-
胰腺癌是严重危害人类健康的消化道恶性肿瘤之一,有“万癌之王”之称,预后差,病死率与发病率比为0.98,5年生存率低于11%。全球范围内,胰腺癌约占癌症致死原因的 8%,是引起癌症相关死亡的第4大肿瘤[1]。胰腺癌发病率居我国男性恶性肿瘤的第7位,居女性恶性肿瘤的第 11位。目前广泛应用于胰腺癌临床化疗的药物主要有吉西他滨、 5⁃氟尿嘧啶(5⁃fluorouracil,5⁃Fu)和奥沙利铂等,多为DNA合成抑制剂。随着其临床耐药性的出现,化疗疗效显著降低[2-4]。引起耐药的因素有很多,常见的有细胞内酶系统异常、转运蛋白的异常表达、细胞抗凋亡作用增强、DNA损伤修复能力增加等[5-7]。近年来,新的耐药机制也被大量报道,因此,探究其产生的机制有利于缓解临床化疗耐药的问题。
-
肿瘤代谢重编程是指肿瘤细胞代谢途径发生改变,以满足肿瘤细胞对能量、物质及氧化还原能力等的需求[8]。肿瘤细胞与正常细胞在葡萄糖代谢、氨基酸代谢和脂质代谢等方面均有不同[9],其代谢方式的改变可以影响肿瘤细胞的分化、增殖及凋亡,以及其对治疗的反应,因此,肿瘤化疗耐药也与肿瘤代谢异常有关[10]。
-
本文以有氧糖酵解为主,探讨葡萄糖代谢重编程与胰腺癌临床化疗耐药的相关性及可能机制,并归纳靶向肿瘤细胞有氧糖酵解代谢通路的临床前试验和药物开发,以期为胰腺癌的临床治疗提供理论依据。
-
1 葡萄糖代谢重编程
-
葡萄糖代谢指葡萄糖、糖原等在体内的一系列复杂的化学反应,可为机体提供能量,分为分解代谢和合成代谢两个方面,包括葡萄糖的有氧氧化、无氧酵解、磷酸戊糖途径、糖醛酸途径、糖原合成与糖原分解、糖异生以及己糖代谢等[11-12]。常见的葡萄糖的有氧氧化是体内糖氧化分解生成腺嘌呤核苷三磷酸(adenosine⁃triphosphate,ATP)的主要途径,因为有充分的氧气供应,葡萄糖能彻底氧化分解生成二氧化碳和水,由此释放出大量的能量,1 分子葡萄糖能生成 30~32 分子的 ATP,是体内糖、脂类与蛋白质代谢的基础与枢纽。糖的无氧酵解途径是在无氧条件下,葡萄糖分解生成乳酸的过程, 1 分子葡萄糖经过糖酵解途径,生成 2 分子 ATP,是机体在缺氧、无氧状态或应激状态下获得能量的有效措施,同时在分解过程中形成的某些中间产物,可作为合成脂类、蛋白质、核酸等生物大分子的原料并与其他代谢途径相联系,满足机体生理需要。
-
肿瘤在发生和发展过程中对能量和生物原料的需求增加,同时为了减轻增殖和存活所产生的氧化应激,肿瘤细胞的代谢途径发生调整和改变,即肿瘤细胞的代谢重编程[13]。
-
正常细胞通过氧化磷酸化来产生能量,而肿瘤细胞即使在有氧条件下,也倾向于利用糖酵解途径代替线粒体氧化磷酸化产生 ATP 以供细胞生长与增殖,因此肿瘤细胞比正常细胞摄入更多的葡萄糖,产生更多的乳酸及细胞生长所需的原料,如核酸、磷脂、脂肪酸、氨基酸、胆固醇等,这被称为有氧糖酵解,也被称为Warburg效应,由德国生物化学家Otto Warburg于20世纪20年代发现并命名,目前该效应已在肠癌[14]、乳腺癌[15]、胶质瘤[16] 等肿瘤中得到证实。肿瘤细胞在有氧糖酵解过程中,ATP能量代谢效率低,但产生 ATP 的速率为氧化磷酸化的 100倍,可满足肿瘤细胞增殖、迁移等能量需要,同时快速产生大量生物合成中间体,为细胞的氨基酸、脂质、核苷酸等合成提供碳源[17]。
-
2 胰腺癌治疗中的化疗耐药
-
2.1 胰腺癌的化疗药物
-
胰腺癌是恶性程度极高的消化道肿瘤,早期不易被诊断,手术预后差。目前,化疗是胰腺癌综合治疗的主要手段之一。吉西他滨作为一种新型的人工合成嘧啶核苷类似物,可通过终止DNA合成、阻断细胞周期来抑制肿瘤细胞的增殖,目前已成为胰腺癌化疗的一线药物。但吉西他滨单独化疗的有效率低于15%,常以吉西他滨为基础进行联合用药,如联合紫杉醇、奥沙利铂等。还有以5⁃Fu、亚叶酸钙、伊立替康和奥沙利铂四药联合的 FOLFIRINOX 化疗方案等[18]。尽管胰腺癌细胞对以上化疗方案敏感,大多数患者仍会在化疗数周后产生耐药性,严重影响预后及生存率。
-
2.2 胰腺癌化疗耐药的发生机制
-
胰腺癌化疗耐药的机制有很多,常见的有: ①与 P⁃糖蛋白(P⁃glycoprotein,P⁃gp)相关的多药耐药[19-20];②与铁死亡相关的耐药,谷胱甘肽(gluta⁃ thione,GSH)、谷胱甘肽S转移酶(glutathione S⁃trans⁃ ferase,GST)和 P450 家族蛋白等参与[21];③药物靶分子如微管蛋白等的改变[22];④肿瘤细胞自身DNA 损伤修复能力增强,细胞凋亡因子变化产生的耐药[23];⑤肿瘤细胞表型转换如上皮细胞⁃间充质转化(epithelial⁃mesenchymal transition,EMT)导致的耐药[24]。近年来,越来越多的耐药基因及机制被报道,研究发现肿瘤表观遗传学改变、肿瘤干细胞 (cancer stem cell,CSC)、肿瘤微环境及代谢重编程等也参与了肿瘤的耐药过程。这些机制可以独立或联合作用,并通过各种信号转导途径起作用。
-
2.2.1 肿瘤表观遗传学变化
-
胰腺癌受多种表观遗传机制的驱动,包括 DNA 甲基化[25]、组蛋白甲基化/乙酰化[26]。这些途径由特定酶控制,常见的有DNA甲基转移酶(DNA methyl⁃ transferase,DNMT)、组蛋白去乙酰化酶(histone deacetylase,HDAC)和组蛋白乙酰转移酶(his⁃ toneacetyltransferase,HAT),它们与胰腺癌的形成、进展和生长有关。Liu等[27] 和Martínez⁃Chantar 等[28] 研究发现基因启动子区 CpG 岛的超甲基化可通过沉默重要的肿瘤抑制基因(TSG、SOC2等)促进胰腺癌的发展。Meidhof 等[29] 研究发现 HDAC 的异常基因表达与胰腺癌细胞的转移及耐药显著相关, HDAC 的抑制剂莫西替诺司可与吉西他滨协同作用,在异位胰腺癌种植瘤模型中抑制EMT 相关蛋白 ZEB1的表达,进一步干扰EMT和CSC 表型的形成,最终缓解化疗耐药。
-
另有研究表明非编码RNA 也与肿瘤的耐药性有关,越来越多的证据表明非编码 RNA可以通过多种信号途径来调控CSC,并参与CSC的自我更新、分化、耐药和转移[30]。Hamada 等[31] 研究发现miR⁃365 可通过靶向衔接蛋白SHC1和促凋亡调节因子BAX 诱导吉西他滨的耐药性。Wang 等[32] 研究发现 miR⁃21通过直接抑制FasL的表达,使胰腺癌细胞产生耐药性。Wang 等[25] 研究发现 lncRNA ANRIL 剪接体和ANRIL的m6A修饰可引起胰腺癌的耐药性, ANRIL⁃208(ANRIL剪接体之一)可以通过与Ring1b 和EZH2形成复合物来提高 DNA 同源重组修复能力,从而提高肿瘤细胞的耐药性。Zhou 等[33] 研究发现 lncRNA PVT1 上调 Pygo2 和 ATG14 的表达,调控 Wnt/β⁃catenin 信号通路和自噬通路,并通过 miR⁃619⁃5p缓解吉西他滨耐药。
-
2.2.2 CSC和肿瘤微环境
-
CSC 是肿瘤细胞中具有干细胞特性的细胞亚群,在肿瘤的发生发展、侵袭转移以及化疗耐药等方面发挥重要功能。多项研究证实,胰腺癌CSC对损伤DNA的常规化疗药物存在明显的耐药性,是其复发、转移、化疗失败的重要原因之一。肿瘤微环境由肿瘤细胞及其周围成纤维细胞、免疫细胞、炎症细胞、细胞间质、微血管以及浸润在其中的生物分子组成,具有免疫抑制等特征,也是引起肿瘤转移及耐药的条件之一。Nallasamy 等[34] 用成纤维细胞长期处理胰腺癌细胞,发现肿瘤成球能力增加,可通过 SPP1⁃CD44 轴促进 CSC 细胞的增殖,并引起耐药。Ashrafizadeh 等[35] 将含有胰腺成纤维细胞的培养液加入胰腺癌细胞中,不仅能明显促进胰腺癌细胞的增殖,而且增强其侵袭、迁移及克隆形成能力,且显著抑制胰腺癌细胞对放化疗的应答。
-
2.2.3 糖代谢重编程在胰腺癌化疗耐药中的作用
-
在胰腺癌的治疗中,以吉西他滨为基础的化疗,对临界可切除、进展期或转移性胰腺癌的治疗均有重要作用[35]。但Qiu 等[36] 报道吉西他滨用于胰腺癌治疗可诱导代谢重编程、减少线粒体氧化和上调有氧糖酵解,并促进肿瘤细胞产生类似干细胞的行为,引起胰腺癌化疗耐药,是胰腺癌预后不良的原因之一。Yun 等[37] 和 Zhao 等[24] 研究也发现糖代谢途径中,低氧诱导因子(hypoxia inducible factor, HIF)⁃1α参与诱导葡萄糖转运蛋白(glucose trans⁃ porter,GLUT)⁃1 的过表达及糖代谢相关酶的高表达,可增加有氧糖酵解和降低活性氧(reactive oxy⁃ gen species,ROS)水平,ROS水平的下调则可诱导并维持CSC和EMT表型,使吉西他滨的敏感性下降从而产生耐药。有氧糖酵解是糖代谢重编程的重要组成部分,Zhao 等[24] 研究发现抑制有氧糖酵解可抑制CSC活性并增强吉西他滨的细胞毒性,表明有氧糖酵解与吉西他滨耐药之间有密切联系。由此可见,糖代谢重编程在胰腺癌化疗耐药中发挥着重要作用。
-
3 糖代谢重编程参与胰腺癌耐药的分子机制及信号通路
-
有氧糖酵解是葡萄糖在转运体的帮助下进入肿瘤细胞胞质内,经过多步骤的酶催化反应变为丙酮酸,最终转化为乳酸的过程,可作为反应底物参与肿瘤细胞物质合成,维持肿瘤生长。
-
3.1 糖代谢重编程参与胰腺癌耐药的重要分子
-
有氧糖酵解过程需要多种酶及蛋白的共同参与,GLUT负责将葡萄糖通过质膜运输到细胞内,进入细胞质内的葡萄糖依次经过己糖激酶(hexoki⁃ nase,HK)1/2、磷酸果糖激酶(phosphofructokinase, PFK)、丙酮酸激酶 M(pyruvate kinase M,PKM)、乳酸脱氢酶(lactate dehydrogenase,LDH)等催化反应为6⁃磷酸葡萄糖、1,6⁃二磷酸果糖等,再生成磷酸烯醇式丙酮酸,经丙酮酸激酶(pyruvate kinase,PK)催化产生丙酮酸和ATP[18]。在糖酵解效应末期,丙酮酸在 LDH 催化下转化为乳酸,还原型辅酶Ⅰ(nico⁃ tinamide adenine dinucleotide,NADH)氧化生成烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleo⁃ tide,NAD)。其中,HK、PFK 和 PK 是糖酵解过程中的关键酶,这些酶及基因的异常表达,均可能参与胰腺癌耐药。
-
3.1.1 HK2
-
HK2是糖酵解途径的第一个酶,也是糖酵解过程的限速酶,在包括胰腺癌在内的各种类型的肿瘤组织中表达上调。Fan 等[38] 研究发现,胰腺癌患者肿瘤组织和血清中 HK2 的表达量有一定程度的增加,HK2 通过电压依赖性阴离子通道与线粒体结合,抑制或关闭线粒体通透性转换孔,抑制细胞色素c等凋亡因子的释放,抑制细胞凋亡,促进化疗耐药。Xie 等[39] 研究发现 2⁃磷脂酰肌醇⁃3 激酶(2⁃ phosphatidylinositol⁃3 kinase,PI3K)/丝氨酸⁃苏氨酸蛋白激酶(RAC⁃α serine/threonine⁃protein kinase,Akt)/ 哺乳动物雷帕霉素靶蛋白(mammalian target of rapa⁃ mycin,mTOR)途径也能增强 HK2 与线粒体膜的结合,从而诱导耐药。此外,Cheng 等[40] 研究发现HK2 的上调可进一步增加糖酵解通量,提高 ATP 水平,并与 HIF⁃1α相互作用触发胰腺癌化疗耐药。2⁃脱氧⁃D ⁃葡萄糖(2⁃deoxy⁃D⁃glucose,2⁃DG)是一种不可代谢的葡萄糖类似物,是HK的抑制剂,Penny等[41] 将2⁃DG联合吉西他滨或奥沙利铂则可提高胰腺癌细胞的化疗敏感性。
-
3.1.2 PFK
-
PFK能够将果糖⁃6⁃磷酸(fructose⁃6⁃phosphate,F ⁃6⁃P)转化为葡萄糖⁃1,6⁃二磷酸,PFK 有 PFK1 和 PFK2两种亚型。其中PFK2 也称为6⁃磷酸果糖⁃2⁃ 激酶/果糖⁃2,6⁃二磷酸酶(6⁃phosphofructo⁃2⁃kinase/ fructose⁃2,6⁃bisphosphatase,PFKFB),有 4 种亚型, PFK2 催化的反应是将 F⁃6⁃P 磷酸化为果糖⁃2,6⁃ 二磷酸(fructose⁃2,6⁃bisphosphatase,F⁃2,6⁃BP),而 F⁃2,6⁃BP 是糖酵解的关键酶 PFK1 的变构激活剂。Ozcan 等[42] 研究发现,PFKFB2 和 PFKFB3 在胰腺癌中均呈过表达趋势,能催化 F⁃2,6⁃BP 的生成,影响糖酵解活性和细胞增殖。Minchenko 等[43] 研究表明 PFKFB3 定位于细胞核中,是 HIF⁃1α的下游靶标。
-
3.1.3 PKM
-
PKM 能够将丙酮酸转化为乙酰辅酶 A,从而产生更多的 ATP 分子,为细胞提供能量。Li 等[44] 和 Christofk 等[45] 研究发现PKM1转化为PKM2是有氧糖酵解和促进肿瘤发生的标志。PKM2在细胞质和细胞核中均有活性,可以促进肿瘤细胞的转移,诱导化疗耐药。Calabretta 等[46] 发现胰腺癌中多嘧啶结合蛋白(polypyrimidine tract ⁃binding protein 1, PTBP1)的上调促进了PKM2的产生,从而导致吉西他滨耐药。 Feng 等[47] 研究发现 PKM2 还通过抑制 p38⁃丝裂原活化蛋白激酶(mitogen⁃activated protein kinase,MAPK)导致 P53 失活,引起吉西他滨耐药,而下调PKM2显著增强吉西他滨诱导的胰腺癌细胞的凋亡。
-
3.1.4 GLUT
-
GLUT 为糖酵解过程中的转运体,负责将葡萄糖通过细胞膜运输到细胞质中。Kooshki等[48] 研究发现编码 GLUT1 蛋白的 GLUT1 或 SLC2A1 均在胰腺癌细胞中高表达,并与临床预后不良相关。肿瘤中大鼠肉瘤病毒癌基因同源物(Kirsten rat sarcoma viral oncogene homolog,KRAS)、MYC原癌基因(MYC proto⁃oncogene bHLH transcription factor,c⁃MYC)和 HIF⁃1α的激活可上调GLUT1的表达,GLUT1的过表达则可激活NF⁃κB和mTOR参与化疗耐药。
-
3.1.5 HIF⁃1α
-
HIF⁃1α是在缺氧条件下分泌增多的一种核蛋白,在常氧条件下易降解。可诱导 GLUT 和糖酵解关键酶基因的表达,并诱导肿瘤从氧化磷酸化到有氧糖酵解的代谢转化。癌基因信号通路如 PI3K/Akt 和 MAPK/ERK 是 HIF⁃1α的上游信号[49]。 HIF⁃1α进入细胞核后,作为转录因子结合到相应的靶序列上,进一步通过促进糖酵解关键酶和转运蛋白的转录来增强糖酵解,以及通过减少ROS积累来抑制线粒体呼吸,降低化疗敏感性。Xi等[50] 研究发现人平衡核苷转运蛋白 1(human equilibrative nucleo⁃ side transporter 1,hENT1)是吉西他滨进入细胞所需的核苷转运体,hENT1 可以通过抑制 HIF⁃1α介导的糖酵解来恢复胰腺癌细胞对吉西他滨的化疗敏感性。Liu 等[51] 研究发现脯氨酸 4⁃羟化酶亚基α1 (prolyl4⁃hydroxylase subunit alpha⁃1,P4HA1)与HIF⁃ 1α存在正反馈通路引起耐药,沉默P4HA1基因可显著改善胰腺癌细胞耐药。Shukla 等[52] 研究发现 MUC1是一种致癌黏蛋白,可通过Akt通路调节多药耐药基因表达,进一步增加HIF⁃1α的稳定性,降低胰腺癌细胞对吉西他滨和5⁃Fu的敏感性。Xu等[53] 研究发现HIF⁃1α的长链非编码RNA也可通过Akt/ YB1/HIF⁃1α通路促进胰腺癌细胞对吉西他滨的耐药。Gao 等[54] 联合 HIF⁃1α抑制剂地高辛应用于胰腺癌治疗,在细胞和动物研究中均显示出能逆转吉西他滨耐药。以上研究表明 HIF⁃1α是参与代谢重编程从而导致胰腺癌化疗耐药的重要蛋白,也是潜在的治疗靶点。
-
3.2 糖代谢重编程参与胰腺癌耐药的信号通路
-
3.2.1 葡萄糖代谢相关通路
-
在胰腺癌细胞有氧糖酵解升高的过程中, GLUT1 的表达增加,葡萄糖摄取速度增加,糖酵解限速酶基因如 HK1/2、PFK⁃1、PKM 等表达上调,增强了糖酵解[55]。Li等[56] 利用胰腺癌类器官研究,发现高糖代谢水平胰腺癌比高脂代谢水平胰腺癌对化疗更耐药,且该类型患者预后更差。进一步综合分析发现 GLUT1/醛固酮酶 B(fructose⁃bisphosphate aldolase B,ALDOB)/葡萄糖⁃6⁃磷酸脱氢酶(glucose⁃ 6⁃phosphate dehydrogenase,G6PD)轴通过葡萄糖代谢重编程诱导胰腺癌的化疗抵抗,通过抑制GLUT1 表达或增加ALDOB表达可逆转化疗耐药。
-
与糖酵解相反,磷酸化丙酮酸脱氢酶激酶 1 (phosphorylated pyruvate dehydrogenase kinase1, PDHK1)可使癌细胞中的线粒体氧化磷酸化。Li 等[57] 研究发现缺氧、表皮生长因子受体(epidermal growth factor receptor,EGFR)激活等诱导了磷酸甘油酸激酶1(phosphoglycerate kinase1,PGK1)的线粒体易位,激活 PDHK1 磷酸化并抑制丙酮酸脱氢酶 (pyruvate dehydrogenase,PDH)复合物的生成,减少了线粒体对丙酮酸的利用,抑制了 ROS 的产生,增加了乳酸的产生,并促进了肿瘤的发生。同时,为了解决有氧糖酵解过程中产生的乳酸,胰腺癌细胞在质膜上过表达单羧酸转运蛋白 1(monocarboxyl⁃ ate transporter 1,MCT1)、MCT4 和 CD147,以加速其代谢[58-59]。
-
此外,源自糖酵解的非氧化性磷酸戊糖途径 (pentose phosphate pathway,PPP)也可为合成代谢提供原料,包括DNA合成等。在这种增强的代谢途径中,胰腺癌细胞显示出核酮糖⁃5⁃磷酸异构酶(ribu⁃ lose⁃5⁃phosphate,RPIA)和核酮糖5⁃磷酸⁃3⁃差向异构酶的表达增加[60-61],与其化疗耐药相关。己糖胺生物合成途径(hexosamine biosynthetic pathway,HBP)是葡萄糖代谢的另一个分支,为蛋白质和脂质糖基化提供了底物,与肿瘤的发生发展密切相关[62]。Liu 等[63] 研究发现,HBP 可抑制酶谷氨酰胺⁃果糖⁃6⁃磷酸酰胺转移酶⁃1(glutamine⁃fructose⁃6⁃phosphoamido⁃ transferase ⁃ 1,GFPT1)在胰腺癌细胞中的表达。 Ricciardiello 等[64] 的研究表明,胰腺癌细胞通过上调磷酸乙酰基葡萄糖胺突变酶3(phosphoacetyl glucos⁃ amine mutase3,PGM3),增强己糖胺生物合成途径,引起胰腺癌发生吉西他滨耐药,PGM3 的高表达与其较差的中位总体生存率有关,利用PGM3抑制剂 FR054 联合吉西他滨治疗可减少胰腺癌细胞的生长、迁移、侵袭,并增强吉西他滨的敏感性。除了这些增强的糖酵解酶外,Ju等[65] 研究发现胰腺癌细胞也比邻近的正常组织表达更多的烟酰胺磷酸核糖基转移酶(nico tinamide phosphoribosyltransferase, NAMPT),可回收 NAD+,以维持肿瘤细胞内的高水平糖酵解通量,可引起胰腺癌化疗耐药。
-
3.2.2 ROS信号通路
-
Sharma 等[66] 研究发现,与敏感细胞相比,厄洛替尼耐药的胰腺癌细胞糖酵解活性显著下调,糖酵解代谢物水平降低。耐药细胞表现出参与 ROS 调节和核苷酸生物合成的 PPP 酶的高表达。增强的 PPP途径提高了细胞NADPH/NADP比率,并保护细胞免受 ROS 诱导的损伤。使用 6⁃氨基烟酰胺(6⁃ amino ⁃ nicotinamide,6AN)抑制 PPP 可升高 ROS 水平,诱导细胞周期阻滞,并使耐药细胞对厄洛替尼敏感。进一步研究发现,PPP酶途径的G6PD升高是厄洛替尼耐药性的重要因素,因此,G6PD可以作为克服胰腺癌耐药性的靶点。Deng等[67] 研究发现,在吉西他滨耐药的胰腺癌细胞中,基质金属蛋白酶 (matrix metalloproteinase,MMP)⁃3表达升高,且与肿瘤侵袭和耐药性呈正相关,阻断MMP⁃3表达可抑制吉西他滨耐药和癌症进展,对其机制进行研究,发现 MMP⁃3 与吉西他滨代谢相关基因 RRM1 的表达密切相关,在高糖浓度下,ROS水平增加,通过ROS/ MMP⁃3/RRM1 信号通路诱导吉西他滨耐药和肿瘤侵袭。因此,MMP⁃3可作为抑制胰腺癌吉西他滨耐药的潜在新靶点。
-
3.2.3 铁死亡相关通路
-
Kim 等[68]研究发现,一种谷氨酰胺转运体 SLC38A5,在吉西他滨耐药患者中的表达高于吉西他滨敏感患者。在胰腺癌细胞中,沉默SLC38A5可诱导线粒体功能障碍,降低谷氨酰胺摄取和GSH水平,并下调GSH相关基因NRF2和GPX4的表达,引起铁死亡,缓解化疗耐药;在原位小鼠模型中,敲除 SLC38A5 则通过抑制肿瘤生长和转移来恢复对吉西他滨的敏感性。因此,SLC38A5也可能是胰腺癌治疗中克服化疗耐药的新靶点。
-
3.2.4 PI3K/Akt/mTOR信号通路
-
PI3K/Akt/mTOR信号通路是细胞自噬的主要调控通路,除此以外,PI3K/Akt/mTOR通路的异常激活还与肿瘤耐药有关。mTOR可以通过直接机制或诱导转录因子 MYC 和/或 HIF⁃1α 间接促进糖酵解。 Mossmann 等[69] 研究发现 mTOR 信号通过增加葡萄糖转运和糖酵解酶的表达重编程葡萄糖代谢,例如,通过转录因子HIF⁃1α和MYC可以上调 mTOR信号,从而激活GLUT1表达增强葡萄糖摄取;Lin等[70] 通过对胰腺癌患者组织样本的分析发现,Akt和mTOR表达增加的患者,其总生存期和无病生存期显著降低。Xie等[39] 临床前研究证实联合使用PI3K抑制剂BKM120.4可提高胰腺癌化疗敏感性。Allen等[71] 研究表明抑制 mTORC1 会破坏肿瘤细胞对乳酸的摄取及代谢,导致常氧条件下,细胞对葡萄糖的摄取和糖酵解增加,而在缺氧条件下,细胞无法利用葡萄糖而引起死亡。因此,PI3K/Akt/mTOR 通路参与胰腺癌耐药,靶向该通路相关蛋白有助于改善胰腺癌患者的预后及增加化疗敏感性。
-
3.2.5 KRAS相关信号通路
-
KRAS 作为一种小 GTPase,在肿瘤突变时持续表达并激活下游相关的信号通路(如 PI3K 和 RAF)。吉西他滨诱导的代谢重编程依赖于KRAS,吉西他滨化疗后有效激活了胰腺癌细胞的 KRAS,敲低KRAS则可逆转代谢重编程。此外,Ma等[72] 研究发现在风险模型评估的高危胰腺癌患者中,一些 KRAS 驱动的糖酵解相关基因(PKM、GLUT1、HK2 和 LDHA)和吉西他滨相关耐药基因(如 CDA 和 RMM2)的表达显著上调。Qin等[73] 研究发现KRAS 的激活可以抑制线粒体功能,驱动代谢向有氧糖酵解转变,引起胰腺癌吉西他滨化疗耐药。敲除 KRAS 则降低了有氧糖酵解,增加了氧化磷酸化反应,进一步抑制了 CSC 的增殖,并使胰腺癌细胞对化疗药物的敏感性增加。除了糖酵解的调节外,Li 等[57] 研究发现,突变KRAS信号还引起PGK1的线粒体易位,导致胰腺癌细胞中氧化磷酸化水平下调。另外,Santana⁃Codina等[61] 发现葡萄糖缺乏也会促进 KRAS通路突变,一些由KRAS驱动的过表达酶,如 RPIA,在KRAS缺失的情况下在胰腺癌细胞系中仍可正常表达,维持非氧化性PPP和肿瘤细胞存活,引起化疗耐药。
-
3.2.6 AMP 激活蛋白激酶(AMP⁃activated protein kinase,AMPK)相关信号通路
-
AMPK 作为一种进化上保守的能量传感器,可调节细胞能量速率以应对机体能量危机。吉西他滨诱导的代谢重编程也可激活AMPK通路,促进糖酵解。Sun等[74] 研究了吉西他滨对AMPK激活的影响,发现吉西他滨可诱导增强AMPKα(Thr172)的磷酸化,上调有氧糖酵解,并促进CSC的增加,引起化疗耐药。
-
吉西他滨诱导的ROS也可以激活KRAS/AMPK 通路。Zhao等[75] 通过引入外源过氧化氢,揭示了在胰腺癌治疗过程中吉西他滨耐药的机制,发现吉西他滨治疗诱导ROS 介导的、KRAS 依赖的代谢重编程,胰腺癌细胞出现从线粒体氧化到有氧糖酵解的代谢改变,诱导 CSC 样细胞群的增加,导致化疗耐药和肿瘤复发。
-
3.2.7 cGAS⁃STING通路
-
近年来,研究表明,干扰素基因的环GMP⁃AMP 合酶(cyclic GMP AMP synthase,cGAS)⁃STING 通路的激活可导致免疫细胞招募细胞因子,上调抗肿瘤效应,是抗肿瘤免疫应答的关键过程,各种 STING 激动剂已被开发用于肿瘤免疫治疗[76]。Jacoberger 等[77] 研究发现CD73抑制cGAS⁃STING并与CD39协同促进胰腺癌增殖,靶向CD39和CD73则可增加胰腺癌细胞对吉西他滨的敏感性。Kosaka 等[78] 利用小鼠模型,研究了STING激动剂cGAMP和Cox⁃2抑制剂 celecoxib的联合治疗,发现其可明显抑制肿瘤生长,并可诱导局部和全身抗肿瘤免疫,肿瘤浸润性细胞中共刺激分子和糖酵解相关基因表达上调,此外,celecoxib还可减少乳酸外排。因此,与celecoxib 联合治疗也可能是提高 STING 激动剂抗肿瘤疗效的有效策略。
-
上述讨论的糖代谢重编程介导的胰腺癌化疗耐药的相关信号通路总结见图1。目前该机制尚不完善,有待进一步研究探讨。
-
4 胰腺癌化疗耐药治疗中靶向糖代谢重编程的临床前/临床试验
-
由于肿瘤细胞的代谢特点与正常细胞有所不同,因此,可以针对肿瘤细胞的代谢特征开发靶向治疗策略,如改变营养供应或添加特定的代谢抑制剂,也可以作为肿瘤治疗的策略之一。目前,在胰腺癌中,许多代谢调节因子已被用于临床前研究甚至临床试验(表1),而且一些试验取得了较好的效果。
-
Rajeshkumar等[79] 利用异种移植模型,将代谢调节因子抑制剂如谷氨酰胺酶抑制剂bis⁃2(⁃ 5⁃苯基乙酰氨基⁃1,3,4⁃噻二唑⁃2⁃基)乙基硫醚[bis⁃2(⁃ 5⁃ phenylacetamino⁃1,3,4⁃thiadiazo⁃2⁃yl)ethyl sulfide, BPTES]、丙酮酸脱氢酶激酶抑制剂二氯乙酸(di⁃ chloroacetic acid,DCA)和线粒体复合物Ⅰ抑制剂苯甲酸/二甲双胍等应用于胰腺癌治疗中,显示出较好的抗肿瘤效果。Raez等[80] 在一项包括晚期胰腺癌在内的实体肿瘤患者的Ⅰ期临床试验中,2⁃DG与多西他赛联合使用有明显的临床治疗效果,且不会有较大的不良反应。Devimistat(CPI⁃613)是一种新型的脂肪酸类似物,通过抑制 PDH 和α⁃酮戊二酸脱氢酶复合物,阻断葡萄糖和谷氨酰胺的进入,进而抑制三羧酸循环[81]。一项将 CPI⁃613 与改良的 FOLFIRINOX 联合治疗转移性胰腺癌的Ⅰ期研究显示,相对缓解率为 61%,其中完全缓解率为 17%,取得了较好的疗效[82]。目前,评估CPI⁃613联合改良FOLFIRINOX(mFFX)与FOLFIRINOX(FFX) 治疗转移性胰腺癌的疗效和安全性的Ⅲ期开放性试验也正在进行中[83]。同时,Devimistat 和羟氯喹联合5⁃Fu或吉西他滨的方案用于胰腺癌治疗的Ⅲ期开放性试验也正在进行中。
-
图1 糖代谢重编程介导的胰腺癌化疗耐药的相关信号通路
-
Figure1 The mechanisms of chemoresistance mediated by glucose metabolism reprogramming in pancreatic cancer treat⁃ ment
-
Chakrabarti等[84] 发现胰腺癌细胞中存在着特殊的谷氨酰胺分解代谢途径,其关键酶谷氨酰胺酶1 (glutaminase1,GLS1)的过表达促进了细胞抗氧化,引起化疗耐药,设计β⁃ lapachone(ARQ761)作为 NAD(P)H⁃醌氧化还原酶1的生物活性药物,在临床前小鼠模型中,通过药物无效氧化还原循环产生的高水平ROS导致NADPH耗竭,进一步将ARQ761与 GLS1 抑制剂,如 BPTES、CB⁃839、化合物 968 等联合使用可选择性诱导胰腺癌细胞死亡。目前, ARQ761联合吉西他滨/紫杉醇治疗晚期胰腺癌的Ⅰ期临床研究正在进行中。对于天冬酰胺(asparagine, ASP)代谢,Bachet 等[84] 设计了红细胞包裹天冬酰胺酶(ERY⁃ASP)的方法,可治疗天冬酰胺合成酶 (asparagine synthetase,ASNS)无表达或低表达的胰腺癌患者。在一项Ⅰ期和Ⅱ期临床研究中对转移性胰腺癌患者表现出良好的耐受性,最近ERY⁃ASP 联合化疗的临床Ⅲ期试验也已完成。
-
鉴于mTOR在代谢中的综合作用,已有临床试验使用 mTOR 抑制剂来解决胰腺癌的吉西他滨耐药。然而,口服 mTOR 抑制剂 RAD001(依维莫司) 作为单一药物在转移性和吉西他滨耐药胰腺癌患者中表现出极小的临床有效性[85],而另一项依维莫司联合卡培他滨的Ⅱ期研究显示出较好的结果和可接受的不良反应[86]。因此,期待进一步的临床试验。
-
5 展望
-
代谢重编程是与肿瘤细胞生长、增殖和耐药相关的重要特征之一,其中,糖酵解异常增强是肿瘤生长过程中能量代谢重编程的一种形式。在此过程中,GLUT和糖酵解关键酶HK、PFK、PKM以及乳酸生成关键酶 LDH 参与其中,为人体细胞提供能量,参与肿瘤细胞的能量代谢,调控肿瘤细胞的生长、增殖和耐药[87]。因此,对胰腺癌耐药和细胞能量代谢之间的相关性进行探讨,可以丰富肿瘤相关疾病的研究思路,同时为针对肿瘤细胞的代谢特征开发靶向治疗策略、研发治疗药物提供新的思路,有望改善胰腺癌患者的预后。
-
(续表1)
-
参考文献
-
[1] SIEGEL R L,MILLER K D,WAGLE N S,et al.Cancer statistics,2023[J].CA Cancer J Clin,2023,73(1):17-48
-
[2] SARVEPALLI D,RASHID M U,RAHMAN A U,et al.Gemcitabine:a review of chemoresistance in pancreatic cancer[J].Crit Rev Oncog,2019,24(2):199-212
-
[3] SPRINGFELD C,JÄGER D,BÜCHLER M W,et al.Che⁃ motherapy for pancreatic cancer[J].Presse Med,2019,48(3 Pt 2):159-174
-
[4] CHIOREAN E G,COVELER A L.Pancreatic cancer:op⁃ timizing treatment options,new,and emerging targeted therapies[J].Drug Des Devel Ther,2015,9:3529-3545
-
[5] ONO H,MURASE Y,YAMASHITA H,et al.RRMI is mediated by histone acetylation through gemcitabine re⁃ sistance and contributes to invasiveness and ECM remo ⁃ deling in pancrentic cancer[J].Int J Oncol,2023,62(4):51
-
[6] DASH S,UEDA T,KOMURO A,et al.Deoxycytidine ki⁃ nase inactivation enhances gemcitabine resistance and sensitizes mitochondrial metabolism interference in pan⁃ creatic cancer[J].Cell Death Dis,2024,15(2):131
-
[7] XU L,MA X,ZHANG X,et al.Hsa⁃circ_0007919 induces LIG1 transcription by binding to FOXA1/TET1 to en⁃ hance the DNA damage response and promote gemcitabi⁃ ne resistance in pancreatic ductal adenxarcinomo[J].Mol Cancer,2023,22(1):195
-
[8] DEBERARDINIS R J,CHANDEL N S.Fundamentals of cancer metabolism[J].Sci Adv,2016,2(5):e1600200
-
[9] LI Z Y,ZHANG H F.Reprogramming of glucose,fatty acid and amino acid metabolism for cancer progression[J].Cell Mol Life Sci,2016,73(2):377-392
-
[10] CAO Y H.Adipocyte and lipid metabolism in cancer drug resistance[J].J Clin Invest,2019,129(8):3006-3017
-
[11] CHANDEL N S.Carbohydrate metabolism[J].Cold Spring Harb Perspect Biol,2021,13(1):a040568
-
[12] NEUFELD E F,GINSBURG V.Carbohydrate metabo⁃ lism[J].Annu Rev Biochem,1965,34:297-312
-
[13] AVOLIO R,MATASSA D S,CRISCUOLO D,et al.Modu⁃ lation of mitochondrial metabolic reprogramming and oxi⁃ dative stress to overcome chemoresistance in cancer[J].Biomolecules,2020,10(1):135
-
[14] ZHONG X Y,HE X F,WANG Y X,et al.Warburg effect in colorectal cancer:the emerging roles in tumor microen⁃ vironment and therapeutic implications[J].J Hematol On⁃ col,2022,15(1):160
-
[15] CAO L L,WANG M,DONG Y J,et al.Circular RNA circRNF20 promotes breast cancer tumorigenesis and Warburg effect through miR ⁃487a/HIF ⁃1α/HK2[J].Cell Death Dis,2020,11(2):145
-
[16] POFF A,KOUTNIK A P,EGAN K M,et al.Targeting the Warburg effect for cancer treatment:ketogenic diets for management of glioma[J].Semin Cancer Biol,2019,56:135-148
-
[17] VAUPEL P,MULTHOFF G.Revisiting the Warburg effect:historical dogma current understanding[J].J Physiol⁃London,2021,599(6):1745-1757
-
[18] FUKAHORI M,OKABE Y,SHIMOKAWA M,et al.Effi⁃ cacy of second ⁃ line chemotherapy after treatment with gemcitabine plus nab ⁃ paclitaxel or FOLFIRINOX in pa⁃ tients with metastatic pancreatic cancer[J].Sci Rep,2023,13(1):19399
-
[19] CHEN X,ZHENG P C,XUE Z F,et al.CacyBP/SIP en⁃ hances multidrug resistance of pancreatic cancer cells by regulation of P⁃gp and Bcl⁃2[J].Apoptosis,2013,18(7):861-869
-
[20] BUKOWSKI K,KCIUK M,KONTEK R.Mechanisms of multidrug resistance in cancer chemotherapy[J].Int J Mol Sci,2020,21(9):3233
-
[21] QI R,BAI Y X,LI K,et al.Cancer⁃associated fibroblasts suppress ferroptosis and induce gemcitabine resistance in pancreatic cancer cells by secreting exosome ⁃ derived ACSL4⁃targeting miRNAs[J].Drug Resist Updat,2023,68:100960
-
[22] KASHYAP V K,WANG Q H,SETUA S,et al.Therapeu⁃ tic efficacy of a novel βIII/βIV⁃tubulin inhibitor(VERU⁃ 111)in pancreatic cancer[J].J Exp Clin Cancer Res,2019,38(1):29
-
[23] GOLAN T,RAITSES ⁃GUREVICH M,BELLER T,et al.Strategies for the management of patients with pancreatic cancer with PARP inhibitors[J].Cancer Treat Res,2023,186:125-142
-
[24] ZHAO H Q,DUAN Q K,ZHANG Z L,et al.Up ⁃ regula⁃ tion of glycolysis promotes the stemness and EMT pheno⁃ types in gemcitabine⁃resistant pancreatic cancer cells[J].J Cell Mol Med,2017,21(9):2055-2067
-
[25] WANG Z W,PAN J J,HU J F,et al.SRSF3⁃mediated regu⁃ lation of N6⁃methyladenosine modification⁃related ln⁃ cRNA ANRIL splicing promotes resistance of pancreatic cancer to gemcitabine[J].Cell Rep,2022,39(6):110813
-
[26] PERUSINA L M,THOMPSON J K,BEDNAR F,et al.Me⁃ tabolism and epigenetics of pancreatic cancer stem cells[J].Semin Cancer Biol,2019,57:19-26
-
[27] LIU K,JIN H W,ZHOU B.Genetic lineage tracing with multiple DNA recombinases:a user’s guide for conduct⁃ ing more precise cell fate mapping studies[J].J Biol Chem,2020,295(19):6413-6424
-
[28] MARTÍNEZ ⁃ CHANTAR M L,VÁZQUEZ ⁃ CHANTADA M,ARIZ U,et al.Loss of the glycine N⁃methyltransferase gene leads to steatosis and hepatocellular carcinoma in mice[J].Hepatology,2008,47(4):1191-1199
-
[29] MEIDHOF S,BRABLETZ S,LEHMANN W,et al.ZEB1⁃ associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat[J].EMBO Mol Med,2015,7(6):831-847
-
[30] WEI L,SUN J J,WANG X W,et al.Noncoding RNAs:an emerging modulator of drug resistance in pancreatic can⁃ cer[J].Front Cell Dev Biol,2023,11:1226639
-
[31] HAMADA S,MASAMUNE A,MIURA S,et al.MiR⁃365 induces gemcitabine resistance in pancreatic cancer cells by targeting the adaptor protein SHC1 and pro ⁃ apoptotic regulator BAX[J].Cell Signal,2014,26(2):179-185
-
[32] WANG P,ZHUANG L P,ZHANG J,et al.The serum miR⁃ 21 level serves as a predictor for the chemosensitivity of advanced pancreatic cancer,and miR⁃21 expression con⁃ fers chemoresistance by targeting FasL[J].Mol Oncol,2013,7(3):334-345
-
[33] ZHOU C F,YI C H,YI Y X,et al.LncRNA PVT1 pro⁃ motes gemcitabine resistance of pancreatic cancer via ac⁃ tivating Wnt/β ⁃ catenin and autophagy pathway through modulating the miR ⁃ 619 ⁃ 5p/Pygo2 and miR ⁃ 619 ⁃ 5p/ATG14 axes[J].Mol Cancer,2020,19(1):118
-
[34] NALLASAMY P,NIMMAKAYALA R K,KARMAKAR S,et al.Pancreatic tumor microenvironment factor promotes cancer stemness via SPP1⁃CD44 axis[J].Gastroenterology,2021,161(6):1998-2013
-
[35] ASHRAFIZADEH M,LUO K,ZHANG W,et al.Acquired and intrinsic gemcitabine resistance in pancreatic cancer therapy:environmental factors,molecular profile and drug/nanotherapeutic approaches[J].Environ Res,2024,240(Pt 2):117443
-
[36] QIU J D,FENG M Y,YANG G,et al.mTOR inhibitor,gemcitabine and PD ⁃ L1 antibody blockade combination therapy suppresses pancreatic cancer progression via meta⁃ bolic reprogramming and immune microenvironment re⁃ modeling in Trp53flox/+ LSL ⁃ KrasG12D/+ Pdx ⁃ 1 ⁃ Cre murine models[J].Cancer Lett,2023,554:216020
-
[37] YUN H J,LI M,GUO D,et al.AMPK⁃HIF⁃1α signaling enhances glucose ⁃ derived de novo serine biosythseis to promote gliblastoma growth[J].J Exp Clin Cancer Res,2023,42(1):340
-
[38] FAN K,FAN Z Y,CHENG H,et al.Hexokinase 2 dimeri⁃ zation and interaction with voltage⁃dependent anion chan⁃ nel promoted resistance to cell apoptosis induced by gem⁃ citabine in pancreatic cancer[J].Cancer Med,2019,8(13):5903-5915
-
[39] XIE P,TAN S Y,LI H F,et al.Transcriptome data⁃based status of PI3K/AKT/mTOR pathway indicates heterogene⁃ ity and immune modulation in patients with pancreatic ductal adenocarcinoma[J].J Gene Med,2024,26(1):e3570
-
[40] CHENG L,QIN T,MA J G,et al.Hypoxia⁃inducible factor⁃ 1α mediates hyperglycemia ⁃ induced pancreatic cancer glycolysis[J].Anticancer Agents Med Chem,2019,19(12):1503-1512
-
[41] PENNY H L,SIEOW J L,ADRIANI G,et al.Warburg me⁃ tabolism in tumor⁃conditioned macrophages promotes me⁃ tastasis in human pancreatic ductal adenocarcinoma[J].Onco Immunology,2016,5(8):e1191731
-
[42] OZCAN S C,SARIOGLU A,ALTUNOK T H,et al.PFKFB2 regulates glycolysis and proliferation in pancre⁃ atic cancer cells[J].Mol Cell Biochem,2020,470(1/2):115-129
-
[43] MINCHENKO O H,TSUCHIHARA K,MINCHENKO D O,et al.Mechanisms of regulation of PFKFB expression in pancreatic and gastric cancer cells[J].World J Gastroen⁃ terol,2014,20(38):13705-13717
-
[44] LI H M,YANG J G,LIU Z J,et al.Blockage of glycolysis by targeting PFKFB3 suppresses tumor growth and metas⁃ tasis in head and neck squamous cell carcinoma[J].J Exp Clin Cancer Res,2017,36(1):7
-
[45] CHRISTOFK H R,VANDER HEIDEN M G,HARRIS M H,et al.The M2 splice isoform of pyruvate kinase is impor⁃ tant for cancer metabolism and tumour growth[J].Nature,2008,452(7184):230-233
-
[46] CALABRETTA S,BIELLI P,PASSACANTILLI I,et al.Modulation of PKM alternative splicing by PTBP1 pro⁃ motes gemcitabine resistance in pancreatic cancer cells[J].Oncogene,2016,35(16):2031-2039
-
[47] FENG J K,MA T L,GE Z J,et al.PKM2 gene regulates the behavior of pancreatic cancer cells via mitogen ⁃ acti⁃ vated protein kinase pathways[J].Mol Med Rep,2015,11(3):2111-2117
-
[48] KOOSHKI L,MAHDAVI P,FAKHRI S,et al.Targeting lactate metabolism and glycolytic pathways in the tumor microenvironment by natural products:a promising strate⁃ gy in combating cancer[J].BioFactors,2022,48(2):359-383
-
[49] ZHAO F Y,YANG G,QIU J D,et al.HIF ⁃1α⁃ regulated stanniocalcin ⁃ 1 mediates gemcitabine resistance in pan⁃ creatic ductal adenocarcinoma via PI3K/AKT signaling pathway[J].Mol Carcinog,2022,61(9):839-850
-
[50] XI Y,YUAN P,LI T,et al.hENT1 reverses chemoresis⁃ tance by regulating glycolysis in pancreatic cancer[J].Cancer Lett,2020,479:112-122
-
[51] LIU Y,GU Y J,NG S,et al.Circulating levels of hydroxyl⁃ ated bradykinin function as an indicator of tissue HIF⁃1α expression[J].Sci Bull,2020,65(18):1570-1579
-
[52] SHUKLA S K,PUROHIT V,MEHLA K,et al.MUC1 and HIF ⁃1alpha signaling crosstalk induces anabolic glucose metabolism to impart gemcitabine resistance to pancreatic cancer[J].Cancer Cell,2017,32(3):392
-
[53] XU F Y,HUANG M Q,CHEN Q Y,et al.LncRNA HIF1A⁃ AS1 promotes gemcitabine resistance of pancreatic can⁃ cer by enhancing glycolysis through modulating the AKT/YB1/HIF1α pathway[J].Cancer Res,2021,81(22):5678-5691
-
[54] GAO C T,LI S S,ZHAO T S,et al.SCF,regulated by HIF⁃ 1α,promotes pancreatic ductal adenocarcinoma cell pro⁃ gression[J].PLoS One,2015,10(3):e0121338
-
[55] YING H Q,KIMMELMAN A C,LYSSIOTIS C A,et al.Oncogenic KRAS maintains pancreatic tumors through regulation of anabolic glucose metabolism[J].Cell,2012,149(3):656-670
-
[56] LI Y G,TANG S J,SHI X H,et al.Metabolic classifica⁃ tion suggests the GLUT1/ALDOB/G6PD axis as a therapeu⁃ tic target in chemotherapy ⁃ resistant pancreatic cancer[J].Cell Rep Med,2023,4(9):101162
-
[57] LI X J,JIANG Y H,MEISENHELDER J,et al.Mitochon⁃ dria⁃translocated PGK1 functions as a protein kinase to co⁃ ordinate glycolysis and the TCA cycle in tumorigenesis[J].Mol Cell,2016,61(5):705-719
-
[58] WU D H,LIANG H,LU S N,et al.MiR ⁃124 suppresses pancreatic ductal adenocarcinoma growth by regulating monocarboxylate transporter 1 ⁃ mediated cancer lactate metabolism[J].Cell Physiol Biochem,2018,50(3):924-935
-
[59] KONG S C,NØHR ⁃ NIELSEN A,ZEEBERG K,et al.Monocarboxylate transporters MCT1 and MCT4 regulate migration and invasion of pancreatic ductal adenocarcino⁃ ma cells[J].Pancreas,2016,45(7):1036-1047
-
[60] KAWADA K,TODA K,SAKAI Y.Targeting metabolic re⁃ programming in KRAS⁃driven cancers[J].Int J Clin On⁃ col,2017,22(4):651-659
-
[61] SANTANA ⁃CODINA N,ROETH A A,ZHANG Y,et al.Oncogenic KRAS supports pancreatic cancer through regu⁃ lation of nucleotide synthesis[J].Nat Commun,2018,9(1):4945
-
[62] SAEUI C T,SHAH S R,FERNANDEZ⁃GIL B I,et al.Anticancer properties of hexosamine analogs designed to attenuate metabolic flux through the hexosamine biosyn⁃ thetic pathway[J].ACS Chem Biol,2023,18(1):151-165
-
[63] LIU C,DENG S M,XIAO Z W,et al.Glutamine is a sub⁃ strate for glycosylation and CA19⁃9 biosynthesis through hexosamine biosynthetic pathway in pancreatic cancer[J].Discov Oncol,2023,14(1):20
-
[64] RICCIARDIELLO F,GANG Y,PALORINI R,et al.Hexo⁃ samine pathway inhibition overcomes pancreatic cancer resistance to gemcitabine through unfolded protein re⁃ sponse and EGFR ⁃ Akt pathway modulation[J].Onco⁃ gene,2020,39(20):4103-4117
-
[65] JU H Q,ZHUANG Z N,LI H,et al.Regulation of the Nampt ⁃mediated NAD salvage pathway and its therapeu⁃ tic implications in pancreatic cancer[J].Cancer Lett,2016,379(1):1-11
-
[66] SHARMA N,BHUSHAN A,HE J,et al.Metabolic plasticity imparts erlotinib ⁃ resistance in pancreatic cancer by up⁃ regulating glucose ⁃6⁃ phosphate dehydrogenase[J].Can⁃ cer Metab,2020,8:19
-
[67] DENG J Y,GUO Y J,HU X M,et al.High glucose pro⁃ motes pancreatic ductal adenocarcinoma gemcitabine re⁃ sistance and invasion through modulating ROS/MMP ⁃ 3 signaling pathway[J].Oxid Med Cell Longev,2022,2022:3243647
-
[68] KIM M J,KIM H S,KANG H W,et al.SLC38A5 modu⁃ lates ferroptosis to overcome gemcitabine resistance in pancreatic cancer[J].Cells,2023,12(20):2509
-
[69] MOSSMANN D,PARK S,HALL M N.mTOR signalling and cellular metabolism are mutual determinants in can⁃ cer[J].Nat Rev Cancer,2018,18(12):744-757
-
[70] LIN M M,XIAO Y Y,DAI Y L,et al.Chloroxine inhibits pancreatic cancer progression through targeted antago⁃ nization of the PI3K/AKT/mTOR signaling pathway[J/OL].Clin Transl Oncol,2023[2023 ⁃ 11 ⁃ 10].DOI:10.1007/s12094⁃023⁃03328⁃w
-
[71] ALLEN E,MIÉVILLE P,WARREN C M,et al.Metabolic symbiosis enables adaptive resistance to anti ⁃ angiogenic therapy that is dependent on mTOR signaling[J].Cell Rep,2016,15(6):1144-1160
-
[72] MA Z Y,LI Z C,MA Z G,et al.Development of a KRAS⁃ associated metabolic risk model for prognostic prediction in pancreatic cancer[J].Biomed Res Int,2021,2021:9949272
-
[73] QIN C,YANG G,YANG J S,et al.Metabolism of pancre⁃ atic cancer:paving the way to better anticancer strategies[J].Mol Cancer,2020,19(1):50
-
[74] SUN L,CAO J,CHEN K,et al.Betulinic acid inhibits stemness and EMT of pancreatic cancer cells via activa⁃ tion of AMPK signaling[J].Int J Oncol,2019,54(1):98-110
-
[75] ZHAO H Q,WU S H,LI H H,et al.ROS/KRAS/AMPK signaling contributes to gemcitabine ⁃ induced stem ⁃ like cell properties in pancreatic cancer[J].Mol Ther Oncoly⁃ tics,2019,14:299-312
-
[76] KABASHIMA A,MATSUO Y,ITO S,et al.cGAS⁃STING signaling encourages immune cell overcoming of fibro⁃ blast barricades in pancreatic cancer[J].Sci Rep,2022,12(1):10466
-
[77] JACOBERGER F C,COUSINEAU I,BARECHE Y,et al.CD73 inhibits cGAS⁃STING and cooperates with CD39 to promote pancreatic cancer[J].Cancer Immunol Res,2023,11(1):56-71
-
[78] KOSAKA A,YAJIMA Y,YASUDA S,et al.Celecoxib pro⁃ motes the efficacy of STING ⁃targeted therapy by increas⁃ ing antitumor CD8 + T ⁃ cell functions via modulating glu⁃ cose metabolism of CD11b+ Ly6G+ cells[J].Int J Cancer,2023,152(8):1685-1697
-
[79] RAJESHKUMAR N V,YABUUCHI S,PAI S G,et al.Treatment of pancreatic cancer patient ⁃ derived xenograft panel with metabolic inhibitors reveals efficacy of phen⁃ formin[J].Clin Cancer Res,2017,23(18):5639-5647
-
[80] RAEZ L E,PAPADOPOULOS K,RICART A D,et al.A phase I dose⁃escalation trial of 2⁃deoxy⁃D⁃glucose alone or combined with docetaxel in patients with advanced solid tumors[J].Cancer Chemother Pharmacol,2013,71(2):523-530
-
[81] PHILIP P A,BUYSE M E,ALISTAR A T,et al.A Phase Ⅲ open ⁃ label trial to evaluate efficacy and safety of CPI ⁃ 613 plus modified FOLFIRINOX(mFFX)versus FOLFIRINOX(FFX)in patients with metastatic adeno⁃ carcinoma of the pancreas[J].Future Oncol,2019,15(28):3189-3196
-
[82] ALISTAR A,MORRIS B B,DESNOYER R,et al.Safety and tolerability of the first⁃in⁃class agent CPI⁃613 in com⁃ bination with modified FOLFIRINOX in patients with metastatic pancreatic cancer:a single⁃centre,open⁃label,dose⁃escalation,phase 1 trial[J].Lancet Oncol,2017,18(6):770-778
-
[83] BACHET J B,GAY F,MARÉCHAL R,et al.Asparagine synthetase expression and phase I study with L⁃asparagi⁃ nase encapsulated in red blood cells in patients with pan⁃ creatic adenocarcinoma[J].Pancreas,2015,44(7):1141-1147
-
[84] CHAKRABARTI G,MOORE Z R,LUO X Q,et al.Target⁃ ing glutamine metabolism sensitizes pancreatic cancer to PARP ⁃ driven metabolic catastrophe induced by β⁃lapa⁃ chone[J].Cancer Metab,2015,3:12
-
[85] WOLPIN B M,HEZEL A F,ABRAMS T,et al.Oral mTOR inhibitor everolimus in patients with gemcitabine ⁃ refractory metastatic pancreatic cancer[J].J Clin Oncol,2009,27(2):193-198
-
[86] KORDES S,KLÜMPEN H J,WETERMAN M J,et al.Phase Ⅱ study of capecitabine and the oral mTOR inhibitor everolimus in patients with advanced pancreatic cancer[J].Cancer Chemother Pharmacol,2015,75(6):1135⁃1141
-
[87] HE J,BUGDE P,LI J W,et al.Multidrug resistance pro⁃ tein 5 affects cell proliferation,migration and gemcitabine sensitivity in pancreatic cancer MIA Paca⁃2 and PANC⁃1 cells[J].Oncol Rep,2024,51(1):7
-
摘要
胰腺癌是严重危害人类健康的消化道恶性肿瘤,预后差,生存率低。目前临床治疗的药物主要是吉西他滨,但随着其耐药性的出现,疗效显著降低。肿瘤代谢重编程是肿瘤细胞为满足能量和生物原料的需求,出现了代谢途径调整和改变的现象。有氧糖酵解异常增强是胰腺癌细胞糖代谢重编程的特征之一,在葡萄糖转运体蛋白和糖酵解关键酶的作用下,通过不同的信号通路调控化疗耐药。文章对胰腺癌耐药和葡萄糖代谢重编程之间的相关性进行探讨,总结分析其调控机制及信号通路,并归纳靶向肿瘤细胞有氧糖酵解代谢通路的临床前试验和药物开发情况。
Abstract
Pancreatic cancer is a highly lethal and aggressive tumor that affects the digestive tract,leading to poor prognosis and low survival rate. At present,gemcitabine-based chemotherapy is widely used in the clinical treatment of pancreatic cancer. However,the efficacy of chemotherapy has significantly decreased with the emergence of clinical drug resistance. In order to meet its demand of energy and biological materials,tumors always change its metabolic pathway,which is called tumor metabolic reprogramming. The abnormal enhancement of aerobic glycolysis is one of characteristics of glucose metabolic reprogramming in pancreatic cancer cells. The glucose transporter proteins and key enzymes are participated in the processes and regulated chemotherapy resistance through different signal pathways. The purpose of this study is to summarize the relationship between drug resistance and glucose metabolic reprogramming in pancreatic cancer. The mechanisms and regulatory signaling pathways are also analyzed. Furthermore,the pre-clinical trials and drug development targeting the glycolysis metabolic pathways are summarized and analyzed.