-
细胞外囊泡(extracellular vesicle,EV)是指在生理条件和/或病理条件下,从细胞膜上脱落或者由细胞分泌的双层膜结构的囊泡,通过与细胞质膜融合和/或内吞作用将其所携带的生物分子,包括蛋白质、脂质、mRNA、DNA、非编码RNA、代谢物,甚至来自母细胞的细胞器等,运送到受体细胞并改变受体细胞生理机能,在细胞间通讯中起着不可或缺的作用[1⁃2]。基于以上特点,EV 具有作为疾病新型生物标志物和治疗靶点的潜力。事实上,许多 EV 蛋白和微RNA(microRNA,miRNA)已经被确定为多种疾病的潜在生物标志物[3-5]。近年来,EV在慢性阻塞性肺疾病(chronic obstructive pulmonary disease, COPD)发病机制中的作用有了较多报道,本文就 EV和COPD的关系作一综述。
-
1 EV的分类与识别
-
EV是一种异质性的囊泡群,几乎所有的细胞类型都可以释放 EV。根据大小和生物形成的方式, EV可分为3类:内源性的囊泡通过与质膜融合被释放到细胞外空间,称为外泌体(exosomes),大小为 50~150 nm;质膜向外出芽和分离产生的囊泡,称为微囊泡(microvesicle,MV),也称为胞外体(ectosome) 或微粒(microparticle,MP),大小为100~1 000 nm;凋亡小体(apoptotic body,AB)是由凋亡细胞释放出来的,大小为1 000~5 000 nm[6]。虽然MV和外泌体含有共同成分,如分化抗原(clusters of differentiation, CD)31、CD14、CD105、CD54和黏附分子等,但是也有特定分子可识别这 2 种亚型,如 CD9、CD81、CD83、 CD63以及多泡体合成蛋白、ALG⁃2 相互作用蛋白 X(ALG⁃2 interacting protein X,ALix)和肿瘤易感基因 101 蛋白(tumor susceptibility gene101 protein, TSG101),它们主要富含于外泌体,而MV含磷脂酰丝氨酸,膜联蛋白V染色后的流式细胞术分析是量化和识别MV的常用方法[7](见图1)。
-
根据细胞来源,EV又可分为上皮源性EV[8]、内皮源性EV[9]、巨噬细胞源性EV[10]、中性粒细胞源性 EV[11] 和干细胞源性EV[12] 等。对于这种分类,有细胞特异性标记可用于区分 EV 的来源,CD62E 和 CD144是内皮源性EV的选择性标志物,在肺毛细血管内皮细胞中大量表达的血管紧张素转换酶(angio⁃ tensin converting enzyme,ACE)可用于识别特定的内皮源性EV亚群,其他常见的内皮标志物,如CD31、 CD54、CD105、CD106、CD146、CD51 和血管性血友病因子(vonWillebrand factor,vWf)也可在其他细胞类型中表达,仅当与其他标志物结合才应用于识别内皮源性 EV[7];CD63/CD66b 可用于识别中性粒细胞源性EV[13]。但是,目前尚无公认的EV亚型标志物,因此国际细胞外囊泡协会建议[14]:除非亚细胞起源的特定标记被可靠地建立起来,否则 EV 的物理特性如大小、密度,或生化组成和细胞起源更适合用于描述EV。
-
2 不同细胞类型来源的EV在COPD中的作用
-
COPD是一种常见的慢性气道疾病,以不可逆、进行性气流受限、持续气道炎症为特征,严重影响生活质量和生存[15]。多种机制参与 COPD 的发病过程,如氧化应激、表观遗传学、细胞衰老、凋亡、慢性炎症、蛋白酶/抗蛋白酶失衡和线粒体功能障碍等[16],造成肺部稳态失调,多种细胞的结构受损和功能障碍,最终导致难以逆转的肺部改变。
-
图1 起细胞间通讯作用的细胞外囊泡
-
Figure1 EVs in intercellular communication
-
气道上皮细胞(airway epithelial cell,AEC)排列在气道内腔,是环境刺激的第一道防线,在COPD发病机制中起关键作用。长期暴露在烟草烟雾中会损伤AEC,导致内质网/线粒体应激、DNA损伤、蛋白质/脂质修饰和组织缺氧,甚至细胞死亡。这些受损的AEC释放损伤相关分子模式分子(damage⁃associ⁃ ated molecular pattern,DAMP)结合并激活位于AEC 质膜和细胞内的相应模式识别受体(pattern recogni⁃ tion receptor,PRR)[17],激活下游信号通路,导致炎症介质表达,这些介质招募并激活巨噬细胞、中性粒细胞和抗原提呈细胞,进而产生次级炎症介质,包括活性氧(reactive oxygenspecies,ROS)、活性氮(re⁃ active nitrogen species,RNS)和蛋白酶(包括基质金属蛋白酶和中性粒细胞弹性蛋白酶)[18]。ROS 和 RNS 通过引起肺的氧化损伤参与 COPD 的发病机制[19],蛋白酶通过破坏肺实质中的弹性蛋白导致肺气肿改变。
-
值得注意的是,非吸烟者也能发展为COPD[15],这可能与α1⁃抗胰蛋白酶(α1⁃antitrypsin,AAT)缺乏有关。AAT 是一种主要由肝细胞合成和分泌的丝氨酸蛋白酶抑制剂,保护肺组织免受蛋白酶的损伤[20],AAT缺乏会导致肺气肿改变。AAT也是众所周知的急性期蛋白,与炎症反应有关,血清AAT 水平较高的COPD患者的全身炎症反应更重,10年死亡率更高[21]。
-
2.1 AEC源性EV
-
烟草烟雾暴露会改变AEC的基因表达,并通过刺激AEC 释放EV 影响周围细胞,如上皮下成纤维细胞和免疫细胞等,在COPD发挥重要作用。
-
Fujita 等[8] 通过对原代人支气管上皮细胞和肺成纤维细胞之间通讯机制的研究发现,烟草烟雾提取物(cigarette smoke extract,CSE)诱导人支气管上皮细胞释放的EV中miR⁃210水平增加,miR⁃210通过靶向自噬相关蛋白 7(autophagy⁃related protein7, ATG7)调节肌成纤维细胞分化,可能与 COPD 的重塑有关。此外,上皮源性外泌体中miR⁃21可通过靶向冯希佩尔⁃林道蛋白(von Hippel⁃Lindau protein, pVHL)/缺氧诱导因子(hypoxia⁃inducible factor 1α, HIF ⁃1α)信号通路使α平滑肌肌动蛋白(α⁃smooth muscle actin,α⁃SMA)和Ⅰ型胶原水平升高,从而诱导肌成纤维细胞分化[22]。细胞体外研究发现,CSE处理后的支气管上皮细胞可通过降低其 EVs 中 miR⁃21水平来减轻M2巨噬细胞的极化,最终缓解 COPD发病机制中的上皮⁃间质转化(epithelial⁃mes⁃ enchymal transition,EMT)过程[23]。但是,该研究中观察到的巨噬细胞极化与Chen等[24] 的研究结果相反。Chen 等[24] 发现 CSE 处理后的支气管上皮细胞来源的外泌体促进巨噬细胞向 M1 和 M2 表型极化。此外,CSE处理后的气道上皮细胞分泌的外泌体也可以通过上调单核/巨噬细胞表面的髓系细胞表达激发受体⁃1(triggering receptor expressed on my⁃ eloid cells⁃1,TREM⁃1)的表达,促进M1巨噬细胞极化,从而促进COPD的发展[25]。因此,关于AEC来源的EV对巨噬细胞极化的具体调节作用有待进一步研究。另有研究报道,来自受损的肺泡Ⅱ型上皮细胞的外泌体长链非编码RNA(long non⁃coding RNA, lncRNA)TCONS ⁃ 00064356 促进了间充质干细胞 (mesenchymal stem cell,MSC)的增殖和迁移,并上调了与线粒体合成和转移相关的基因的表达[26],这为COPD基于MSC的治疗提供了新的思路。
-
2.2 肺巨噬细胞源性EV
-
肺巨噬细胞(lung macrophage,LM)由循环中的单核细胞分化而来,它们在平衡肺部炎症、调节组织修复和破坏方面发挥着重要而独特的作用。
-
LM 一直被认为是肺气肿的罪魁祸首,它们能产生几乎所有可疑的破坏性蛋白酶。大部分弹性溶解活性归功于基质金属蛋白酶(metalloproteinase, MMP),MMP ⁃12 可能直接分解弹性蛋白,而其他 MMP,尤其是MMP⁃10和MMP⁃28,通过影响巨噬细胞的蛋白水解和炎症活动,促进肺气肿的发展[27]。组织蛋白酶S是由巨噬细胞产生和释放的另外一种有效的弹性蛋白,与健康受试者相比,COPD患者血浆中组织蛋白酶S及其抑制剂胱抑素C的水平以及两者比值显著升高,血浆组织蛋白酶S水平和组织蛋白酶S/胱抑素C比值与严重气流限制呈负相关,可作为COPD的潜在生物标志物[28]。
-
除了通过蛋白酶等发挥破坏作用之外,LM 还可能具有潜在修复作用。体外试验发现,脂多糖可诱导巨噬细胞释放大量的 AB,并上调 AB 中 miR⁃ 221和miR⁃222表达水平,这两种AB⁃miRNA通过靶向细胞周期蛋白依赖性激酶抑制剂 1B(cyclin⁃de⁃ pendent kinase inhibitor 1B,CDKN1B)通路促进正常或恶性肺上皮细胞的增殖[29]。此外,有研究发现,急性肺损伤小鼠肺泡灌洗液中巨噬细胞来源的外泌体可以激活中性粒细胞产生白介素⁃10(interleukin 10,IL⁃10),IL⁃10可能反过来作用于巨噬细胞,促进M2 巨噬细胞极化,从而参与肺纤维化过程[30]。另有研究发现,巨噬细胞来源的外泌体可能通过向肺泡上皮细胞和肺成纤维细胞传递抗纤维化的miR⁃142⁃3p来对抗特发性肺纤维化的纤维化进展[31]。COPD或无症状吸烟者的细支气管周围纤维化和间质混浊已被报道[15],但是确切机制有待阐明。
-
2.3 中性粒细胞源性EV
-
中性粒细胞(多形核白细胞)是先天免疫反应的关键参与者,在肺部免疫反应,如吞噬、脱颗粒、中性粒细胞胞外陷阱、细胞因子和趋化因子释放以及自噬中发挥重要作用[32],一直被认为是COPD发病机制中的一种重要细胞类型。
-
在一项新的研究中,美国研究人员发现一种能将慢性炎症与COPD患者的肺部损伤之间关联在一起的致病实体,即由活化的多形核白细胞分泌的外泌体。它们携带多形核白细胞表面标志物CD63和 CD66b,最重要的是,这些外泌体通过表面的中性粒细胞弹性蛋白酶(neutrophilelastase,NE)和整合素巨噬细胞⁃1抗原(macrophage⁃1 antigen,Mac⁃1)结合并降解细胞外基质,将这种外泌体灌注到健康小鼠的肺部时,可引起COPD样肺部组织损伤[11]。进一步的研究表明,多形核白细胞分泌的NE或含NE的外泌体可通过 EGFR/MEK/ERK 以及 TGF⁃β信号通路下调肺发育过程中关键的弹性蛋白,从而导致肺功能的持续缺陷和COPD样肺表型[33]。在一项评估多形核白细胞来源的EV与COPD疾病严重程度相关性的研究中,Soni 等[34] 发现 COPD 患者支气管肺泡灌洗液中多形核白细胞来源的MV显著增加,MV水平与患者的肺功能、运动耐量、生活质量和BODE指数等临床指标密切相关。中性粒细胞虽然是抵抗胞外病原体的强大防御者,但其细胞成分也能引起各种级联反应导致炎症和纤维化形成。有研究报道,中性粒细胞来源的外泌体中较低水平的 miR⁃21 能导致气道平滑肌细胞过度增殖,进而促进重症哮喘支气管壁增厚,在哮喘的进展中发挥重要作用[35]。目前有关中性粒细胞源性EV与COPD气道重塑的关系尚未确定,还需要进一步研究来明确相关作用机制。
-
2.4 内皮细胞源性EV
-
COPD中的慢性炎症不仅会影响气道上皮细胞等肺实质部分,还会累及包括血管内皮在内的所有系统。烟草烟雾暴露后,受损的内皮细胞释放MP,即使在 COPD 患者戒烟后,其循环中的内皮性 MP (endothelial MP,EMP)仍保持较高水平,这提示烟草烟雾导致的内皮损伤持续存在[9]。
-
Jorge 等[36]发现与健康对照组相比,COPD GOLD3级患者血浆中荆豆凝集素1(Ulex europeus 1 lection,ULEX)+ EMP 水平较高,但在 COPD 急性加重期ULEX+ EMP水平下降,急性修复机制可能解释这种表现。另有研究发现,与稳定期相比,COPD加重期 CD62E+ EMP 显著升高,并与 FEV1/FVC%呈显著负相关[37]。以上研究表明携带不同生物分子的 EMP 有潜力成为预测 COPD 疾病进展和严重程度的生物标志物。Garcia ⁃Lucio 等[38] 进一步评估了 COPD 患者内皮损伤和修复能力之间的平衡,结果显示COPD患者循环中EMP水平升高,但维持和修复内皮细胞的骨髓源性祖细胞(progenitor cell,PC) 数量减少,表明COPD患者存在内皮损伤和修复能力之间的失衡,这可能是COPD患者频发心血管疾病的原因。为了降低COPD患者发生心血管疾病的风险,血液学专家指出[39]:内皮功能障碍和血小板活化是COPD患者治疗的潜在目标,因为受损的内皮涉及多种病理生理过程,如血管舒张能力降低、凝血功能增强和血小板活化增加等导致COPD罹患血栓形成的风险更高。
-
烟草烟雾暴露不仅会影响EMP的释放,也会影响EMP中miRNA的功能。有研究发现,烟草烟雾刺激内皮细胞释放到循环中的EMP 显著富集血管疾病相关的miRNA,如let⁃7d、miR⁃191和miR⁃125a,可能在烟草烟雾引起的炎症和血管重塑中发挥关键作用[40]。Let⁃7d [41] 和miR⁃191[42] 抑制内皮细胞的增殖、迁移和血管生成。这些 EMP miRNA 是否参与 COPD 的炎症反应和气道重塑还需要进一步研究证实。
-
2.5 间充质干细胞源性EV
-
间充质干细胞(mesenchymal stem cell,MSC)作为一种多能的成体干细胞,主要通过分泌活性因子和 EV 发挥再生和抗炎等作用[43]。与 MSC 相比, MSC 来源的 EV 无全细胞移植的潜在风险(如血栓形成等)、不致癌、免疫原性低且易于储存[44]。
-
已有的研究表明,MSC来源的外泌体可有效缓解支气管肺发育不良动物模型的肺泡简化、肺纤维化以及肺血管重塑,改善肺功能和肺动脉高压[45]。多种靶向心脏的工程外泌体及新型外泌体载体在动物心肌梗死模型中也取得很好疗效[46]。COPD由于发病原因和发病机制的复杂性,至今尚未发现有效治疗方法,MSC及其来源的细胞外囊泡因其具有免疫调节、抗炎、促再生等特性为COPD提供了一种新的治疗思路。Ridzuan等[47] 发现人脐带间充质干细胞(human umbilical cord mesenchymalstem cell, hUC⁃MSC)移植和应用hUC⁃MSC 来源的EV均可减少COPD大鼠模型支气管周围和血管周围炎症,减少与单核细胞炎症相关的肺泡间隔增厚,减少杯状细胞数量,从而缓解 COPD 小鼠模型的气道炎症。另有研究发现来自肺 MSC 的 EV 也可通过调控 PPARγ/ NF⁃Kb/HO⁃1轴发挥抗炎和抗氧化作用[48]。但是,Antunes等[49] 比较了健康者和肺气肿患者MSC 及其来源的 EV 对重度肺气肿动物模型的治疗作用,结果发现肺气肿患者的MSC 及其EV 不能逆转心肺功能障碍,而健康者MSC 来源的EV 可以减轻重度肺气肿模型心肺功能破坏。
-
MSC来源的EVs通过调节再生和慢性炎症等对 COPD 的积极作用提供了令人鼓舞的治疗前景,但是它们的自然释放量小,并且具有生物异质性。可喜的是,人工合成的纳米囊泡克服了天然 EV 的这些缺点。Kim等[50] 从脂肪干细胞(MSC的一种亚型) 中合成了天然外泌体数量30倍更高水平的人工纳米囊泡,并且这些含有更多成纤维细胞生长因子2 (fibroblast growth factor 2,FGF2)的人工纳米囊泡含可以更低的剂量诱导肺气肿动物模型肺泡上皮细胞增殖。此外,已有人工囊泡产品应用临床试验, Harrell 等[51] 利用胎盘组织的 MSC 设计的 MSC 衍生产品“Exo⁃d⁃MAPPS”,不仅减轻了烟草烟雾诱导的小鼠的慢性气道炎症,还在无治疗相关副作用的前提下,减轻了 COPD 患者的气道炎症和肺气肿改变,最重要的是,患者的肺功能也得到了明显的改善。
-
3 展望
-
EV 与 COPD 的研究是一个新兴并快速发展的领域,EV 优越的生理特性使我们不能忽视其在 COPD 中的潜在作用。可以通过检测细胞外液中 EV的数量、含量甚至类别并结合患者肺功能、炎症指标等相关指标来判断 COPD 严重程度及预后情况。独特的“货物运送”机制有望改善甚至避免直接吸入激素治疗COPD所导致的不良临床结果,使 EV 有望成为 COPD 的新的药物递送系统和新的治疗靶点。MSC来源的EV有望修复肺损伤甚至逆转 COPD 疾病进展,显著提高患者生活质量,成为 COPD 的有效疗法。人工囊泡克服了天然 EV 的缺点,在COPD治疗中具有巨大价值,值得未来进一步研究。
-
参考文献
-
[1] GAO Y,RAJ J U.Extracellular vesicles as unique signal⁃ ing messengers:role in lung diseases[J].Compr Physiol,2020,11(1):1351-1369
-
[2] GILL S,CATCHPOLE R,FORTERRE P.Extracellular membranevesiclesinthethreedomainsoflifeandbeyond[J].FEMS Microbiol Rev,2019,43(3):273-303
-
[3] HUANG S,ZHANG J,WAN H,et al.Plasma extracellu⁃ lar vesicles microRNA ⁃208b ⁃3p and microRNA ⁃143⁃3p as novel biomarkers for sudden cardiac death prediction in acute coronary syndrome[J].Mol Omics,2023,19(3):262-273
-
[4] LI Y,SHI X,JIA E,et al.Extracellular vesicle biomark⁃ ers for prostate cancer diagnosis:a systematic review and meta⁃analysis[J].Urol Oncol,2023,41(11):440-453
-
[5] BANG O Y,KIM E H,CHO Y H,et al.Circulating extra⁃ cellular vesicles in stroke patients treated with mesenchy⁃ mal stem cells:a biomarker analysis of a randomized trial[J].Stroke,2022,53(7):2276-2286
-
[6] MATHIEU M,MARTIN ⁃ JAULAR L,LAVIEU G,et al.Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell ⁃to ⁃ cell communication[J].Nat Cell Biol,2019,21(1):9-17
-
[7] LETSIOU E,BAUER N.Endothelial extracellular vesicles in pulmonary function and disease[J].Curr Top Membr,2018,82:197-256
-
[8] FUJITA Y,ARAYA J,ITO S,et al.Suppression of autoph⁃ agy by extracellular vesicles promotes myofibroblast dif⁃ ferentiation in COPD pathogenesis[J].J Extracell Vesi⁃ cles,2015,4(1):28388
-
[9] STRULOVICI⁃BAREL Y,STAUDT M R,KRAUSE A,et al.Persistence of circulating endothelial microparticles in COPD despite smoking cessation[J].Thorax,2016,71(12):1137-1144
-
[10] BAZZAN E,RADU C M,TINE M,et al.Microvesicles in bronchoalveolarlavage as a potential biomarker of COPD[J].Am J Physiol Lung Cell Mol Physiol,2021,320(2):L241-L245
-
[11] GENSCHMER K R,RUSSELL D W,LAL C,et al.Acti⁃ vated PMN exosomes:pathogenic entities causing matrix destruction and disease in the lung[J].Cell,2019,176(1⁃ 2):113-126
-
[12] GUO H,SU Y,DENG F.Effects of mesenchymal stromal cell ⁃ derived extracellular vesicles in lung diseases:cur⁃ rent status and future perspectives[J].Stem Cell Rev Rep,2021,17(2):440-458
-
[13] DING L,YANG J,ZHANG C,et al.Neutrophils modulate fibrogenesis in chronic pulmonary diseases[J].Front Med(Lausanne),2021,8:616200
-
[14] THERY C,WITWER K W,AIKAWA E,et al.Minimal in⁃ formation for studies of extracellular vesicles 2018(MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J].J Extracell Vesicles,2018,7(1):1535750
-
[15] HALPIN D,CRINER G J,PAPI A,et al.Global initiative for the diagnosis,management,and prevention of chronic obstructive lung disease.The 2020 GOLD science com⁃ mittee report on COVID ⁃19 and chronic obstructive pul⁃ monary disease[J].Am J Respir Crit Care Med,2021,203(1):24-36
-
[16] SUNDAR I K,LI D,RAHMAN I.Small RNA ⁃ sequence analysis of plasma ⁃ derived extracellular vesicle miRNAs in smokers and patients with chronic obstructive pulmo⁃ nary disease as circulating biomarkers[J].J Extracell Vesicles,2019,8(1):1684816
-
[17] POUWELS S D,HESSE L,FAIZ A,et al.Susceptibility for cigarette smoke⁃induced DAMP release and DAMP⁃in⁃ duced inflammation in COPD[J].Am J Physiol Lung Cell Mol Physiol,2016,311(5):L881-L892
-
[18] CHEN Y,THOMAS P S,KUMAR R K,et al.The role of noncoding RNAs in regulating epithelial responses in COPD[J].Am J Physiol Lung Cell Mol Physiol,2018,315(2):L184⁃L192
-
[19] WANG X,SHEN C,ZHU J,et al.Long noncoding RNAs in the regulation of oxidative stress[J].Oxid Med Cell Longev,2019,2019:1318795
-
[20] TORRES ⁃ DURAN M,LOPEZ ⁃ CAMPOS J L,BARRE⁃ CHEGUREN M,et al.Alpha⁃1 antitrypsin deficiency:out⁃ standing questions and future directions[J].Orphanet J Rare Dis,2018,13(1):114
-
[21] TAKEI N,SUZUKI M,MAKITA H,et al.Serum Alpha⁃1 Antitrypsin Levels and the Clinical Course of Chronic Ob⁃ structive Pulmonary Disease[J].Int J Chron Obstruct Pul⁃ mon Dis,2019,14:2885-2893
-
[22] XU H,LING M,XUE J,et al.Exosomal microRNA⁃21 de⁃ rived from bronchial epithelial cells is involved in aber⁃ rant epithelium⁃fibroblast cross⁃talk in COPD induced by cigarette smoking[J].Theranostics,2018,8(19):5419-5433
-
[23] HE S,CHEN D,HU M,et al.Bronchial epithelial cell ex⁃ tracellular vesicles ameliorate epithelial ⁃ mesenchymal transition in COPD pathogenesis by alleviating M2 macro⁃ phage polarization[J].Nanomedicine,2019,18:259-271
-
[24] CHEN Z,WU H,SHI R,et al.miRNAomics analysis re⁃ veals the promoting effects of cigarette smoke extract ⁃ treated beas ⁃2B ⁃ derived exosomes on macrophage polar⁃ ization[J].Biochem Biophys Res Commun,2021,572:157-163
-
[25] WANG L,CHEN Q,YU Q,et al.Cigarette smoke extract⁃ treated airway epithelial cells ⁃ derived exosomes promote M1 macrophage polarization in chronic obstructive pulmo⁃ nary disease[J].Int Immunopharmacol,2021,96:107700
-
[26] SONG L,PENG J,GUO X.Exosomal lncRNA TCONS_ 00064356 derived from injured alveolar epithelial type II cells affects the biological characteristics of mesenchymal stem cells[J].Life Sci,2021,278:119568
-
[27] GHARIB S A,MANICONE A M,PARKS W C.Matrix me⁃ talloproteinases in emphysema[J].Matrix Biol,2018,73:34-51
-
[28] NAKAJIMA T,NAKAMURA H,OWEN C A,et al.Plas⁃ ma cathepsin S and cathepsin S/Cystatin C ratios are po⁃ tential biomarkers for COPD[J].Dis Markers,2016,2016:4093870
-
[29] ZHU Z,ZHANG D,LEE H,et al.Macrophage ⁃ derived apoptotic bodies promote the proliferation of the recipient cells via shuttling microRNA⁃221/222[J].J Leukoc Biol,2017,101(6):1349-1359
-
[30] YE C,LI H,BAO M,et al.Alveolar macrophage ⁃ derived exosomes modulate severity and outcome of acute lung in⁃ jury[J].Aging(Albany NY),2020,12(7):6120-6128
-
[31] GUIOT J,CAMBIER M,BOECKX A,et al.Macrophage⁃ derived exosomes attenuate fibrosis in airway epithelial cells through delivery of antifibrotic miR⁃142⁃3p[J].Tho⁃ rax,2020,75(10):870-881
-
[32] PEREZ ⁃ FIGUEROA E,ALVAREZ ⁃ CARRASCO P,ORTEGA E,et al.Neutrophils:many ways to die[J].Front Immunol,2021,12:631821
-
[33] BENJAMIN J T,PLOSA E J,SUCRE J M,et al.Neutro⁃ philic inflammation during lung development disrupts elastin assembly and predisposes adult mice to COPD[J].J Clin Invest,2021,131(1):e139481
-
[34] SONI S,GARNER J L,O'DEA K P,et al.Intra ⁃alveolar neutrophil ⁃ derived microvesicles are associated with dis⁃ ease severity in COPD[J].Am J Physiol Lung Cell Mol Physiol,2021,320(1):L73-L83
-
[35] VARGAS A,MAINGUY⁃SEERS S,BOIVIN R,et al.Low levels of microRNA ⁃ 21 in neutrophil ⁃ derived exosomes may contribute to airway smooth muscle hyperprolifera⁃ tion in horses with severe asthma[J].Am J Vet Res,2024,1-8
-
[36] LASCANO J,KATZ J,CEARRAS M,et al.Association of systemic endothelial ⁃ derived and platelet ⁃ derived mic⁃ roparticles with clinical outcomes in chronic obstructive pulmonary disease[J].Chronic ObstrPulm Dis,2021,8(3):382-395
-
[37] TOKES⁃FUZESI M,RUZSICS I,RIDEG O,et al.Role of microparticles derived from monocytes,endothelial cells and platelets in the exacerbation of COPD[J].Int J Chron Obstruct Pulmon Dis,2018,13:3749-3757
-
[38] GARCIA⁃LUCIO J,PEINADO V I,de JOVER L,et al.Im⁃ balance between endothelial damage and repair capacity in chronic obstructive pulmonary disease[J].PLoS One,2018,13(4):e195724
-
[39] MALERBA M,NARDIN M,RADAELI A,et al.The po⁃ tential role of endothelial dysfunction and platelet activa⁃ tion in the development of thrombotic risk in COPD pa⁃ tients[J].Expert Rev Hematol,2017,10(9):821-832
-
[40] SERBAN K A,REZANIA S,PETRUSCA D N,et al.Struc⁃ tural and functional characterization of endothelial mic⁃ roparticles released by cigarette smoke[J].Sci Rep,2016,6(1):31596
-
[41] JI X,HUA H,SHEN Y,et al.Let⁃7d modulates the prolif⁃ eration,migration,tubulogenesis of endothelial cells[J].Mol Cell Biochem,2019,462(1⁃2):75-83
-
[42] GU Y,AMPOFO E,MENGER M D,et al.miR⁃191 suppress⁃ es angiogenesis by activation of NF⁃kappaB signaling[J].FASEB J,2017,31(8):3321-3333
-
[43] BARI E,FERRAROTTI I,TORRE M L,et al.Mesenchy⁃ mal stem/stromal cell secretome for lung regeneration:the long way through“pharmaceuticalization”for the best for⁃ mulation[J].J Control Release,2019,309:11-24
-
[44] ABREU S C,LOPES ⁃ PACHECO M,WEISS D J,et al.Mesenchymal stromal cell ⁃ derived extracellular vesicles in lung diseases:current status and perspectives[J].Front Cell Dev Biol,2021,9:600711
-
[45] 高倩茜,程锐.间充质干细胞外泌体的生物学功能及其治疗支气管肺发育不良研究进展[J].南京医科大学学报(自然科学版),2022,42(2):286-290
-
[46] 蒋日月,邓倾,周青.间充质干细胞来源外泌体治疗心肌梗死的研究进展[J].南京医科大学学报(自然科学版),2022,42(4):588-594
-
[47] RIDZUAN N,ZAKARIA N,WIDERA D,et al.Human umbilical cord mesenchymal stem cell⁃derived extracellu⁃ lar vesicles ameliorate airway inflammation in a rat model of chronic obstructive pulmonary disease(COPD)[J].Stem Cell Res Ther,2021,12(1):54
-
[48] ZULUETA A,COLOMBO M,PELI V,et al.Lung mesen⁃ chymal stem cells⁃derived extracellular vesicles attenuate the inflammatory profile of cystic fibrosis epithelial cells [J].Cell Signal,2018,51:110-118
-
[49] ANTUNES M A,BRAGA C L,OLIVEIRA T B,et al.Mes⁃ enchymal stromal cells from emphysematous donors and their extracellular vesicles are unable to reverse cardiore⁃ spiratory dysfunction in experimental severe emphysema [J].Front Cell Dev Biol,2021,9:661385
-
[50] KIM Y S,KIM J Y,CHO R,et al.Adipose stem cell⁃de⁃ rived nanovesicles inhibit emphysema primarily via an FGF2 ⁃ dependent pathway[J].Exp Mol Med,2017,49(1):e284
-
[51] HARRELL C R,MILORADOVIC D,SADIKOT R,et al.Molecular and cellular mechanisms responsible for benefi⁃ cial effects of mesenchymal stem cell ⁃ derived product “Exo⁃d⁃MAPPS”in attenuation of chronic airway inflam⁃ mation[J].Anal Cell Pathol(Amst),2020,2020:3153891
-
摘要
慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)是以不完全可逆的气流受限为特征的慢性气道炎症性疾病,是全球第 3 位死亡原因。COPD 的病理机制复杂,其具体发病机制仍不清楚。细胞外囊泡(extracellular vesicle, EV),包括外泌体、微泡(mic rovesicle,MV)和凋亡小体(apoptotic body,AB),携带细胞来源相关的多种蛋白质、脂类、DNA、 mRNA、microRNA等,参与细胞间通讯、细胞迁移、血管新生和免疫调节等过程。EV在肺部疾病中的作用引起了极大关注。文章就近年来涉及EV与COPD的相关研究作一综述。
Abstract
Chronic obstructive pulmonary disease(COPD),the third leading cause of death worldwide,is a chronic inflammatory airway disease characterized by incompletely reversible airflow limitations. The pathogenesis of COPD is complex,and the specific mechanisms are still unclear. Extracellular vesicles(EVs),including exosomes,microvesicles(MVs),and apoptotic bodies(ABs), carry various proteins,lipids,DNA,mRNA and microRNA,and other cell - derived components,participating in processes such as intercellular communication,cell migration,angiogenesis,and immune regulation. In recent years,the role of EVs in pulmonary diseases has attracted significant attention. This article provides a review of recent studies on the relationships between EVs and COPD.