-
次氯酸(hypochlorous acid,HClO)是一种活性氧 (reactive oxygen species,ROS),凭借其对多种蛋白质侧链和肽的特异性反应,在溶酶体吞噬过程中破坏生物系统中的病原体。因此HClO是免疫系统对抗入侵细菌和多种病原体的有效抗菌剂[1]。在健康情况下,HClO在维持生物体氧化平衡的生理活动和免疫保护中起着重要的作用。但是由于HClO具有很强的氧化性,异常水平的 HClO 会对机体造成严重的损害,从而导致许多疾病,如心血管疾病[2-3]、神经炎症[4]、肝损伤[5]、帕金森病[6]、癫痫[7]、阿尔茨海默病[8-9],甚至癌症[10] 等。因此,开发生物系统中 HClO高灵敏度和选择性检测工具,对阐明HClO在疾病发生发展中的作用具有重要意义。
-
在生物体中,内源性 HClO 主要通过过氧化氢 (hydrogen peroxide,H2O2)与Cl-的反应产生,该反应由髓过氧化物酶(myeloperoxidase,MPO)催化。近年来,人们开发了多种检测HClO的方法,如电化学分析、化学发光分析、比色法、高效液相色谱法等[11]。虽然这些分析方法具有很高的灵敏度,对 HClO 也有一定的选择性,但这些检测需要复杂的设备和专业的操作技术。此外,这些测试的样品制备复杂,检测费用昂贵,生物样本经常在样品前处理中遭到破坏,不适合检测活细胞、组织和体内的HClO。近几十年来荧光成像技术受到广泛关注。虽然荧光成像设备价格昂贵,但荧光成像具有灵敏度高、选择性高、时空分辨率高、无创、实时分析、操作简单等优点[12-13]。荧光成像在观察活细胞的功能和分子识别方面具有独特的优势,已成为在亚细胞水平监测生物分子、亚细胞结构定位和运动的不可替代的技术。随着荧光分析技术的发展,用于检测HClO的荧光探针的种类和数量不断增多。探针分子中常含有对HClO具有选择性反应的基团或原子,如碳氮双键[14]、碳碳双键[15]、硫原子[16-17]、苯环[7] 等。
-
不同的荧光探针有不同的激发和发射模式,如单光子/双光子、开关/比率等。与单光子荧光探针相比,双光子荧光探针波长较长,具有更深的组织穿透力,减少活细胞和组织中的背景荧光,同时产生更少的光损伤和更小的背景干扰[18]。同时,与短波长光相比,长波长光的光损伤和光漂白更小,对细胞的毒性也更小[19]。
-
双光子荧光探针利用双光子显微镜(two⁃photon microscopy,TPM)进行高分辨率成像。这种长波长激发(约800 nm)并利用TPM成像是提高生物成像应用中检测灵敏度的一种重要方法,可以减少自吸收和背景荧光。在成像技术方面,双光子超分辨率荧光显微镜技术成功克服了传统光学显微镜无法获得200 nm以下空间分辨率的局限[20]。此外,超分辨率荧光显微镜可用于实时观察亚细胞器与HClO 反应前后的变化[17,21],方便科学家进一步了解HClO 在生物和病理过程中的作用。目前科学家们已经开发出一些基于 TPM 技术的双光子(two ⁃photon, TP)HClO探针。
-
本文总结了近年来用于检测HClO的小分子荧光探针的设计策略、识别机制、响应类型(比例、靶向)、传感机制和在生物成像中的应用,助益更优 HClO探针的发现。
-
1 基于硫探头的双光子荧光探针
-
据报道,甲硫氨酸中的硫原子容易被 HClO 氧化为亚砜和砜[16]。以此开发了很多含硫原子的 HClO探针。
-
在水溶液中,咪唑啉⁃2⁃硫酮可与 HClO 反应产生咪唑衍生物,并伴有荧光开关。韩国科学家 Juyoung Yoon团队设计并构建了咪唑啉⁃2⁃硫酮类双光子荧光探针 PIS(图1),用于检测 HClO 分子[16]。 PIS探针可特异性地与HClO反应,产生相应的咪唑荧光离子。2016年,该课题组在PIS设计思路上改造并合成了 PNIS(图1)双光子 HClO 荧光探针[17]。该PNIS分子中含线粒体靶向基团——三苯基磷,咪唑啉⁃2⁃硫酮是HClO的识别单元,使得PNIS具有检测内源性线粒体HClO的能力。值得指出的是PNIS 具有良好的水溶性,不需要有机溶剂进行助溶。该类型的 PIS、PNIS 探针在与 HClO 反应后,荧光强度约提高 100 倍,而对于其他 ROS,如 H2O2、NO·、 ROO·、ONOO-、·OH 和叔丁基超氧化物,几乎没有荧光变化,即使在更高浓度的其他ROS孵育30 min 后,也不会引起探针溶液明显的荧光变化。该类探针在HeLa细胞和RAW 264.7巨噬细胞中具有良好的选择性成像。此外,利用TPM,PIS探针在小鼠海马区有良好的成像效果,PNIS探针在亚细胞结构线粒体共定位实验中有良好的成像效果。PIS、PNIS 的反应机制如图1所示。
-
图1 PIS/PNIS化学结构及其反应机制
-
Figure1 Chemical structure and reaction mechanism of PIS/PNIS
-
硫醚的富电子特性使硫原子能够快速与HClO 发生反应,显著改变硫原子的电子云密度,从而导致探针荧光强度发生明显变化(图2)。吩噻嗪中的硫原子对HClO具有很强的反应性。吩噻嗪的荧光性质通过硫原子氧化成亚砜而改变。苯并噻唑是一种常见的吸电子基团,王建勇团队则利用吩噻嗪和苯并噻唑构建了一种新型的双光子探针NS⁃ClO[22]。苯并噻唑在氧化还原条件下稳定,保证了探针在过量的 HClO 中的稳定性。室温条件下,NS ⁃ClO 在 PBS(pH=7.4,5%二甲基甲酰胺)中,360 nm激发时, 450 nm 处没有荧光发射;但当加入 HClO 后,其在 360 nm 处出现吸收,且用 360 nm 激发时在 450 nm 处出现强烈荧光(约860倍)。经实验验证,NS⁃ClO 对其他 ROS、活性氮(reactive nitrogen species, RNS)、生物硫醇等没有反应活性,说明探针对HClO 表现出良好的选择性。NS ⁃ ClO 在 HeLa 细胞和 RAW264.7巨噬细胞中具有良好的选择性成像。利用 TPM,NS⁃ClO 可对 400 μm 厚的小鼠肝脏活体组织切片成像,且可以对活体斑马鱼成像。
-
在温和条件下,HClO可以介导硫代螺内酰胺苯酚转化为苯并噁唑(图3)。毛国江团队利用罗丹明类似物为基础,研制了一种用于HClO生物成像的长波长 (630 nm)双光子荧光探针HN2⁃TP[1]。HN2⁃TP在PBS 缓冲液(pH=7.4,5%二甲基亚砜)中,没有特征吸收和发射。但当加入HClO后,90 s内HClO诱导重排反应,检测到在630 nm处的荧光发射。HN2⁃TP探针在体外检测 HClO 时表现出较大的荧光增强,且具有良好的线性范围、高灵敏度(检测下限:40 nmol/L) 和快速响应的优点。HN2⁃TP探针溶液与各种ROS、 RNS、生物硫醇不发生反应,探针只对HClO有高选择性。利用单光子显微镜,HN2⁃TP可以对HeLa细胞内的外源性HClO成像,也可以对巨噬细胞RAW 264.7内源性HClO成像。利用TPM,HN2⁃TP可以对大鼠肝脏冷冻切片组织进行HClO显像。
-
图2 NS⁃ClO化学结构及其反应机制
-
Figure2 Chemical structure and reaction mechanism of NS⁃ClO
-
图3 HN2⁃TP化学结构及其反应机制
-
Figure3 Chemical structure and reaction mechanism of HN2⁃TP
-
2 氧硫杂环戊缩醛(酮)类双光子荧光探针
-
HClO 双光子探针中,荧光团大多数是典型的“推⁃拉”(胺酮)结构,这种结构可以产生优异的光物理性质。Acdan是一种双光子荧光团(图4)。利用 2⁃巯基乙醇对 Acdan 的酮羰基进行保护,使其变为氧硫杂环戊缩酮结构,降低羰基“拉”的作用,而导致荧光强度降低或淬灭。作为 HClO 分子的反应位点,探针分子中的 S 原子先被 HClO 氧化为亚砜,再进一步氧化为砜,最后使缩酮结构水解成羰基,使荧光团恢复荧光或者荧光增强 (图4)。
-
图4 Acdan化学结构及其反应机制
-
Figure4 Chemical structure and reaction mechanism of Acdan
-
溶酶体是细胞的循环中心,催化分解各种废物,如蛋白质、核酸、碳水化合物、脂质和细胞碎片,其内含有丰富的 HClO。2015 年,Young⁃Tae Chang 团队利用 Acdan 分子骨架,设计并合成了第一个靶向溶酶体的 HClO 双光子荧光探针 LYSO ⁃TP (图5)[23]。LYSO ⁃TP 是一种反应时间极短(几秒内),选择性良好,灵敏度高(16.6 nmol/L)的双光子探针,并通过双光子成像成功地应用于炎症小鼠模型的溶酶体 HClO 成像。除此之外,将靶向基团换成三苯基磷开发了具有线粒体靶向性质的探针 MITO⁃TP(图5)。两种探针在对 HeLa 外源性 HClO 和巨噬细胞内源性 HClO 存在的亚细胞结构(溶酶体和线粒体)都有较好的靶向性,能成功识别两种细胞器中的HClO。
-
喹诺酮也是一种优良的双光子荧光团[7,24-25]。 2018 年刘志洪和李春涯团队利用喹诺酮类设计了第一个用于监测小鼠伤口愈合过程中 HClO 生成的双光子荧光探针 QClO(图5)[24]。该探针的设计基于分子内电荷转移(intramolecular charge transfer, ICT)原理,是一种双光子比例荧光探针。QClO 探针自身在 492 nm 处显示出一个发射峰,在与 HClO 反应后,QClO的氧硫杂环戊基团脱保护,形成典型的“推⁃拉”结构6⁃(二甲氨基)喹啉⁃2⁃甲醛。“推⁃拉” 结构有利于双光子吸收的产生,并且可以增强“ICT 效应”,而显示出红移荧光发射,导致492 nm处荧光减弱,562 nm 处荧光发射增强。因此,该探针为高灵敏度的 HClO 检测提供了比率信号,且该探针在生理 pH 范围内对 HClO 表现出高灵敏、高选择性的响应。双光子激发的性质也使探针在检测活细胞内源性和外源性 HClO 方面具有良好的性能,并能够通过TPM监测小鼠损伤组织中HClO的细微变化,荧光穿透深度达180 μm。该双光子比率探针在 1 min 内响应 HClO 的存在,492 nm 处蓝色发射下降,562 nm处绿色发射增加,这为 HClO 提供了比率检测方式。该探针可在体外实现HClO的比例检测,线性范围为0.8~12.0 mmol/L,检测下限为89 nmol/L。此外,该探针还可以在双光子显微镜下分别观察活细胞中外源性和内源性 HClO 水平的波动,由于优异的传感性能和双光子激发特性,该探针成功揭示了受伤组织区域中HClO的过量产生。
-
He等[26] 通过引入四氢喹喔啉基团作为电子供体来增强ICT效应,设计了一种具有大斯托克斯位移的双光子比例荧光探针TQC⁃HClO(图5)。该探针具有长波长比率发射(I650/I583)。与QClO类似,探针 TQC ⁃HClO 在 PBS 缓冲液(pH=7.4,30% CH3CN) 中,以 485 nm 为激发波长,在 583 nm 处有荧光发射。但当加入HClO 后,检测到在649 nm处的荧光发射。作者研究了探针TQC⁃HClO在720~880 nm不同输出波长下的双光子吸收截面,发现探针TQC⁃HClO 在800~840 nm的激发光谱区域具有超过100 GM的双光子吸收截面,表明探针具有良好的双光子性质,并成功应用在HeLa 细胞和斑马鱼HClO成像中。
-
图5 氧硫杂环戊缩醛(酮)类双光子荧光探针化学结构
-
Figure5 Chemical structure of two⁃photon fluorescence probes of oxychlorothyroxal
-
同样基于ICT机制,吴养洁团队利用乙酰香豆素这一重要的双光子荧光团,对乙酰基进行修饰开发了探针 CMOS(图6)[27]。双光子荧光探针 CMOS 合成简单,对HClO表现出高灵敏度、快速响应的特点,是一种“开⁃关⁃开”探针。CMOS 对其他不同的 ROS、RNS 和活性硫无反应活性,仅对 HClO 有活性,说明 CMOS 对 HClO 具有高度的选择性。HClO 可以使CMOS原有荧光淬灭,其淬灭原理是硫原子被 HClO 氧化为亚砜,而引起原有荧光的淬灭。细胞实验证实,用 5 μmol/L CMOS 孵育 SKVO⁃3 细胞 30 min,在 425~525 nm 光学窗口中观察到 SKVO⁃3 细胞强烈的荧光,这就证明探针可以透过细胞膜进入细胞内部。再将该细胞用 100 μmol/L NaClO 孵育 3 min 则发现细胞荧光猝灭。用 PBS 洗涤 3 次后,再分别加入 5 μmol/L Cys/Hcy 孵育 1 h,然后荧光明显恢复。这就说明CMOS被HClO氧化成亚砜后,又被 Cys/Hcy 还原成了 CMOS。其反应机制如图6。
-
图6 CMOS化学结构及其反应机制
-
Figure6 Chemical structure and reaction mechanism of CMOS
-
3 基于C=C和C=N裂解机制的双光子荧光探针
-
HClO具有很强的氧化和亲核能力,可以氧化裂解共轭的C=C双键和C=N双键释放出醛基,从而导致探针分子荧光信号的显著变化(图7)。探针分子的羰基可以和丙二腈通过Knoevenagel 反应生成 C=C双键[15],C=N双键可以通过羰基和肼类化合物反应生成[14]。
-
图7 基于C=C和C=N的设计策略
-
Figure7 Design strategy based on C=C and C=N
-
基于 6⁃羟基⁃2⁃萘醛荧光团,尤进茂团队开发了一种可以靶向线粒体的双光子荧光探针 DNB (图8)[15]。该探针中的C=C键在与HClO反应后断裂,导致共轭结构被破坏,释放出醛基,而产生高强度荧光。释放出的醛基会进一步与 SO2/HSO3-反应产生新的化学结构,而产生蓝移光学现象。因此,作者将探针 DNB 作为靶向线粒体检查细胞内源性 HClO/SO2的一种双光子比率探针。同时,还将此探针成功运用到斑马鱼 SO2与 HClO 之间的氧化还原循环监测中。在对 DNB 探针反应机制探究中,作者发现 SO2不仅可以与醛基发生反应生成 BTP⁃HSO3-,还可以与吸电子丙二腈部分发生反应产生DNB⁃HSO3- (图8),DNB⁃HSO3-也可与HClO发生反应,释放醛基,醛基可进一步与 SO2/HSO3-反应产生 BTP⁃HSO3-。令作者意外的是,无论先检测HClO还是SO2,每个检测过程都有自己独特的光谱变化,完全满足了细胞内和体内协同检测SO2/HClO的要求,是一种良好的双光子比率探针。该探针具有双光子作用截面大、细胞毒性低、选择性好、灵敏度高的特点,可协同检测细胞内和体内的 SO2/HClO。此外,DNB 探针可用于实时成像 HeLa 和 RAW 264.7 细胞线粒体 SO2/HClO 的连续变化。该探针还可以通过双光子显微镜估计斑马鱼体内200 μm深度处的SO2/HClO。
-
图8 DNB化学结构及其反应机制
-
Figure8 Chemical structure and reaction mechanism of DNB
-
6 ⁃(二甲氨基)喹啉⁃2⁃醛具有双光子发射、良好的光稳定性和典型的“推⁃拉”电子体系,是一种良好的双光子荧光团。付强团队利用噻吩肼修饰喹啉中的醛基,得到 Q⁃HOCl(图9)[14]。该探针与 HClO 反应后,噻吩酰肼基团被脱保护,生成具有典型双光子荧光信号的喹啉醛。Q⁃HOCl 探针对 HClO 具有良好的选择性和快速的响应(20 s),检测下限达 12.5 nmol/L。作者利用该探针通过双光子成像观察了内毒素引起的 PC12 细胞内 HClO 值的波动。此外,Q⁃HOCl 探针可以通过血脑屏障(blood brain barrier,BBB),可以分析大脑中HClO 的水平。作者利用该探针监测到阿尔兹海默病模型小鼠大脑中HClO水平比正常小鼠高。同时作者基于脑片双光子成像和Morris水迷宫实验,给予MPO抑制剂治疗,发现可有效改善阿尔兹海默病模型小鼠的认知能力。
-
图9 Q⁃HOCl化学结构及其反应机制
-
Figure9 Chemical structure and reaction mechanism of Q⁃HOCl
-
类似地,王建勇团体基于香豆素双光子荧光团构建了新型双光子探针 CuO⁃ClO(图10)[28],HClO 可识别分子中的 C=N 双键,该探针双光子性质良好、选择性好、稳定性好、响应速度快(约30 s)、细胞毒性低。同时,利用CuO⁃ClO成功地对HeLa细胞中外源性 HClO 和 RAW 264.7 细胞中内源性 HClO 进行了成像。此外,利用双光子显微镜,CuO⁃ClO 在 800 nm 激发条件下,可以对 55 μm 深的小鼠组织进行 HClO 检测,并且可用于斑马鱼的 HClO 荧光成像。
-
图10 CuO⁃ClO和CoPh⁃ClO化学结构
-
Figure10 Chemical structures of CuO⁃ClO and CoPh⁃ClO
-
该团队对CuO⁃ClO进行继续改造,制备了另外一种 C=N 双键型特异性检测 HClO 的双光子荧光探针 CoPh⁃ClO(图10)[11]。相比于 CuO⁃ClO 双光子探针,CoPh⁃ClO 探针具有灵敏度更高、选择性良好和稳定性更好(10 min以上)、响应更快(20 s)、开启信号更大(45倍)、细胞毒性低和良好的双光子性能的优点。其主要原因是该探针在荧光团和响应点之间引入苯环,使CoPh⁃ClO更加灵敏、可修饰和稳定,这将为其他多功能探针的开发提供新的思路。 CoPh⁃ClO 成功地应用于 HeLa 活细胞外源性 HClO 和活 RAW264.7 细胞内源性 HClO 的监测。此外,利用双光子显微镜该探针CoPh⁃ClO 成功地实现了对穿透深度约为65 μm的组织和斑马鱼中HClO的成像。
-
4 基于苯环氯取代机制的探针
-
受到喹诺酮类的神经保护药物[29-30]和显像剂[24-25] 的启发,钱勇团队基于ICT原理利用喹诺酮构建了HCP双光子荧光探针(图11)[7]。在HCP中,共轭电子受体二氨基马来腈基团削弱了喹诺酮类荧光团的“推⁃拉”电子效应,使其仅产生微弱的黄色荧光。当在 HClO 存在下,HCP 结构中的苯环通过氯化反应生成HCP⁃Cl,改变分子间的电子效应,实现蓝移,荧光发射增强。HCP⁃Cl 在 800 nm 激发态条件下拥有最大双光子吸收截面(13.4 GM)。HCP 双光子性质良好、选择性好、稳定性好、响应速度快 (约5 s)、细胞毒性低。HCP可以实时跟踪活细胞中的HClO。HCP可以透过血脑屏障,对癫痫模型小鼠活体脑中MPO产生的HClO进行高灵敏检测成像,且不受其他物质干扰。该团队通过使用HCP,构建了一种高通量筛选方法,可以快速筛选潜在的抗癫痫药物来控制MPO介导的氧化应激反应。
-
图11 HCP化学结构及其反应机制
-
Figure11 Chemical structure and reaction mechanism of HCP
-
5 结论和展望
-
综上所述,本文介绍了近年来用于 HClO 成像的双光子荧光探针,重点介绍了它们的响应机制及应用。根据 C=N 裂解响应机制构建的 HClO 探针在疾病模型中具有更深远的意义,部分探针可以对活体疾病模型小鼠成像。相比之下,由C=C裂解机制、酮和硫化物构建的探针在组织成像和疾病模型中的应用较差,仅停留在组织或者斑马鱼体内HClO 成像。大多数探针在几秒钟内对 HClO 作出反应,检测下限达到nmol/L级。由于HClO在复杂的生物环境中含量低、寿命短,一些HClO探针的选择性需要进一步提高。因此迫切需要设计更高灵敏度和更好选择性的探针。
-
参考文献
-
[1] GONG Y J,LV M K,ZHANG M L,et al.A novel two⁃pho⁃ ton fluorescent probe with long ⁃ wavelength emission for monitoring HClO in living cells and tissues[J].Talanta,2019,192:128-134
-
[2] WANG Z K,WANG S,WANG B Y,et al.A two⁃pronged detection of atherosclerosis with a dual ⁃ channel fluores⁃ cent probe for viscosity and hypochlorous acid[J].Chem Eng J,2023,464:142687-142696
-
[3] MATUZ ⁃ MARES D,RIVEROS ⁃ ROSAS H,VILCHIS ⁃ LANDEROS M,et al.Glutathione participation in the pre⁃ vention of cardiovascular diseases[J].Antioxidants,2021,10(8):1201-1220
-
[4] KIM K H,KIM S J,SINGHA S,et al.Ratiometric detec⁃ tion of hypochlorous acid in brain tissues of neuroinflam⁃ mation and maternal immune activation models with a deep ⁃ red/near ⁃ infrared emitting probe[J].ACS Sens,2021,6(9):3253-3261
-
[5] LOU Y,WANG C X,CHI S Y,et al.Construction of a two⁃ photon fluorescent probe for ratiometric imaging of hypo⁃ chlorous acid in alcohol ⁃ induced liver injury[J].Chem Commun Camb Engl,2019,55(86):12912-12915
-
[6] CHEN J,LU Y,WU Y,et al.De novo design of a robust fluorescent probe for basal HClO imaging in a mouse Par⁃ kinson’s disease model[J].ACS Chem Neurosci,2021,12(21):4058-4064
-
[7] SHAO C W,YUAN J W,LIU Y N,et al.Epileptic brain fluorescent imaging reveals apigenin can relieve the myeloperoxidase ⁃ mediated oxidative stress and inhibit ferroptosis[J].Proc Nat Acad Sci USA,2020,117(19):10155-10164
-
[8] LIU S Z,XU J H,MA Q J,et al.A naphthalimide⁃based and golgi⁃targetable fluorescence probe for quantifying hy⁃ pochlorous acid[J].Spectrochim Acta A Mol Biomol Spectrosc,2023,286:121986-121993
-
[9] SAMANTA S,GOVINDARAJU T.Unambiguous detec⁃ tion of elevated levels of hypochlorous acid in double transgenic AD mouse brain[J].ACS Chem Neurosci,2019,10(12):4847-4853
-
[10] LI S J,WANG P P,YANG K,et al.Construction of HClO activated near ⁃infrared fluorescent probe for imaging he⁃ patocellular carcinoma[J].Anal Chim Acta,2023,1252:341009-341017
-
[11] ZHANG Z H,LI C C,QU J B,et al.A novel and fast⁃ responsive two ⁃ photon fluorescent probe with modified group for monitoring endogenous HClO accompanied by a large turn⁃on signal and its application in zebrafish ima⁃ ging[J].Spectrochimica Acta Part A Mol Biomol Spec⁃ trosc,2022,278:121361
-
[12] XIA Q N,WANG X Y,LIU Y N,et al.An endoplasmic reticulum ⁃targeted two ⁃photon fluorescent probe for bio⁃ imaging of HClO generated during sleep deprivation[J].Spectrochimica Acta Part A Mol Biomol Spectrosc,2020,229:117992
-
[13] WANG L,REN M,LI Z,et al.A ratiometric two ⁃photon fluorescent probe for the rapid detection of HClO in living systems[J].Anal Meth,2019,11(12):1580-1584
-
[14] KE J,ZHAO P X,LI J F,et al.Visualization of HClO in the brains of Alzheimer’s disease models using an easily available two⁃photon fluorogenic probe[J].J Mater Chem B,2022,10(42):8744-8749
-
[15] DOU K,CHEN G,YU F,et al.A two⁃photon ratiometric fluorescent probe for the synergistic detection of the mito⁃ chondrial SO(2)/HClO crosstalk in cells and in vivo[J].J Mater Chem B,2017,5(42):8389-8398
-
[16] XU Q,HEO C H,KIM G,et al.Development of imidazo⁃ line ⁃2⁃thiones based two ⁃photon fluorescence probes for imaging hypochlorite generation in a co ⁃ culture system [J].Angew Chem Int Ed Engl,2015,54(16):4890-4894
-
[17] XU Q L,HEO C H,KIM J A,et al.A selective imidazoline⁃ 2⁃thione ⁃ bearing two ⁃ photon fluorescent probe for hypo⁃ chlorous acid in mitochondria[J].Anal Chem,2016,88(12):6615-6620
-
[18] MAO G J,WANG Y Y,DONG W P,et al.A lysosome⁃tar⁃ getable two ⁃ photon excited near ⁃ infrared fluorescent probe for visualizing hypochlorous acid ⁃involved arthritis and its treatment[J].Spectrochimica Acta Part A Mol Bio⁃ mol Spectrosc,2021,249:119326
-
[19] GRZELAKOWSKA A,ZIELONKA M,DĘBOWSKA K,et al.Two⁃photon fluorescent probe for cellular peroxyni⁃ trite:fluorescence detection,imaging,and identification of peroxynitrite ⁃ specific products[J].Free Radic Biol Med,2021,169:24-35
-
[20] JUVEKAR V,LEE H W,LEE D J,et al.Two⁃photon fluo⁃ rescent probes for quantitative bio ⁃ imaging analysis in live tissues[J].TrAC Trends Anal Chem,2022,157:116787-116806
-
[21] YANG T T,SUN J Y,YAO W,et al.A two⁃photon fluore⁃ scent probe for turn ⁃ on monitoring HOCl level in endo⁃ plasmic reticulum[J].Dyes and Pigm,2020,180:108438-108445
-
[22] WANG J Y,QU J B,ZHANG H T,et al.A fast⁃responsive two ⁃ photon fluorescent probe for monitoring endogenous HClO with a large turn⁃on signal and its application in ze⁃ brafish imaging[J].RSC Adv,2019,9(29):16467-16471
-
[23] YUAN L,WANG L,AGRAWALLA B K,et al.Develop⁃ ment of targetable two⁃photon fluorescent probes to image hypochlorous acid in mitochondria and lysosome in live cell and inflamed mouse model[J].J Am Chem Soc,2015,137(18):5930-5938
-
[24] MAO Z,YE M,HU W,et al.Design of a ratiometric two⁃ photon probe for imaging of hypochlorous acid(HClO)in wounded tissues[J].Chem Sci,2018,9(28):6035-6040
-
[25] DAI C G,WANG J L,FU Y L,et al.Selective and real ⁃ time detection of nitric oxide by a two⁃photon fluorescent probe in live cells and tissue slices[J].Anal Chem,2017,89(19):10511-10519
-
[26] HE L,XIONG H Q,WANG B H,et al.Rational design of a two ⁃ photon ratiometric fluorescent probe for hypochlo⁃ rous acid with a large stokes shift[J].Anal Chem,2020,92(16):11029-11034
-
[27] LIU Z,LI G P,WANG Y N,et al.A novel fluorescent probe for imaging the process of HOCl oxidation and Cys/Hcy reduction in living cells[J].RSC Adv,2018,8(17):9519-9523
-
[28] LI C C,DONG D,QU J,et al.A new and fast ⁃response two⁃photon fluorescent probe based on(p⁃Nitrophenylsul⁃ fonyl)hydrazine for detecting endogenous HClO and its application in zebrafish imaging[J].Photochem Photobiol A Chem,2023,434:114204-114211
-
[29] CHIOUA M,SALGADO⁃RAMOS M,DIEZ⁃IRIEPA D,et al.Novel quinolylnitrones combining neuroprotective and antioxidant properties[J].ACS Chem Neurosci,2019,10(6):2703-2706
-
[30] CHIOUA M,MARTÍNEZ ⁃ ALONSO E,GONZALO ⁃ GOBERNADO R,et al.New quinolylnitrones for stroke therapy:antioxidant and neuroprotective(Z)⁃N⁃tert⁃butyl⁃ 1⁃(2⁃chloro⁃6⁃methoxyquinolin⁃3⁃yl)methanimine oxide as a new lead⁃compound for ischemic stroke treatment[J].J Med Chem,2019,62(4):2184-2201
-
摘要
次氯酸(hypochlorous acid,HClO)由于其高氧化性和反应活性,与神经退行性疾病、炎症、癌症等多种病理生理过程相关。在细胞水平上检测HClO对了解各种疾病的发病机制具有重要意义。因此,科学家设计并合成了多系列的小分子荧光探针用于细胞内HClO成像。本文综述了基于识别机制的双光子荧光探针的代表性案例,为相关工作者提供设计策略参考。
Abstract
Hypochloric acid(HClO)is associated with various pathological and physiological processes such as neurodegenerative diseases,inflammation,and cancer due to its high oxidation and reactivity. Detecting HClO at the cellular level is of great significance for understanding the pathogenesis of various diseases. Therefore,scientists have designed and synthesized multiple series of small molecule fluorescent probes for intracellular HClO imaging. This article reviews representative cases of two-photon fluorescence probes based on recognition mechanisms,with the aim of providing design strategies for relevant workers.
Keywords
hypochlorous acid ; two-photon probes ; tissue imaging ; two-photon microscopy