-
1 引言
-
肺癌是一种起源于气管、支气管以及肺部的恶性肿瘤。2023年全球癌症报告显示,肺癌发病率约为12%[1],是最常见的癌症类型之一。2020年数据显示,肺癌的致死率为 33%,是目前致死率最高的癌症,每天约有350人死于肺癌,几乎是结直肠癌死亡人数的 2.5 倍。肺癌分为小细胞肺癌(small cell lung cancer,SCLC)和非小细胞肺癌(non⁃small cell lung cancer,NSCLC),其中 NSCLC 占 80% 以上, NSCLC进一步分为腺癌、鳞状细胞癌、腺鳞癌、大细胞癌和其他类型。吸烟、工业暴露、空气污染和致癌突变等因素是导致肺癌发生发展的主要风险因素[2-4]。由于缺乏有效的早期筛查和诊断手段,大多数肺癌患者在被确诊时就处于疾病晚期,并且病理学类型和分级较为复杂,使许多患者错过了治疗的最佳时机,导致预后不佳。目前肺癌治疗手段较为丰富,除标准化疗、放疗外,免疫检查点抑制剂 (immune checkpoint inhibitor,ICI)单药或联合治疗也已成为驱动基因阴性晚期 NSCLC 患者的一线标准治疗。
-
肠道微生物群,一个由细菌、病毒、古细菌和真菌组成的生态系统,影响营养物质生物转化、免疫反应和异生物代谢等功能,是宿主生理的重要组成部分[5]。这些微生物群至少包含38万亿个细菌[6-7],主要由厚壁菌门和拟杆菌门组成,其细菌基因数量约为人类基因组的100倍[8],因此,它们被视为一种潜在的“人体器官”,在免疫调节和代谢功能等方面具有重要作用。众多研究表明,肠道微生物群失调可能与包括恶性肿瘤在内的许多疾病的发生发展有密切关系[9],多种环境因素可能影响这些微生物群的稳态,导致炎症反应,影响细胞增殖和凋亡,引发基因组不稳定性,促进血管生成和影响肿瘤干细胞等[10]。此外,肠道菌群和宿主细胞之间的相互作用在调节局部和全身许多生理功能方面起着至关重要的作用[11]。它们可以影响宿主的局部微环境和免疫系统功能,从而对肿瘤的治疗应答及治疗并发症等产生影响[12]。
-
与此同时,研究显示,肠道菌群与肺癌的发生发展(肠⁃肺轴)之间的关系受到了广泛的关注[13]。肠道菌群可以通过肠⁃肺轴维持肺部的免疫功能,从而降低肺部病变甚至恶性进展的可能。但当肠道菌群失调时,肠道黏膜屏障及免疫功能受损,有害微生物群通过肠⁃肺轴改变肺部微生物组成,形成炎性微环境,诱导细胞损伤,引发DNA损伤,分泌有害代谢产物,促进血管生成和影响肿瘤干细胞等,这些都可能导致肺部免疫稳态的破坏,抑制免疫监视作用,促进肺癌的发生和发展[14-16]。
-
在肿瘤治疗领域,肠道菌群和治疗药物之间的相互作用也受到了关注。菌群对治疗药物的影响机制十分复杂,包括通过代谢途径和免疫介导的方式调节化疗和免疫治疗药物的疗效和不良反应[17-20]。最近研究还发现肠道菌群对肿瘤患者使用ICI治疗有着重要影响[13,21-22]。
-
本文主要针对肠道微生物与肺癌的发生发展、治疗疗效相关性进行讨论,以期更好地理解此类肿瘤的发生发展机制,了解宿主⁃微生物群在致癌过程中的相互作用,以及寻找微生物群在肿瘤诊断、治疗和预防等方面的潜在价值。
-
2 肠道微生物与肺癌发生发展
-
肠道和肺部的微生物群通过代谢物和细胞因子在淋巴和血液循环中形成了复杂的相互关系。这一肠⁃肺轴可以改变肺部的免疫与防御应答状态。有研究表明,人体微生物可以在不同的生态位之间共享,因此肠道菌群的代谢物变化也会一定程度上影响肺部菌群的环境特征[23]。肠道菌群可通过不同调控机制对肺癌的发生发展产生影响 (表1)。
-
2.1 肠道菌群诱导慢性炎症促进肺癌发生发展
-
研究表明,慢性炎症可能导致 DNA 突变或缺失,进而诱导肿瘤细胞的形成并异常增殖,促进肺癌发生。此外,肿瘤微环境中的炎症因子还有促进肿瘤生长及侵袭转移的作用[24]。研究发现,肺部局部微生物共生菌可以刺激骨髓细胞产生依赖于 MyD88 的白介素(interleukin,IL)⁃1β和 IL⁃23,诱导 Vγ6+ Vδ1+ γδT细胞的增殖和活化,进而产生IL⁃17和其他效应分子以促进炎症和肿瘤细胞增殖[25]。此外,肺癌患者的肠道微生物群含有丰富的普雷沃氏菌(Prevotella copri),而在小鼠动物实验中,富集Prevotella copri 的小鼠表现出免疫功能失调并发生肺部炎症。普雷沃氏菌能够通过 Toll 样受体 (Toll ⁃like receptors,TLR)4 识别并结合脂多糖 (lipopolysaccharide,LPS),启动 MyD88/NF ⁃ κB 信号通路,促进炎症反应的产生并分泌干扰素⁃γ (interferon γ,IFN⁃γ)、IL⁃18、IL⁃1β和肿瘤坏死因子⁃α (tumor necrosis factor⁃α,TNF⁃α)等免疫细胞因子[26]。这些研究表明,肺癌患者的肠道菌群可能通过肠⁃肺轴诱导肺部慢性炎症的发生和损伤免疫功能,从而促进肺癌的发生发展。
-
2.2 肠道菌群诱导DNA损伤促进肺癌发生发展
-
在肿瘤的发生和发展中,基因改变是一个关键影响因素。研究发现,Wnt信号通路可能参与肿瘤形成,是小肠早期恶性病变的主要遗传改变的一部分。p53作为一种肿瘤抑制因子可以防止Wnt信号通路被激活,从而抑制肿瘤的形成[27-28]。然而,肠道菌群代谢物没食子酸(gallic acid)却能诱导 p53 突变,使其由抑癌基因转变为癌基因,并激活Wnt信号通路,导致肿瘤形成[29-30]。尽管之前的研究认为 Wnt信号通路主要与结肠癌的发生密切相关,但通过对大量肺癌样本的生物信息学分析发现,该通路在肺癌细胞和已扩散的肺癌细胞中也保持高度活跃,这表明它可能与肺癌的转移、扩散和复发密切相关[31]。这些结果表明,肠道微生物群可以通过肠⁃ 肺轴来创造微环境影响肺癌相关基因的功能和活性,但其详细的机制还需要进一步研究。
-
除了上述的没食子酸可以诱导基因突变外,多种细菌毒素也被发现具有导致 DNA 损伤、促进基因突变和形成肿瘤的作用。例如,大肠杆菌素(来自大肠杆菌)、脆弱拟杆菌毒素(来自脆弱拟杆菌),以及ε⁃和γ⁃变形杆菌门的细胞膨胀致死毒素,它们可能直接引起 DNA 损伤,也可能通过产生过量的活性氧(reactive oxygen species,ROS)导致 DNA 损伤,促进肿瘤的发生[32]。研究人员探索菌群与肺癌的相关性,发现PI3K通路可能与肺癌有关;已有体外实验证明肠道细菌可以调控PI3K通路,但详细的机制还需要体内实验来验证[33];如果肺癌相关的 PI3K通路确实能被菌群代谢产物激活,则有望通过调控菌群来治疗肺癌。
-
2.3 肠道菌群代谢产物与肺癌发生发展相关
-
肠道微生物群通过其代谢产物[如短链脂肪酸 (short⁃chain fatty acid,SCFA)、胆汁酸和色氨酸代谢产物等]来调控免疫细胞的多个过程[34-35]。例如,细菌来源的色氨酸代谢产物(包括铟酸、惰酸、臭酸和色胺)可以通过芳香烃受体(aryl hydrocarbon receptor,AHR)参与调节肠道免疫[36]。此外,微生物来源的 TLR 和核苷酸结合寡聚化结构域样受体 (nucleotide⁃binding domain leucine⁃rich repeat,NLR) 配体不仅作用于肠道,还能穿透黏膜进入循环系统,影响免疫细胞。其中TLR4是TLR亚型之一,在淋巴细胞、单核细胞等免疫细胞中有表达,可以导致炎症反应,与肿瘤的发生密切相关[37]。另外,肠道微生物群还可以通过激活脂多糖和/或胆汁酸结合物牛磺酸来形成NLRP6炎症小体,从而促进上皮细胞产生IL⁃18和抗菌肽[38]。
-
2.4 通过肠⁃肺轴影响肺癌发生发展
-
肠道和肺部通过微生物和免疫功能的相互影响形成肠⁃肺轴,健康状态下,肺部存在着一种微生物“ 迁入迁出 ”的稳态平衡(emerging pathogenic links between microbiota and the gut⁃lung axis)。研究表明,肠道菌群可通过肠⁃肺轴影响呼吸道病毒和细菌感染性疾病的发生与发展[39-40]。
-
当前的研究认为,肠⁃肺轴主要通过可溶性微生物组分和代谢物(如LPS、SCFA和脱氨基酪氨酸)的循环运输来影响两者的微环境,此外,肠道菌群的变化能够影响宿主抗体反应和病毒特异性CD4+ T细胞、CD8+ T 细胞的功能,还能激活炎症细胞因子分泌,进而在呼吸道黏膜的免疫调节中发挥作用[41]。肠道微生物产生的细胞因子和趋化因子随肠系膜淋巴系统到达乳糜池,进入肺循环,可以激活局部树突状细胞,从而驱动幼稚T细胞(naive T cell)向效应T细胞(effector T cell)、调节性T细胞(regulatory T cell,Treg)或辅助性 T 细胞 17(helper T cell17, Th17)转化。其中Th17是连接宿主微生物群和肿瘤之间的重要淋巴细胞[41]。微生物感染时,Th17细胞可分化产生IL⁃17,导致肺部的中性粒细胞浸润,由于肺部表达大量CC 趋化因子配体 20,Th17被募集至肺部,激发肺自身免疫反应,引起肺部病变[42]。
-
2.5 肠道微生物抑制肺癌发生的可能机制
-
研究发现肠道菌群具有多种抑制肿瘤的功能,如灭活致癌化合物、与致病微生物群竞争、增强免疫系统、调节细胞凋亡和分化、产生健康的代谢物、维持肠道黏膜屏障的完整性等[38]。Tanoue 等[43] 从健康人的粪便样本中分离出11株菌株,这些菌可以在肠道中激活产生IFN⁃γ的CD8+ T细胞。肠道有益菌,如梭菌属(Clostridium)和肠球菌属(Bifidobacterium) 可以增加肺部γδ T细胞的数量,增强肺部免疫监视作用,抑制肿瘤细胞的增殖和扩散[44]。此外,肠道菌群还可以通过肠⁃肺轴调节肠道和肺部细胞因子、化学因子和代谢产物的分泌,抑制肺癌的发生和发展。这些机制包括抑制炎症介质的分泌,促进免疫调节细胞的增殖和功能,以及调节细胞凋亡和生长抑制基因的表达。因此,通过维护健康的肠道菌群,或可预防甚至抑制肺癌的发生和发展。
-
3 肠道微生物失调与肺癌的临床相关性以及对治疗和预后的影响
-
3.1 肠道微生物失调与肺癌诊断相关
-
一些研究通过分析16S rRNA序列,发现肺癌患者的肠道微生物组成与正常人群存在显著差异,主要表现为肺癌患者的肠道微生物群多样性减少和代谢相关生物活性下降[14,16,45-46]。研究发现,拟杆菌属、韦荣球菌属(Veillonella)和梭杆菌属(Fusobacterium) 在肺癌患者中较为常见,而埃希菌属⁃志贺菌属 (Escherichia⁃Shigella)、克吕沃尔菌属(Kluyvera)、粪杆菌属(Fecalibacterium)、肠杆菌属(Enterobacter)和小杆菌属(Dialister)的富集水平则较低[46]。还有研究发现相似的结果,并且肺癌患者的益生菌属,如经黏液真杆菌属(Blautia)、粪球菌属(Coprococcus)、双歧杆菌属(Bifidobacterium)和毛螺菌科(Lachnospi⁃ raceae)富集水平也明显降低。尽管研究发现肺癌患者与健康人群的肠道微生物多样性存在显著差异,但也有研究发现,NSCLC 组肠道微生物的多样性与健康人群没有明显区别[26],不过,两组的肠道微生物组成仍有较大差异,在NSCLC 组中,放线菌门和变形菌门的丰度减少,而厚壁菌门和拟杆菌门的丰度增加。Zhao等[47] 的研究也显示,肺癌组与健康组的物种多样性近乎一致,但富集类群的种类有明显差异,在肺癌组中巨球菌、梭状芽孢杆菌和丹毒杆菌科等的富集水平往往明显高于正常健康人群。因此,肠道微生物的富集种类与早期肺癌的关联度很高,不过对于多样性的研究结论尚有争议。
-
3.2 肠道微生物影响肺癌化疗疗效及预后
-
目前,肺癌治疗方式十分多样,主要包括化学药物治疗、放射治疗、靶向药物治疗及ICI治疗。尽管肿瘤免疫研究的快速发展使得ICI单药或联合治疗已经变成驱动基因阴性晚期 NSCLC 患者的一线治疗方案,但化学药物治疗仍是肺癌治疗的基石。越来越多的证据表明,肠道微生物对肿瘤治疗的化疗药物疗效有影响[48-49]。具体来说,在肺癌中,较高的酸杆菌门(Acidobacteria)和谷粒副极小单胞菌 (Granulicella)水平与良好的化疗反应性相关,而低聚发酵链球菌(Streptococcus oligofermentans)、巨球形菌(Megasphaera micronuciformis)和情性真杆菌 (Eubacterium siraeum)则在非反应组中更为丰富。无监督聚类分析进一步指出变形链球菌(Streptococcus mutans)和铅黄肠球菌(Enterococcus casseliflavus)是与化疗反应组相关的细菌标志,而乳明串珠菌 (Leuconostoc lactis)和 Eubacterium siraeum 则与非反应组相关。肠道微生物的多样性与肺癌化疗预后的相关性也逐渐被发现[50]。一项最新的前瞻性队列研究对45例晚期NSCLC患者化疗前后肠道菌群进行了分析[51],发现虽然相对丰度最高的前10个物种在患者化疗前后没有变化,但随后进行的菌群差异丰度分析显示,化疗后明串珠菌科、乳杆菌科和链球菌科的丰度相比化疗前显著升高。与化疗无反应者相比,反应者具有较高的粪拟杆菌、肠道拟杆菌、通量拟杆菌丰度。这表明具有高拟杆菌属丰度的NSCLC患者对含铂双药化疗的反应更好,这提示肠道微生物组可用于预测 NSCLC 患者化疗的预后。在化疗相关不良反应中,肠道菌群也发挥着一定作用,Loman等[52] 发现每次化疗都会减少肠道中的细菌数量,这种减少会引发大脑产生促炎信号,从而引起疲劳、体重减轻以及认知障碍等症状。
-
3.3 肠道微生物影响肺癌放疗疗效及不良反应
-
放疗同样是肺癌治疗的一种重要手段。研究发现多种免疫细胞(如 CD8+ 细胞毒 T 细胞、CD11b+ 髓细胞、树突状细胞等)可介导放疗所致的抗肿瘤免疫过程。早前研究已发现共生真菌可参与调控树突状细胞和髓样细胞,进而影响结肠炎、哮喘、炎症相关性大肠癌等疾病的炎症反应过程。2021 年 Shiao等[53] 的研究发现,肠道共生细菌与共生真菌对肿瘤放疗疗效有着截然不同的影响。在此研究中发现,使用混合抗生素清除小鼠的肠道共生细菌后,CD11b+ F4/80+ 肿瘤相关巨噬细胞的活性和数量增加,而清除共生真菌的小鼠往往表现为CD4+ T细胞的活性和数量降低,CD8+ T细胞的活性和数量增加,提示细菌对放疗后活化T细胞的产生很重要,而共生真菌则通过其与巨噬细胞和T细胞的联合作用来调节免疫抑制肿瘤微环境。尽管目前对肠道菌群如何影响放疗敏感性的研究仍然匮乏,但最近几年亦已阐明了一些具有临床转化意义的信息。例如,多项研究证明,包括鼠李糖乳杆菌(L. rhamnosus GG)和 VSL#3 配方(包括链球菌、乳酸菌和双歧杆菌)在内的益生菌可以抵抗放射治疗导致的肠黏膜毒性[54-55]。Cui等[56] 通过小鼠荷瘤实验,发现粪菌移植能够改善电离辐照后肠道和造血的不良反应,并且不会促进肿瘤的增殖。2020年,Science上也发表了1篇研究提示肠道内的有益菌(如毛螺菌科和肠球菌科)可以减轻全身辐射对小鼠造成的胃肠道组织及造血细胞的损伤[57]。Nie 等[58] 的研究发现,与抗生素+放疗组相比,单纯放疗组小鼠体重显著下降,死亡率更高,且肠道菌群组成结构有显著差异,肠道菌群多样性指数(Chao1 指数和 Shannon 指数) 差异有统计学意义。这些数据提示,肠道微生物群失调可能加重放射性肺损伤,对此的研究可能有助于开发保护宿主抵御放射性肺损伤的策略。但是,肠道菌群是否参与肺癌放疗中的免疫反应过程,目前相关研究尚少。
-
3.4 肠道微生物影响肺癌免疫治疗疗效及预后
-
ICI(如PD⁃1抑制剂和PD⁃L1抑制剂)已在肺癌治疗中取得显著疗效。然而,不是所有患者都能从免疫治疗中获益,这也限制了免疫治疗在肺癌中的应用。越来越多的研究表明,肠道菌群与免疫治疗的疗效有关。肠道菌群可以通过影响宿主的免疫系统和肿瘤微环境来影响免疫治疗的疗效。因此,肠道菌群已成为肺癌免疫治疗研究的热点之一。一项中国晚期 NSCLC 患者的研究显示,肠道菌群多样性与抗 PD⁃1 免疫治疗的反应密切相关,并且在两组之间呈现肠道菌群成分差异,腐烂别样杆菌 (Alistipes putredinis)、长双歧杆菌(Bifidobacterium longum)和普霉沃氏菌(Prevotellacopri)在反应者组中富集,而在无反应患者中富集类群主要为未分类的瘤胃球菌。具有良好肠道微生物群的患者(如具有高多样性的患者)表现出增强的记忆T细胞和自然杀伤细胞特征,具有更佳的免疫应答[59]。另一项研究中,Dailiere 等[60] 发现海氏肠球菌(Enterococcus hirae)和肠道巴氏杆菌(Barnesiella intestinihominis) 参与环磷酰胺治疗过程中的免疫反应,其可以预测接受免疫联合化疗治疗的晚期肺癌和卵巢癌患者的较长无进展生存期。Routy 等[13] 的研究发现肺癌、肾癌患者对PD⁃1单抗的应答与菌群中嗜黏蛋白阿克曼菌(Akkermansia muciniphila,Akk)的较高丰度相关,同时,抗生素的使用往往导致肠道微生物失调,影响免疫治疗的疗效及结局。在118例接受 PD⁃1/PD⁃L1单抗治疗的NSCLC患者中发现,在治疗前半年内或治疗期间同时使用丁酸梭菌 MIYAIRI 588改善肠道微生物失调,可显著延长无进展生存期及总生存期[61]。除了肠道微生物多样性及特定类群显示出与肺癌免疫治疗疗效及预后的相关性,微生物代谢产物在影响肺癌免疫治疗中发挥的作用同样十分重要。其中,SCFA 与长期获益的显著相关性已被广泛认知,甚至有研究发现通过移植产生 SCFA 和丁酸盐的丁酸梭菌可以提高晚期 NSCLC 患者免疫治疗疗效及改善长期生存[61-63]。
-
诸多研究发现,抗生素可改变肠道菌群的多样性和组成,导致菌群失调,可能影响ICI的疗效[64-65]。 Routy等[13] 研究发现在免疫治疗开始之前或刚开始时接受了抗生素治疗的69例患者,更易产生原发耐药性,并且有较短的生存期。此外,Pinato等[66] 进行了一项前瞻性多中心队列研究,这项队列研究中纳入了来自两个中心的 196 例患者,包括 119 例 NSCLC 患者,38 例黑色素瘤患者,39 例其他癌症患者。其中,接受免疫治疗的前 30 d 内使用过抗生素者归为 pATB 组,结果显示,pATB 组的中位总体生存时间(overall survival,OS)仅有 2 个月,对免疫治疗响应不佳的比例为 81%;非 pATB 组的中位 OS 为 26 个月,对免疫治疗响应不佳的比例为 44%。pATB组患者也更容易在免疫治疗期间出现疾病进展,也更容易因此死亡。
-
4 总结与展望
-
总的来说,肺癌患者肠道菌群多样性相比正常人群降低,主要表现为厚壁菌门和放线菌门物种数量明显减少。在治疗方面,特定类群的肠道微生物可以预测化疗疗效,并且肠道微生物的多样性与化疗疗效相关;肠道共生真菌通过调节免疫抑制肿瘤微环境,降低放疗疗效,而共生细菌却有着截然相反的作用,并且肠道益生菌具有保护肠黏膜,减轻放疗不良反应的作用;肠道菌群与肺癌靶向治疗相关的研究仍然处于起步阶段;在肺癌免疫治疗方面,肠道菌群的作用已经得到了广泛认可。目前多项研究表明,肠道微生物的多样性、特定类群及以 SCFA 为主的代谢产物可以通过活化免疫细胞、改善肿瘤微环境等方式来影响 ICI 的治疗效果。因此,未来的研究需要更加深入地探讨菌群与肺癌治疗的关系,并开发出更加有效的治疗策略。我们坚信,通过不断地研究和探索,肠道菌群将成为肺癌治疗中不可或缺的一部分,为肺癌患者带来更好的治疗效果和预后。
-
参考文献
-
[1] SIEGEL R L,MILLER K D,WAGLE N S,et al.Cancer statistics,2023[J].CA Cancer J Clin,2023,73(1):17-48
-
[2] YOSHIDA K,GOWERS K H C,LEE⁃SIX H,et al.Tobacco smoking and somatic mutations in human bronchial epithelium[J].Nature,2020,578(7794):266-272
-
[3] YANG J J,YU D X,SHU X O.Association of dietary fi⁃ ber and yogurt consumption with lung cancer risk:a pooled analysis[J].JAMA Oncol,2020,6(2):e194107
-
[4] HE Q Q,QU M Y,SHEN T Y,et al.Suppression of VEGFD expression by S⁃nitrosylation promotes the deve⁃ lopment of lung adenocarcinoma[J].J Exp Clin Cancer Res,2022,41(1):239
-
[5] SHREINER A B,KAO J Y,YOUNG V B.The gut micro⁃ biome in health and in disease[J].Curr Opin Gastroenterol,2015,31(1):69-75
-
[6] DE MARTEL C,FERLAY J,FRANCESCHI S,et al.Global burden of cancers attributable to infections in 2008:a review and synthetic analysis[J].Lancet Oncol,2012,13(6):607-615
-
[7] FULBRIGHT L E,ELLERMANN M,ARTHUR J C.The microbiome and the hallmarks of cancer[J].PLoS Pat⁃ hog,2017,13(9):e1006480
-
[8] LEE M H,LOZANO G.Regulation of the p53 ⁃ MDM2 pathway by 14⁃3⁃3 sigma and other proteins[J].Semin Cancer Biol,2006,16(3):225-234
-
[9] YANG H Y,WEN Y Y,CHEN C H,et al.14⁃3⁃3 sigma positively regulates p53 and suppresses tumor growth[J].Mol Cell Biol,2003,23(20):7096-7107
-
[10] LAU H C H,YU J.Gut microbiome alters functions of mu⁃ tant p53 to promote tumorigenesis[J].Signal Transduct Target Ther,2020,5(1):232
-
[11] YAMAMURA K,IZUMI D,KANDIMALLA R,et al.In⁃ tratumoral Fusobacterium nucleatum levels predict thera⁃ peutic response to neoadjuvant chemotherapy in esopha⁃ geal squamous cell carcinoma[J].Clin Cancer Res,2019,25(20):6170-6179
-
[12] GELLER L T,BARZILY ⁃ROKNI M,DANINO T,et al.Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine[J].Science,2017,357(6356):1156-1160
-
[13] ROUTY B,LE CHATELIER E,DEROSA L,et al.Gut mi⁃ crobiome influences efficacy of PD⁃1⁃based immunothera⁃ py against epithelial tumors[J].Science,2018,359(6371):91-97
-
[14] ZHENG Y,FANG Z,XUE Y,et al.Specific gut micro⁃ biome signature predicts the early ⁃stage lung cancer[J].Gut Microbes,2020,11(4):1030-1042
-
[15] QIN X,BI L,YANG W,et al.Dysbiosis of the gut micro⁃ biome is associated with histopathology of lung cancer [J].Front Microbiol,2022,13:918823
-
[16] LIU F,LI J,GUAN Y,et al.Dysbiosis of the gut microbi⁃ ome is associated with tumor biomarkers in lung cancer [J].Int J Biol Sci,2019,15(11):2381-2392
-
[17] ALEXANDER J L,WILSON I D,TEARE J,et al.Gut mi⁃ crobiota modulation of chemotherapy efficacy and toxicity [J].Nat Rev Gastroenterol Hepatol,2017,14(6):356-365
-
[18] CURRÒ D.The role of gut microbiota in the modulation of drug action:a focus on some clinically significant issues [J].Expert Rev Clin Pharmacol,2018,11(2):171-183
-
[19] KOPPEL N,MAINI REKDAL V,BALSKUS E P.Chemi⁃ cal transformation of xenobiotics by the human gut micro⁃ biota[J].Science,2017,356(6344):eaag2770
-
[20] ROUTY B,GOPALAKRISHNAN V,DAILLÈRE R,et al.The gut microbiota influences anticancer immunosurveil⁃ lance and general health[J].Nat Rev Clin Oncol,2018,15(6):382-396
-
[21] NAJMI M,TRAN T,WITT R G,et al.Modulation of the gut microbiome to enhance immunotherapy response in metastatic melanoma patients:a clinical review[J].Der⁃ matol Ther,2022,12(11):2489-2497
-
[22] MATSON V,FESSLER J,BAO R Y,et al.The commen⁃ sal microbiome is associated with anti ⁃ PD ⁃ 1 efficacy in metastatic melanoma patients[J].Science,2018,359(6371):104-108
-
[23] CULLIN N,AZEVEDO ANTUNES C,STRAUSSMAN R,et al.Microbiome and cancer[J].Cancer Cell,2021,39(10):1317-1341
-
[24] DENK D,GRETEN F R.Inflammation:the incubator of the tumor microenvironment[J].Trends Cancer,2022,8(11):901-914
-
[25] JIN C,LAGOUDAS G K,ZHAO C,et al.Commensal mi⁃ crobiota promote lung cancer development via gamma del⁃ ta T cells[J].Cell,2019,176(5):998-1013
-
[26] QIAN X,ZHANG H Y,LI Q L,et al.Integrated microbi⁃ ome,metabolome,and proteome analysis identifies a nov⁃ el interplay among commensal bacteria,metabolites and candidate targets in non ⁃ small cell lung cancer[J].Clin Transl Med,2022,12(6):e947
-
[27] ZOU S M,FANG L K,LEE M H.Dysbiosis of gut micro⁃ biota in promoting the development of colorectal cancer [J].Gastroenterol Rep,2018,6(1):1-12
-
[28] KRAUTKRAMER K A,FAN J,BÄCKHED F.Gut micro⁃ bial metabolites as multi ⁃ kingdom intermediates[J].Nat Rev Microbiol,2021,19(2):77-94
-
[29] ROOKS M G,GARRETT W S.Gut microbiota,metabo⁃ lites and host immunity[J].Nat Rev Immunol,2016,16(6):341-352
-
[30] LOUIS P,HOLD G L,FLINT H J.The gut microbiota,bacterial metabolites and colorectal cancer[J].Nat Rev Microbiol,2014,12(10):661-672
-
[31] NGUYEN D X,CHIANG A C,ZHANG X H F,et al.WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis[J].Cell,2009,138(1):51-62
-
[32] GOPALAKRISHNAN V,HELMINK B A,SPENCER C N,et al.The influence of the gut microbiome on cancer,immunity,and cancer immunotherapy[J].Cancer Cell,2018,33(4):570-580
-
[33] ZHAO Y,JOHNSON W E.Exploring host⁃microbe inter⁃ actions in lung cancer[J].Am J Respir Crit Care Med,2018,198(9):1116-1118
-
[34] SCHIRMER M,SMEEKENS S P,VLAMAKIS H,et al.Linking the human gut microbiome to inflammatory cyto⁃ kine production capacity[J].Cell,2016,167(7):1897
-
[35] BELLONE M,BREVI A,HUBER S.Microbiota ⁃ pro⁃ pelled T helper 17 cells in inflammatory diseases and cancer[J].Microbiol Mol Biol Rev,2020,84(2):e00064-e00019
-
[36] JAIN T,SHARMA P,ARE A C,et al.New insights into the cancer⁃microbiome⁃immune axis:decrypting a decade of discoveries[J].Front Immunol,2021,12:622064
-
[37] CHEN F,STAPPENBECK T S.Microbiome control of in⁃ nate reactivity[J].Curr Opin Immunol,2019,56:107-113
-
[38] ARPAIA N,CAMPBELL C,FAN X Y,et al.Metabolites produced by commensal bacteria promote peripheral regu⁃ latory T ⁃ cell generation[J].Nature,2013,504(7480):451-455
-
[39] ZUO T,ZHANG F,LUI G C Y,et al.Alterations in gut microbiota of patients with COVID⁃19 during time of hos⁃ pitalization[J].Gastroenterology,2020,159(3):944-955
-
[40] LI W,ZHU Y,LIAO Q,et al.Characterization of gut mi⁃ crobiota in children with pulmonary tuberculosis[J].BMC Pediatr,2019,19(1):445
-
[41] SINGH N,GURAV A,SIVAPRAKASAM S,et al.Activa⁃ tion of Gpr109a,receptor for niacin and the commensal metabolite butyrate,suppresses colonic inflammation and carcinogenesis[J].Immunity,2014,40(1):128-139
-
[42] BLANDER J M,LONGMAN R S,ILIEV I D,et al.Regu⁃ lation of inflammation by microbiota interactions with the host[J].Nat Immunol,2017,18(8):851-860
-
[43] TANOUE T,MORITA S,PLICHTA D R,et al.A defined commensal consortium elicits CD8 T cells and anti⁃cancer immunity[J].Nature,2019,565(7741):600-605
-
[44] WU Y,BISWAS D,USAITE I,et al.A local human Vδ1 T cell population is associated with survival in non⁃small⁃ cell lung cancer[J].Nat Cancer,2022,3(6):696-709
-
[45] ZHUANG H,CHENG L,WANG Y,et al.Dysbiosis of the gut microbiome in lung cancer[J].Front Cell Infect Mi⁃ crobiol,2019,9:112
-
[46] ZHANG W Q,ZHAO S K,LUO J W,et al.Alterations of fecal bacterial communities in patients with lung cancer [J].Am J Transl Res,2018,10(10):3171-3185
-
[47] ZHAO F,AN R,WANG L Q,et al.Specific gut microbi⁃ ome and serum metabolome changes in lung cancer pa⁃ tients[J].Front Cell Infect Microbiol,2021,11:725284
-
[48] IIDA N,DZUTSEV A,STEWART C A,et al.Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment[J].Science,2013,342(6161):967-970
-
[49] MCQUADE J L,DANIEL C R,HELMINK B A,et al.Modulating the microbiome to improve therapeutic re⁃ sponse in cancer[J].Lancet Oncol,2019,20(2):e77-e91
-
[50] 印滇,杨莉,王以浪,等.非小细胞肺癌患者化疗前后肠道微生态菌群多样性变化及其与预后的相关性 [J].贵州医科大学学报,2022,47(4):492-496
-
[51] ZHANG M,LIU D,ZHOU H,et al.Intestinal flora charac⁃ teristics of advanced non⁃small cell lung cancer in China and their role in chemotherapy based on metagenomics:a prospective exploratory cohort study[J].Thorac Cancer,2021,12(24):3293-3303
-
[52] LOMAN B R,JORDAN K R,HAYNES B,et al.Chemo⁃therapy⁃induced neuroinflammation is associated with dis⁃ rupted colonic and bacterial homeostasis in female mice [J].Sci Rep,2019,9(1):16490
-
[53] SHIAO S L,KERSHAW K M,LIMON J J,et al.Commen⁃ sal bacteria and fungi differentially regulate tumor re⁃ sponses to radiation therapy[J].Cancer Cell,2021,39(9):1202-1213
-
[54] CIORBA M A,RIEHL T E,RAO M S,et al.Lactobacillus probiotic protects intestinal epithelium from radiation in⁃ jury in a TLR⁃2/cyclo⁃oxygenase⁃2⁃dependent manner[J].Gut,2012,61(6):829-838
-
[55] DELIA P,SANSOTTA G,DONATO V,et al.Use of pro⁃ biotics for prevention of radiation ⁃ induced diarrhea[J].World J Gastroenterol,2007,13(6):912-915
-
[56] CUI M,XIAO H W,LI Y,et al.Faecal microbiota trans⁃ plantation protects against radiation ⁃induced toxicity[J].EMBO Mol Med,2017,9(4):448-461
-
[57] GUO H,CHOU W C,LAI Y,et al.Multi⁃omics analyses of radiation survivors identify radioprotective microbes and metabolites [J].Science,2020,370(6516):eaay9097
-
[58] NIE X Q,LI L,YI M X,et al.The intestinal microbiota plays as a protective regulator against radiation pneumoni⁃ tis[J].Radiat Res,2020,194(1):52-60
-
[59] JIN Y P,DONG H,XIA L L,et al.The diversity of gut microbiome is associated with favorable responses to anti⁃ programmed death 1 immunotherapy in Chinese patients with NSCLC[J].J Thorac Oncol,2019,14(8):1378-1389
-
[60] DAILLÈRE R,VÉTIZOU M,WALDSCHMITT N,et al.Enterococcus hirae and Barnesiella intestinihominis facili⁃ tate cyclophosphamide ⁃ induced therapeutic immunomo ⁃ dulatory effects[J].Immunity,2016,45(4):931-943
-
[61] TOMITA Y,IKEDA T,SAKATA S,et al.Association of probiotic Clostridium butyricum therapy with survival and response to immune checkpoint blockade in patients with lung cancer[J].Cancer Immunol Res,2020,8(10):1236-1242
-
[62] BOTTICELLI A,VERNOCCHI P,MARINI F,et al.Gut metabolomics profiling of non ⁃ small cell lung cancer(NSCLC)patients under immunotherapy treatment[J].J Transl Med,2020,18(1):49
-
[63] NOMURA M,NAGATOMO R,DOI K,et al.Association of short⁃chain fatty acids in the gut microbiome with clinical response to treatment with nivolumab or pembrolizumab in patients with solid cancer tumors[J].JAMA Netw Open,2020,3(4):e202895
-
[64] DEROSA L,HELLMANN M D,SPAZIANO M,et al.Neg⁃ ative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non⁃small⁃cell lung cancer[J].Ann Oncol,2018,29(6):1437-1444
-
[65] SCHETT A,ROTHSCHILD S I,CURIONI⁃FONTECEDRO A,et al.Predictive impact of antibiotics in patients with advanced non small ⁃ cell lung cancer receiving immune checkpoint inhibitors:antibiotics immune checkpoint inhibitors in advanced NSCLC[J].Cancer Chemother Pharmacol,2020,85(1):121-131
-
[66] PINATO D J,HOWLETT S,OTTAVIANI D,et al.Associ⁃ ation of prior antibiotic treatment with survival and response to immune checkpoint inhibitor therapy in patients with cancer[J].JAMA Oncol,2019,5(12):1774-1778
-
摘要
肺癌是全球恶性肿瘤相关死亡的首位病因,近年来,诸多研究发现肠道菌群在肺癌的发生发展中有着重要作用。肠道微生物群被认为是一种人体微生物器官,其不仅具有影响人体的消化、抗感染等功能,还可通过参与免疫调节、代谢等途径影响人体对肿瘤治疗的反应。此外,微生物和宿主细胞之间的相互作用对调节局部及全身的生理功能至关重要,可以影响宿主的局部微环境及免疫系统功能,从而影响肿瘤发生发展和抗肿瘤治疗效果。本文对肠道菌群影响肺癌发生发展的机制及其在肺癌治疗中的临床意义进行综述。
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide,and in the past few years,many studies have found that gut flora has an important role in the development of lung cancer. The intestinal microbiota is considered as a human microbial organ,which not only affects the human body’s functions such as digestion and anti-infection,but also influences the human body’s response to tumor therapy by participating in immunomodulation and metabolism. In addition,the interaction between microorganisms and host cells is crucial for regulating local and systemic physiological functions,which can influence the local microenvironment and immune system function of the host,thus affecting tumor development and anti-tumor therapeutic effects. In this paper,we will review the mechanisms by which intestinal flora influence lung cancer development and their clinical significance in lung cancer treatment.
Keywords
gut microbiota ; lung cancer ; gut-lung axis ; lung cancer treatment