016,388(10043):505-517
-
[65] CAI Y L,LIU J L,WANG B,et al.Microglia in the neuro⁃ inflammatory pathogenesis of Alzheimer’s disease and related therapeutic targets[J].Front Immunol,2022,13:856376
-
[66] MATTSON M P,ARUMUGAM T V.Hallmarks of brain aging:adaptive and pathological modification by metabolic states[J].Cell Metab,2018,27(6):1176-1199
-
[67] BAIK S H,KANG S,LEE W,et al.A breakdown in meta⁃ bolic reprogramming causes microglia dysfunction in Al⁃ zheimer’s disease[J].Cell Metab,2019,30(3):493-507
-
[68] MCINTOSH A,MELA V,HARTY C,et al.Iron accumula⁃ tion in microglia triggers a cascade of events that leads to altered metabolism and compromised function in APP/PS1 mice[J].Brain Pathol Zurich Switz,2019,29(5):606-621
-
[69] LU J,ZHOU W,DOU F F,et al.TRPV1 sustains microglial metabolic reprogramming in Alzheimer’s disease[J].EMBO Rep,2021,22(6):e52013
-
[70] LAMBERT J C,IBRAHIM⁃VERBAAS C A,HAROLD D,et al.Meta ⁃ analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease[J].Nat Genet,2013,45(12):1452-1458
-
[71] YEH F L,WANG Y Y,TOM I,et al.TREM2 binds to apo⁃ lipoproteins,including APOE and CLU/APOJ,and there⁃by facilitates uptake of amyloid ⁃ beta by microglia[J].Neuron,2016,91(2):328-340
-
[72] ULLAND T K,SONG W M,HUANG S C C,et al.TREM2 maintains microglial metabolic fitness in Alzheimer’s disease[J].Cell,2017,170(4):649-663
-
[73] ULLAND T K,COLONNA M.TREM2⁃a key player in mi⁃ croglial biology and Alzheimer disease[J].Nat Rev Neu⁃ rol,2018,14(11):667-675
-
[74] PIERS T M,COSKER K,MALLACH A,et al.A locked immunometabolic switch underlies TREM2 R47H loss of function in human iPSC⁃derived microglia[J].FASEB J,2020,34(2):2436-2450
-
[75] MILLS E L,KELLY B,LOGAN A,et al.Succinate dehy⁃ drogenase supports metabolic repurposing of mitochon⁃ dria to drive inflammatory macrophages[J].Cell,2016,167(2):457-470
-
[76] VENEGAS C,KUMAR S,FRANKLIN B S,et al.Microg⁃ lia⁃derived ASC specks cross⁃seed amyloid⁃β in Alzhei⁃ mer’s disease[J].Nature,2017,552(7685):355-361
-
[77] GOMEZ PERDIGUERO E,KLAPPROTH K,SCHULZ C,et al.Tissue⁃resident macrophages originate from yolk⁃sac⁃ derived erythro ⁃ myeloid progenitors[J].Nature,2015,518(7540):547-551
-
[78] NAKAHIRA K,HASPEL J A,RATHINAM V A K,et al.Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome[J].Nat Immunol,2011,12(3):222-230
-
[79] ROSTAMI J,HOLMQVIST S,LINDSTRÖM V,et al.Hu⁃ man astrocytes transfer aggregated alpha ⁃ synuclein via tunneling nanotubes[J].J Neurosci,2017,37(49):11835-11853
-
[80] QIAO H F,HE X J,ZHANG Q J,et al.Alpha⁃synuclein induces microglial migration via PKM2⁃dependent glyco⁃ lysis[J].Int J Biol Macromol,2019,129:601-607
-
[81] HUANG Y,XU Z,XIONG S,et al.Repopulated microglia are solely derived from the proliferation of residual mi⁃ croglia after acute depletion[J].Nat Neurosci,2018,21(4):530-540
-
[82] LIANG J,LUO W,YU K,et al.Multi⁃omics revealing the response patterns of symbiotic microorganisms and host metabolism in scleractinian coral Pavona minuta to tem⁃ perature stresses[J].Metabolites,2021,12(1):18
-
[83] GLASS C K,SAIJO K,WINNER B,et al.Mechanisms un⁃ derlying inflammation in neurodegeneration[J].Cell,2010,140(6):918-934
-
[84] VOLONTÉ C,APOLLONI S,PARISI C,et al.Purinergic contribution to amyotrophic lateral sclerosis[J].Neuro⁃ pharmacology,2016,104:180-193
-
[85] YANG F,WANG Z Y,WEI X B,et al.NLRP3 deficiency ameliorates neurovascular damage in experimental ische ⁃ mic stroke[J].J Cereb Blood Flow Metab,2014,34(4):660-667
-
[86] PERERA N D,TURNER B J.AMPK signalling and defec⁃ tive energy metabolism in amyotrophic lateral sclerosis [J].Neurochem Res,2016,41(3):544-553
-
[87] TSAI J M,SINHA R,SEITA J,et al.Surgical adhesions in mice are derived from mesothelial cells and can be tar⁃ geted by antibodies against mesothelial markers[J].Sci Transl Med,2018,10(469):eaan6735
-
[88] BALDWIN A G,BROUGH D,FREEMAN S.Inhibiting the inflammasome:a chemical perspective[J].J Med Chem,2016,59(5):1691-1710
-
[89] MEISSNER F,MOLAWI K,ZYCHLINSKY A.Mutant su⁃ peroxide dismutase 1⁃induced IL ⁃1beta accelerates ALS pathogenesis[J].Proc Natl Acad Sci USA,2010,107(29):13046-13050
-
[90] MARTINEZ J,ALMENDINGER J,OBERST A,et al.Mi⁃ crotubule⁃associated protein 1 light chain 3 alpha(LC3)⁃ associated phagocytosis is required for the efficient clea ⁃ rance of dead cells[J].Proc Natl Acad Sci U S A,2011,108(42):17396-17401
-
[91] VAN DEN BOSSCHE J,BAARDMAN J,OTTO N A,et al.Mitochondrial dysfunction prevents repolarization of inflammatory macrophages[J].Cell Rep,2016,17(3):684-696
-
[92] PARK J,CHOI H,MIN J S,et al.Loss of mitofusin 2 links beta⁃amyloid⁃mediated mitochondrial fragmentation and Cdk5⁃induced oxidative stress in neuron cells[J].J Neurochem,2015,132(6):687-702
-
[93] DU L,ZHANG Y,CHEN Y,et al.Role of microglia in neurological disorders and their potentials as a therapeu⁃ tic target[J].Mol Neurobiol,2017,54(10):7567-7584
-
[94] GAO H M,HONG J S.Gene ⁃ environment interactions:key to unraveling the mystery of Parkinson’s disease[J].Prog Neurobiol,2011,94(1):1-19
-
摘要
免疫细胞通过改变营养物质的摄取和代谢酶的活性,以支持免疫激活的代谢需求,这一过程被称为免疫细胞的代谢重编程。小胶质细胞是脑内重要的免疫细胞之一,其表达大多数能源代谢途径底物的基因。越来越多研究证实小胶质细胞代谢具有高度灵活性,且调控代谢可调节小胶质细胞免疫功能,进而影响神经炎性疾病的发展与转归。本文综述了小胶质细胞在不同微环境下的代谢特征,以及小胶质细胞代谢重编程对其免疫功能的调节及机制。
Abstract
Immune cells support the metabolic needs of immune activation by changing the activity of metabolic enzymes and nutrient uptake,and this process is called metabolic reprogramming of immune cells. Microglia is one of the important immune cells in the brain,and it expresses most of the genes of energy substrate metabolism pathway. More and more studies have confirmed that the metabolism of microglia is highly flexible,and the regulation of metabolism can affect the immune function of microglia,and even affect the development and prognosis in neuroinflammatory diseases. This review focused on the metabolic characteristics of microglia in different environments,and discussed the effect and mechanism of microglia metabolic reprogramming on its immune function.