-
线粒体是一种独特的细胞器,由线粒体外膜 (outer mitochondrial membrane,OMM)、线粒体内膜 (inner mitochondrial membrane,IMM)和线粒体基质组成。OMM 多孔,允许离子和不带电的小分子通过。IMM 由电子传递系统、三磷酸腺苷(adenosine5′⁃triphosphate,ATP)合酶和转运蛋白的复合物组成[1]。线粒体基质中含有 13 个结构基因的线粒体 DNA(mitochondrial DNA,mtDNA)[2],这些基因编码线粒体电子传递链(electron transport chain,ETC)复合物Ⅰ、Ⅲ、Ⅳ和Ⅴ所必需的亚基,产生 ATP,基质中还含有在三羧酸循环中参与氧化磷酸化的关键酶[3]。线粒体作为哺乳动物细胞动力源,是促进分解代谢、释放能量的工厂[4]。除能量代谢以外,线粒体还参与钙代谢、凋亡、程序性死亡等细胞过程[5]。从 ATP 生成到免疫激活等细胞活动的重要过程都离不开线粒体的调节[6]。
-
线粒体功能的核心是线粒体动力学[7],是线粒体通过融合和裂变保持动态平衡的过程[8],与线粒体的功能密切相关[9]。在生理条件下,线粒体融合和裂变的动态平衡,不仅可以维持线粒体的大小和形状,还可维持线粒体的总体分布[10]。当线粒体功能异常时,线粒体的运动性和延伸率会降低[11]。线粒体融合使线粒体延伸成相互连接的管状网络,导致其内容物(即代谢物、蛋白质和 mtDNA)混合和能量重新分配[12],可防止功能失调线粒体的局部积累[13]。相反,线粒体裂变是一个将管状网络分裂成更小、离散的细胞器的过程[14]。裂变可促进受损线粒体与正常线粒体的分离,以维持整个线粒体的正常功能[15]。线粒体融合通过转移基因产物影响线粒体功能,裂变可维持线粒体适当的数量和分布[16],线粒体融合和裂变的动态平衡在维持线粒体功能中起着重要作用[17]。
-
研究表明,线粒体融合和裂变的缺陷导致的线粒体功能障碍参与了肺水肿、肺动脉高压、慢性阻塞性肺疾病(chronic obstructive pulmonary disease, COPD)、特发性肺纤维化和新型冠状病毒肺炎等疾病的发生[18],靶向线粒体的研究可能有助于发现呼吸系统疾病新的治疗方法。
-
1 线粒体融合和裂变的分子机制
-
1.1 线粒体融合的分子机制
-
线粒体融合是两个线粒体的结合,以形成一个相互紧密连接的线粒体网络[19]。线粒体融合是真核细胞中必不可少的生理事件,因为它促进脂质和蛋白质的交换、mtDNA的融合以及对线粒体自噬的抵抗[20]。线粒体融合相关蛋白在维持线粒体完整性和功能方面起着至关重要的作用。这些蛋白包括调节 IMM融合的视神经萎缩蛋白(1 optic atrophy 1,OPA1),以及调节OMM融合的Mitofusin1/2(MFN1/2)[21]。融合过程从两个MFN1分子的对接开始,线粒体构象变化,从而驱动 MFN1 水解 GTP,导致 OMM 融合。同一个线粒体中的MFN蛋白之间形成聚合物,介导线粒体融合,相邻线粒体的MFN蛋白之间形成聚合物,以增加相邻线粒体之间的表面接触,为线粒体融合做准备[22]。OMM融合后,紧接着由OPA1调节 IMM的融合,但其调节线粒体形态的分子机制尚不清楚[23]。MFN1和MFN2介导融合方面的功能相似,但 MFN2 还有其他作用:一方面,一些研究认为 MFN2 作为内质网和线粒体之间的桥梁,促进线粒体钙摄取和线粒体膜电位(ΔΨm)的调节[24];另一方面,有研究提出MFN2的作用是防止内质网和线粒体之间过度接近,从而防止细胞毒性。关于 MFN2 在线粒体融合中的作用需要进一步的研究来充分阐明[25]。
-
1.2 线粒体裂变的分子机制
-
线粒体裂变是1个线粒体分裂成2个或多个较小线粒体的过程,是进行线粒体自噬、mtDNA 复制以及细胞分裂过程中线粒体再分布所必需的[26]。线粒体裂变由大量分子形成复杂、精确的调控,其中动力蛋白相关蛋白 1(dynamin⁃related protein 1, Drp1)及其抑制剂(mitochondrial division inhibitor 1, Mdivi ⁃1)、线粒体分裂蛋白 1(mitochondrial fission protein 1,Fis1)和线粒体分裂因子(mitochondrial fission factor,MFF)是裂变分子机制的中心组成部分[21]。Drp1 在 Ser616 位点的磷酸化促进线粒体分裂,而在 Ser637 位点的磷酸化则抑制线粒体分裂[27]。当线粒体受损时,Drp1被募集到OMM,但它不是直接与OMM结合,而是与OMM上的适配蛋白 Fis1和MFF形成复合物,通过GTP的水解和Drp1螺旋结构的收缩,OMM的完整性被破坏,开始了裂变过程[20]。Mdivi⁃1的作用是通过结合1个变构位点,选择性地靶向抑制Drp1催化GTP水解和组装成线粒体环状结构的能力,Mdivi⁃1 可诱导线粒体快速可逆融合,但不影响细胞骨架和内质网的结构与功能[27]。目前为止,调节 Drp1 募集和激活的机制尚不完全清楚。有研究发现,非肌肉肌球蛋白Ⅱ是由 2条重链和4条轻链组成的多聚体蛋白复合物,与肌动蛋白共同作用,产生机械力并诱导线粒体裂变部位的预收缩,促进Drp1招募和激活[28]。
-
2 线粒体融合和裂变与呼吸系统疾病
-
2.1 肺动脉高压(pulmonary hypertension,PH)
-
PH 是一种由不同病因引起的平均肺动脉压 (mean pulmonary artery pressure,mPAP)升高的疾病。按照病因的不同,世界卫生组织(WHO)将其分为 5 类,包括动脉性 PH、左心疾病引起的 PH、缺氧或慢性肺部疾病引起的PH、慢性血栓栓塞性PH和其他原因引起的 PH[29]。PH 的特征是内皮功能障碍、肺动脉平滑肌细胞和成纤维细胞过度增殖而导致的肺小动脉闭塞和肺血管重塑[30]。
-
除了血流动力学标准(在海平面、静息状态下,经右心导管检查测定的 mPAP≥25 mmHg)以外,在 PH发生过程中的分子变化的共同点之一是线粒体功能障碍[31]。同时,在各种 PH 中常见的血管重塑与线粒体功能紊乱有关[32]。线粒体融合和裂变的失衡影响PH的肺血管重构,以血管细胞过度增殖、抗凋亡表型为特征[33]。肺血管平滑肌细胞(pulmonary artery smooth muscle cell,PASMC)是线粒体导致PH 表型变化的主要受体细胞。近期研究表明,PH患者 PASMC 中 Drp1 表达显著升高,Ser616 位点的磷酸化比例增加,促进PASMC增殖;使用Mdivi⁃1后, PH患者的PASMC增殖显著降低[34]。而MFN2过表达导致线粒体融合途径过度激活时,则 PASMC 增殖减少,细胞凋亡增加[35]。同时有研究发现,通过抑制活化 T 细胞的核因子(nucleic factor of activated T⁃cell,NFAT)和缺氧诱导因子等转录因子的活性可以减少PAMSC的增殖,而抑制Survivin的表达可以增加 PASMC 的凋亡,进而延缓 PH 疾病的进展[36]。此外,Drp1通过阻断线粒体钙单向转运蛋白来减少线粒体Ca2+ 内流,促进肺动脉内皮细胞迁移、增殖,并抑制其凋亡,从而参与肺动脉新生血管形成,表明Drp1调控线粒体动力学在肺血管重塑中的新作用[37]。除了肺动脉平滑肌细胞及内皮细胞外,Drp1 还通过促进巨噬细胞介导的炎症反应诱导损伤的血管内膜增厚,巨噬细胞中的Drp1可能是血管疾病的潜在治疗靶点[38]。
-
由此可见线粒体融合和裂变失衡是导致PH发生的重要因素,对其相关机制的研究也可以为临床治疗PH患者提供新的策略,但目前临床结果较少,治疗的有效性仍待验证,需要进一步的探索[39]。
-
2.2 COPD
-
COPD是一种以持续气流受限和呼吸道症状为主要临床特征的慢性呼吸系统疾病,包括肺气肿、慢性支气管炎和小气道疾病 3 种病理表型[40]。 COPD的特点是肺功能进行性下降,导致发病率、入院率和病死率都比较高[41]。同时,吸烟引起肺部炎症和氧化应激增加,是COPD的主要病理生理机制之一[42]。深入探索COPD的发病机制,对于发现新的药物作用靶点和干预方案,具有重要的临床意义。
-
mtDNA中缺乏保护性组蛋白,因此在受到刺激时 mtDNA 更容易受到损伤,当 mtDNA 受损或耗尽时,线粒体融合和裂变失衡[43]。体外实验表明,香烟烟雾对COPD模型中肺泡细胞的线粒体形态呈现多种影响。无毒剂量的香烟烟雾诱导小鼠肺泡细胞线粒体伸长,同时代谢活性增加,而无线粒体损伤[44];暴露于高浓度的香烟烟雾可诱导肺泡细胞线粒体断裂,从而产生氧化应激影响线粒体功能[45]。
-
COPD患者肺泡细胞的线粒体形态和动力学发生改变。在肺气肿患者中,肺泡 2 型细胞(alveolar typeⅡ cell,ATⅡ)的线粒体与正常人ATⅡ相比,融合和裂变过程受损[46]。研究发现,与不吸烟组 COPD患者相比,吸烟组COPD患者通过上调生长抑素,增加过氧化物的生成,使ATⅡ中介导线粒体分裂的Drp1中Ser616磷酸化水平显著升高,而调控线粒体融合的MFN1、MFN2、OPA1等相关分子表达下降,导致线粒体动力学异常。同时在吸烟组 COPD 患者中观察到线粒体形态异常,如线粒体肿胀、碎片化增加、线粒体嵴减少[47]。在小鼠模型中,Drp1 表达显著增加,线粒体异常分裂,肺泡上皮细胞 (alveolar epithelial cell,AEC)凋亡。然而,使用Mdivi⁃1 干预能降低小鼠AEC凋亡,同时能缓解香烟诱导的黏膜纤毛清除功能障碍,延缓肺气肿的进展。
-
研究发现,MitoTEMPO是一种线粒体靶向超氧化物歧化酶模拟物,可以减少香烟烟雾诱导的肺泡细胞的线粒体碎裂与细胞凋亡,在COPD的治疗中可能具备一定的价值。靶向干预线粒体融合分裂相关蛋白也可延缓COPD的进展[48],如前文提到的 Drp1抑制剂Mdivi⁃1,但临床疗效仍需进一步验证。因此,针对线粒体融合和裂变的深入研究,可以为 COPD患者诊疗提供新的角度和方案[49]。
-
2.3 急性肺损伤(acute lung injury,ALI)
-
ALI是以急性进行性呼吸衰竭为特征的一种常见且病死率高的临床综合征,严重时可进展为急性呼吸窘迫综合征(acute respiratory distress syndrome, ARDS),严重威胁患者生命并影响其生存质量[50]。尽管在ALI和ARDS的药物干预和呼吸机管理方面取得了重大进展,但仍有 40%的患者最终死亡[51]。 ALI的特点是AEC凋亡[52] 和肺泡上皮屏障损坏[53],导致肺泡内液体积聚、肺泡表面活性降低和肺血气交换功能受影响[54]。
-
在ALI小鼠模型中,小鼠体内Drp1的磷酸化位点被激活,诱导线粒体裂变[55],表现为线粒体的碎片化和膜去极化,促进细胞色素c凋亡蛋白从线粒体转移到细胞质[56],细胞质中细胞色素 c 会诱导 Caspase⁃3激活,导致细胞凋亡[57]。AEC之间的紧密连接分子由封闭蛋白和封闭小带组成,并且在维持肺泡上皮屏障方面发挥着关键作用[58]。近期研究发现线粒体Drp1易位和Caspase⁃3激活降低封闭蛋白和封闭小带的表达[59],破坏肺泡上皮屏障,加速 ALI的进展。但加入Mdivi⁃1后可以抑制Drp1易位和 Caspase⁃3 活化,这也证实了 Drp1 介导的线粒体裂变在ALI中的作用,在ALI个体的AEC中调节Drp1 介导的线粒体裂变可能是ALI的潜在治疗方法。
-
MitoQ 是一种脂溶性小分子,是最具代表性的靶向线粒体的抗氧化剂[60]。MitoQ的保护作用很大程度上取决于核因子 E2 相关因子 2(nuclear factor E2 related factor 2,Nrf2)的激活[61],并通过促进多种细胞保护酶的表达来维持细胞正常功能。研究表明 MitoQ 通过激活 Nrf2 途径调节 Drp1 介导的线粒体裂变来减轻小鼠模型中的ALI[62],使用Mdivi⁃1可以抑制 ALI 中 Nrf2 和 Drp1 激活起到保护肺泡上皮屏障的作用[63],ALI的治疗有望从线粒体的融合和裂变中找到新的策略。
-
2.4 特发性肺纤维化(idiopathic pulmonary fibrosis, IPF)
-
IPF 是最难治疗的呼吸系统疾病之一,发病率逐年上升,主要发生在50岁以上的中老年人[64]。该病早期表现不明显,明确诊断后预后极差。IPF 患者发生PH、肺癌和心血管疾病的概率很高,这大大增加了临床治疗的困难[65]。在IPF的临床研究中,研究人员发现细胞出现端粒磨损和氧化应激等衰老的特征,证实了肺纤维化与细胞衰老有显著联系[66]。由此可见,细胞衰老在一定程度上促进了肺纤维化的发生,研究细胞衰老的相关机制有助于探索IPF的治疗方法。
-
线粒体的融合和裂变在多种细胞衰老机制中发挥着重要作用。在衰老细胞中,可以观察到线粒体的变化,包括mtDNA突变导致的大小增加、线粒体嵴缺失等形态学变化[67]。这些改变会损害线粒体活性,研究人员最近在IPF患者肺部的巨噬细胞、 AEC和成纤维细胞中检测到线粒体功能障碍,如在 ATⅡ细胞损伤与纤维化重塑中发现MFN1/2的异常表达[68]。
-
AEC 是 IPF 发病过程中重要的靶细胞,研究人员发现IPF中AEC线粒体增大,单细胞测序也提示 IPF中MFN2的mRNA表达升高。此外,在动物模型中发现小鼠ATⅡ中的Drp1失活,而MFN1和MFN2 的缺失会导致自发性肺纤维化,表明线粒体融合在 IPF的AEC中占主导地位[69]。
-
这些发现强调了 MFN1/2 在 IPF 中的重要性。 IPF 还与复杂的线粒体形态异常有关,包括线粒体的融合和断裂,以及线粒体嵴的改变[70],而OPA1是介导线粒体嵴融合的关键分子,在IPF中的研究较少,值得进行深入研究。
-
2.5 新型冠状病毒肺炎
-
新型冠状病毒肺炎(简称新冠肺炎)是一种由新型严重急性呼吸综合征β冠状病毒(severe acute respiratory syndrome coronavirus 2,SARS ⁃CoV ⁃2)引起的急性呼吸道疾病,该病毒是一种包膜的单链 RNA 病毒[71]。病毒感染后,约 5%的患者出现呼吸衰竭,需要住院治疗[72]。SARS⁃CoV⁃2通过破坏AEC 和 PASMC 的线粒体,引发细胞凋亡和生物能量损伤,最终造成肺泡损伤和低氧血症[73]。
-
线粒体在新冠肺炎的致病过程中起着重要作用[71]。病毒通过模拟宿主细胞中凋亡蛋白的同源物转录或通过与宿主细胞中调控凋亡的蛋白相互作用来诱导细胞凋亡[74]。研究发现,SARS⁃CoV⁃2 可以打开线粒体通透性转换孔(mitochondrial permeability transition pore,mPTP)[75],诱导线粒体膜去极化。mPTP 开放和线粒体膜去极化导致促细胞凋亡蛋白结构域受损,使 OMM 通透性增加,线粒体膜间隙释放凋亡诱导因子(apoptosis⁃inducing factor,AIF)和细胞色素 c [76]。释放的AIF和细胞色素c激活Caspase⁃3并进入细胞核,促进DNA降解,导致细胞凋亡[77]。研究表明SARS⁃CoV⁃2影响参与线粒体电子传递和细胞凋亡相关蛋白的表达[78]。通过转录组学鉴定,发现SARS⁃CoV⁃2感染上调了线粒体中总 Drp1 的表达,激活了 Drp1 Ser616 的磷酸化,增加了线粒体裂变。体外实验也表明 SARS ⁃ CoV⁃2在AEC中引起了显著的线粒体分裂,是新冠肺炎的一个重要标志[79]。
-
3 线粒体融合和裂变在呼吸系统疾病中的临床应用价值
-
探讨呼吸系统疾病发生发展机制是寻找临床精准分子治疗靶点的重要方式,线粒体融合和裂变是呼吸系统相关疾病临床治疗的潜在靶点。许多药物靶向线粒体的融合和裂变途径,维持线粒体融合和裂变的动态平衡。
-
罗氟司特可以用于治疗伴支气管炎的重症 COPD 患者[80]。研究表明,罗氟司特通过抑制 AEC 中Drp1的Ser616位点磷酸化来减少香烟烟雾诱导的细胞死亡。可见,罗氟司特通过抑制线粒体分裂而对 AEC 具有保护作用[81]。曲美他嗪通过调节线粒体融合和裂变改善肺血管重构从而治疗PH。研究表明,低剂量曲美他嗪通过提高新生儿心肌细胞中融合线粒体的比例来增加线粒体功能[82]。缺氧条件下使用曲美他嗪可以恢复PASMC 的 ΔΨm,并通过依赖 Drp1 的机制阻止缺氧诱导的 PASMC 增殖[83]。同时,曲前列尼尔(前列环素模拟物)招募前列环素受体或前列腺素E2受体激活腺苷环化酶,提高细胞内 cAMP 水平进而激活蛋白激酶 A[84],诱导 Drp1 在 Ser637 处的抑制性磷酸化,并抑制 Drp1 在 Ser616 处的刺激性磷酸化,减少线粒体裂变,抑制 PH过程中PASMC增殖的作用[85]。
-
越来越多的研究表明许多天然化合物对线粒体融合和裂变具有潜在效应。如黄芩素在急性肺损伤中通过抑制Drp1在Ser616处的磷酸化来减少线粒体裂变[86],柑橘皮中的多甲氧基黄酮可降低 COPD患者AEC中Drp1的蛋白表达水平[87]。因此,对天然化合物的疗效评估,可能成为线粒体裂变相关损伤的临床诊疗新方向[88]。
-
4 小结与展望
-
随着年龄的增加以及环境刺激因素的影响,细胞中线粒体动力学的平衡紊乱,导致线粒体过度融合或裂变,诱发多种呼吸系统疾病的发生发展。因此,进行线粒体融合和裂变相关研究,围绕线粒体动力学进行相关肺疾病的干预和药物研发成为当前的研究热点。调控线粒体动力学的平衡是肺部疾病治疗干预的有效方式,线粒体相关靶蛋白 MFN1/2、OPA1、Drp1等及其相关信号通路如Nrf2已被证明在呼吸系统相关疾病中起着重要作用。在此基础上,深入开展线粒体的融合和分裂在呼吸系统相关疾病中的发病机制以及药物靶向位点的研究,有望为临床精准诊疗呼吸系统相关疾病提供新的方案。
-
参考文献
-
[1] KÜHLBRANDT W.Structure and function of mitochon⁃ drial membrane protein complexes[J].BMC Biol,2015,13:89
-
[2] INAGI R.Organelle stress and metabolic derangement in kidney disease[J].Int J Mol Sci,2022,23(3):1723
-
[3] NASSIR F.NAFLD:mechanisms,treatments,and biomar⁃ kers[J].Biomolecules,2022,12(6):824
-
[4] WANG L,LI J,DI L J.Glycogen synthesis and beyond,a comprehensive review of GSK3 as a key regulator of meta⁃ bolic pathways and a therapeutic target for treating meta⁃ bolic diseases[J].Med Res Rev,2022,42(2):946-982
-
[5] PICARD M,SHIRIHAI O S.Mitochondrial signal trans⁃ duction[J].Cell Metab,2022,34(11):1620-1653
-
[6] QUILES J M,GUSTAFSSON Å B.The role of mitochon⁃ drial fission in cardiovascular health and disease[J].Nat Rev Cardiol,2022,19(11):723-736
-
[7] CUPERFAIN A B,ZHANG Z L,KENNEDY J L,et al.The complex interaction of mitochondrial genetics and mitochondrial pathways in psychiatric disease[J].Mol Neuropsychiatry,2018,4(1):52-69
-
[8] TANG Y C,TIAN H X,YI T,et al.The critical roles of mitophagy in cerebral ischemia[J].Protein Cell,2016,7(10):699-713
-
[9] LI D,YANG S,XING Y,et al.Novel insights and current evidence for mechanisms of atherosclerosis:mitochondrial dynamics as a potential therapeutic target[J].Front Cell Dev Biol,2021,9:673839
-
[10] XIE L L,SHI F,TAN Z,et al.Mitochondrial network structure homeostasis and cell death[J].Cancer Sci,2018,109(12):3686-3694
-
[11] BAGARIA J,BAGYINSZKY E,AN S S A.Genetics of autosomal recessive spastic ataxia of Charlevoix⁃Saguenay(ARSACS)and role of sacsin in neurodegeneration[J].Int J Mol Sci,2022,23(1):552
-
[12] JACKSON M J,POLLOCK N,STAUNTON C,et al.Redox control of signalling responses to contractile activity and ageing in skeletal muscle[J].Cells,2022,11(10):1698
-
[13] FAVARO G,ROMANELLO V,VARANITA T,et al.DRP1⁃ mediated mitochondrial shape controls calcium homeosta⁃ sis and muscle mass[J].Nat Commun,2019,10(1):2576
-
[14] ZHOU H,ZHOU H,TOAN S.Pathological roles of mito⁃ chondrial oxidative stress and mitochondrial dynamics in cardiac microvascular ischemia/reperfusion injury[J].Biomolecules,2020,10(1):E85
-
[15] TIAN H,CHEN X,LIAO J,et al.Mitochondrial quality control in stroke:from the mechanisms to therapeutic potentials[J].J Cell Mol Med,2022,26(4):1000-1012
-
[16] DONG L F,ROHLENA J,ZOBALOVA R,et al.Mitochon⁃ dria on the move:horizontal mitochondrial transfer in disease and health[J].J Cell Biol,2023,222(3):e202211044
-
[17] ZHAO J,QIAO L,DONG J,et al.Antioxidant effects of irisin in liver diseases:mechanistic insights[J].Oxid Med Cell Longev,2022,2022:3563518
-
[18] CHAN D C.Mitochondrial dynamics and its involvement in disease[J].Annu Rev Pathol,2020,15:235-259
-
[19] GAO S,HU J.Mitochondrial fusion:the machineries in and out[J].Trends Cell Biol,2021,31(1):62-74
-
[20] BEIKOGHLI KALKHORAN S,KARARIGAS G.Oestro⁃ genic regulation of mitochondrial dynamics[J].Int J Mol Sci,2022,23(3):1118
-
[21] YANG Z,WANG L,YANG C,et al.Mitochondrial mem⁃ brane remodeling[J].Front Bioeng Biotechnol,2022,9:786806
-
[22] UCHIKADO Y,IKEDA Y,OHISHI M.Current under⁃ standing of the pivotal role of mitochondrial dynamics in cardiovascular diseases and senescence[J].Front Cardio⁃ vasc Med,2022,9:905072
-
[23] VON DER MALSBURG A,SAPP G M,ZUCCARO K E,et al.Structural mechanism of mitochondrial membrane remodelling by human OPA1[J].Nature,2023,620(7976):1101-1108
-
[24] FILADI R,GREOTTI E,TURACCHIO G,et al.Mitofusin 2 ablation increases endoplasmic reticulum ⁃mitochondria coupling[J].Proc Natl Acad Sci USA,2015,112(17):E2174-E2181
-
[25] LI J,DAI A,HU R,et al.Positive correlation between PPAR gamma/PGC⁃1 alpha and gamma⁃GCS in lungs of rats and patients with chronic obstructive pulmonary disease[J].Acta Biochim Biophys Sin,2010,42(9):603-614
-
[26] KAMERKAR S C,KRAUS F,SHARPE A J,et al.Dyna⁃ min⁃related protein 1 has membrane constricting and sev⁃ ering abilities sufficient for mitochondrial and peroxisom⁃ al fission[J].Nat Commun,2018,9(1):5239
-
[27] ZHANG S,RAO S,YANG M,et al.Role of mitochondrial pathways in cell apoptosis during he⁃patic ischemia/reper⁃ fusion injury[J].Int J Mol Sci,2022,23(4):2357
-
[28] XIE C,WANG F Y,SANG Y,et al.Mitochondrial micro⁃ peptide STMP1 enhances mitochondrial fission to promote tumor metastasis[J].Cancer Res,2022,82(13):2431-2443
-
[29] HUMBERT M,KOVACS G,HOEPER M M,et al.2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension[J].Eur Heart J,2022,43(38):3618-3731
-
[30] SOUTHGATE L,MACHADO R D,GRÄF S,et al.Molec⁃ ular genetic framework underlying pulmonary arterial hypertension[J].Nat Rev Cardiol,2020,17(2):85-95
-
[31] MARSHALL J D,BAZAN I,ZHANG Y,et al.Mitochon⁃ drial dysfunction and pulmonary hypertension:cause,effect,or both[J].Am J Physiol Lung Cell Mol Physiol,2018,314(5):L782-L796
-
[32] LIANG S,YEGAMBARAM M,WANG T,et al.Mitochon⁃ drial metabolism,redox,and calcium homeostasis in pulmonary arterial hypertension[J].Biomedicines,2022,10(2):341
-
[33] COLON HIDALGO D,ELAJAILI H,SULIMAN H,et al.Metabolism,mitochondrial dysfunction,and redox homeo⁃ stasis in pulmonary hypertension[J].Antioxidants(Basel),2022,11(2):428
-
[34] OMURA J,SATOH K,KIKUCHI N,et al.ADAMTS8 promotes the development of pulmonary arterial hyperten⁃ sion and right ventricular failure:a possible novel thera⁃ peutic target[J].Circ Res,2019,125(10):884-906
-
[35] FREUND ⁃ MICHEL V,CARDOSO DOS SANTOS M,GUIGNABERT C,et al.Role of nerve growth factor in development and persistence of experimental pulmonary hypertension[J].Am J Respir Crit Care Med,2015,192(3):342-355
-
[36] ARCHER S L,WEIR E K,WILKINS M R.Basic science of pulmonary arterial hypertension for clinicians:new concepts and experimental therapies[J].Circulation,2010,121(18):2045-2066
-
[37] SHEN T,WANG N,YU X,et al.The critical role of dyna⁃ min ⁃ related protein 1 in hypoxia ⁃ induced pulmonary vascular angiogenesis[J].J Cell Biochem,2015,116(9):1993-2007
-
[38] UMEZU R,KOGA J I,MATOBA T,et al.Macrophage(Drp1)dynamin ⁃ related protein 1 accelerates intimal thickening after vascular injury[J].Arterioscler Thromb Vasc Biol,2020,40(7):e214-e226
-
[39] RYANTO G R T,SURAYA R,NAGANO T.Mitochondrial dysfunction in pulmonary hypertension[J].Antioxidants(Basel),2023,12(2):372
-
[40] HIRAMATSU K,CUI L,KUWAHARA ⁃ ARAI K.Has vancomycin ⁃ resistant Staphylococcus aureus started going it alone?[J].Lancet,2004,364(9434):565-566
-
[41] WILKINSON T M,PATEL I S,WILKS M,et al.Airway bacterial load and FEV1 decline in patients with chronic obstructive pulmonary disease[J].Am J Respir Crit Care Med,2003,167(8):1090-1095
-
[42] LINDBERG A,ERIKSSON B,LARSSON L G,et al.Seven⁃ year cumulative incidence of COPD in an age ⁃ stratified general population sample[J].Chest,2006,129(4):879-885
-
[43] YANG L,LONG Q,LIU J L,et al.Mitochondrial fusion provides an‘initial metabolic complementation’controlled by mtDNA[J].Cell Mol Life Sci,2015,72(13):2585-2598
-
[44] LIU J,WANG J,XIONG A,et al.Mitochondrial quality control in lung diseases:current research and future directions[J].Front Physiol,2023,14:1236651
-
[45] BALLWEG K,MUTZE K,KÖNIGSHOFF M,et al.Ciga⁃ rette smoke extract affects mitochondrial function in alveolar epithelial cells[J].Am J Physiol Lung Cell Mol Physiol,2014,307(11):L895-L907
-
[46] GU L,LARSON CASEY J L,ANDRABI S A,et al.Mito⁃ chondrial calcium uniporter regulates PGC⁃1α expression to mediate metabolic reprogramming in pulmonary fibro⁃ sis[J].Redox Biol,2019,26:101307
-
[47] VARANITA T,SORIANO M E,ROMANELLO V,et al.The OPA1 ⁃ dependent mitochondrial cristae remodeling pathway controls atrophic,apoptotic,and ischemic tissue damage[J].Cell Metab,2015,21(6):834-844
-
[48] MIZUMURA K,CLOONAN S M,NAKAHIRA K,et al.Mitophagy⁃dependent necroptosis contributes to the patho⁃ genesis of COPD[J].J Clin Invest,2014,124(9):3987-4003
-
[49] KOSMIDER B,LIN C R,KARIM L,et al.Mitochondrial dysfunction in human primary alveolar type Ⅱ cells in emphysema[J].EBioMedicine,2019,46:305-316
-
[50] LIU H,ZANG C,YUAN F,et al.The role of FUNDC1 in mitophagy,mitochondrial dynamics and human diseases[J].Biochem Pharmacol,2022,197:114891
-
[51] BELLANI G,LAFFEY J G,PHAM T,et al.Epidemiolo⁃ gy,patterns of care,and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries[J].JAMA,2016,315(8):788-800
-
[52] DU Y,ZHU P,WANG X,et al.Pirfenidone alleviates lipopolysaccharide ⁃ induced lung injury by accentuating BAP31 regulation of ER stress and mitochondrial injury[J].J Autoimmun,2020,112:102464
-
[53] HE B,CHEN Q,ZHOU D,et al.Role of reciprocal inter⁃ action between autophagy and endoplasmic reticulum stress in apoptosis of human bronchial epithelial cells induced by cigarette smoke extract[J].IUBMB Life,2019,71(1):66-80
-
[54] NOVA Z,SKOVIEROVA H,CALKOVSKA A.Alveolar ⁃ capillary membrane⁃related pulmonary cells as a target in endotoxin ⁃ induced acute lung injury[J].Int J Mol Sci,2019,20(4):E831
-
[55] KAPETANOVIC R,AFROZ S F,RAMNATH D,et al.Lipopolysaccharide promotes Drp1 ⁃ dependent mitochon⁃ drial fission and associated inflammatory responses in macrophages[J].Immunol Cell Biol,2020,98(7):528-539
-
[56] LI Y,DANG Q,LI Z,et al.Restoration of mitochondrial function is essential in the endothelium⁃dependent vasodi⁃ lation induced by acacetin in hypertensive rats[J].Int J Mol Sci,2022,23(19):11350
-
[57] LI P,NIJHAWAN D,BUDIHARDJO I,et al.Cytochrome c and dATP ⁃ dependent formation of Apaf ⁃ 1/caspase ⁃ 9 complex initiates an apoptotic protease cascade[J].Cell,1997,91(4):479-489
-
[58] SHORT K R,KASPER J,VAN DER AA S,et al.Influen⁃ za virus damages the alveolar barrier by disrupting epithelial cell tight junctions[J].Eur Respir J,2016,47(3):954-966
-
[59] ZEHENDNER C M,LIBRIZZI L,DE CURTIS M,et al.Caspase⁃3 contributes to ZO⁃1 and Cl⁃5 tight⁃junction dis⁃ ruption in rapid anoxic neurovascular unit damage[J].PLoS One,2011,6(2):e16760
-
[60] ZHANG J,BAO X,ZHANG M,et al.MitoQ ameliorates testis injury from oxidative attack by repairing mitochon⁃ dria and promoting the Keap1⁃Nrf2 pathway[J].Toxicol Appl Pharmacol,2019,370:78-92
-
[61] CUI L,ZHOU Q,ZHENG X,et al.Mitoquinone attenu⁃ ates vascular calcification by suppressing oxidative stress and reducing apoptosis of vascular smooth muscle cells via the Keap1/Nrf2 pathway[J].Free Radic Biol Med,2020,161:23-31
-
[62] HOU L,ZHANG J,LIU Y,et al.MitoQ alleviates LPS ⁃ mediated acute lung injury through regulating Nrf2/Drp1 pathway[J].Free Radic Biol Med,2021,165:219-228
-
[63] DUAN C,WANG L,ZHANG J,et al.Mdivi⁃1 attenuates oxidative stress and exerts vascular protection in ischemic/hypoxic injury by a mechanism independent of Drp1GTPase activity[J].Redox Biol,2020,37:101706
-
[64] HUTCHINSON J,FOGARTY A,HUBBARD R,et al.Global incidence and mortality of idiopathic pulmonary fibrosis:a systematic review[J].Eur Respir J,2015,46(3):795-806
-
[65] CAMINATI A,LONATI C,CASSANDRO R,et al.Comor⁃ bidities in idiopathic pulmonary fibrosis:an underestimated issue[J].Eur Respir Rev,2019,28(153):190044
-
[66] SCHAFER M J,WHITE T A,IIJIMA K,et al.Cellular senescence mediates fibrotic pulmonary disease[J].Nat Commun,2017,8:14532
-
[67] XU Y,MIZUNO T,SRIDHARAN A,et al.Single ⁃ cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis[J].JCI Insight,2016,1(20):e90558
-
[68] VASILEIOU P V S,EVANGELOU K,VLASIS K,et al.Mitochondrial homeostasis and cellular senescence[J].Cells,2019,8(7):E686
-
[69] LARSON ⁃ CASEY J L,VAID M,GU L,et al.Increased flux through the mevalonate pathway mediates fibrotic repair without injury[J].J Clin Invest,2019,129(11):4962-4978
-
[70] CHUNG K P,HSU C L,FAN L C,et al.Mitofusins regu⁃ late lipid metabolism to mediate the development of lung fibrosis[J].Nat Commun,2019,10(1):3390
-
[71] GATTINONI L,COPPOLA S,CRESSONI M,et al.COV⁃ ID ⁃ 19 does not lead to a“typical”acute respiratory distress syndrome[J].Am J Respir Crit Care Med,2020,201(10):1299-1300
-
[72] FU L,WANG B,YUAN T,et al.Clinical characteristics of coronavirus disease 2019(COVID ⁃ 19)in China:a systematic review and meta ⁃analysis[J].J Infect,2020,80(6):656-665
-
[73] FOX S E,AKMATBEKOV A,HARBERT J L,et al.Pul⁃ monary and cardiac pathology in African American patients with COVID ⁃ 19:an autopsy series from New Orleans[J].Lancet Respir Med,2020,8(7):681-686
-
[74] GALLUZZI L,BRENNER C,MORSELLI E,et al.Viral control of mitochondrial apoptosis[J].PLoS Pathog,2008,4(5):e1000018
-
[75] RAMACHANDRAN K,MAITY S,MUTHUKUMAR A R,et al.SARS⁃CoV⁃2 infection enhances mitochondrial PTP complex activity to perturb cardiac energetics[J].iScience,2022,25(1):103722
-
[76] LANDSHAMER S,HOEHN M,BARTH N,et al.Bid ⁃ induced release of AIF from mitochondria causes immediate neuronal cell death[J].Cell Death Differ,2008,15(10):1553-1563
-
[77] DU J K,SONG D B,LI J W,et al.Paeonol triggers apopto⁃ sis in HeLa cervical cancer cells:the role of mitochondria⁃ related caspase pathway[J].Psychopharmacology,2022,239(7):2083-2092
-
[78] LAI C C,JOU M J,HUANG S Y,et al.Proteomic analysis of up ⁃ regulated proteins in human promonocyte cells expressing severe acute respiratory syndrome coronavirus 3C⁃like protease[J].Proteomics,2007,7(9):1446-1460
-
[79] GORDON D E,JANG G M,BOUHADDOU M,et al.A SARS ⁃CoV ⁃2 protein interaction map reveals targets for drug repurposing[J].Nature,2020,583(7816):459-468
-
[80] LEE J S,PARK S J,CHO Y S,et al.Role of AMP⁃activated protein kinase(AMPK)in smoking⁃induced lung inflam⁃ mation and emphysema[J].Tuberc Respir Dis(Seoul),2015,78(1):8-17
-
[81] KYUNG S Y,KIM Y J,SON E S,et al.The phosphodies⁃ terase 4 inhibitor roflumilast protects against cigarette smoke extract⁃induced mitophagy⁃dependent cell death in epithelial cells[J].Tuberc Respir Dis(Seoul),2018,81(2):138-147
-
[82] VERDEJO H E,ROJAS A,LÓPEZ ⁃CRISOSTO C,et al.Effects of trimetazidine on right ventricular function and ventricular remodeling in patients with pulmonary artery hypertension:a randomised controlled trial[J].J Clin Med,2023,12(4):1571
-
[83] PARRA V,BRAVO ⁃SAGUA R,NORAMBUENA ⁃SOTO I,et al.Inhibition of mitochondrial fission prevents hypoxia⁃ induced metabolic shift and cellular proliferation of pul⁃ monary arterial smooth muscle cells[J].Biochim Bio⁃ phys Acta Mol Basis Dis,2017,1863(11):2891-2903
-
[84] LECHARTIER B,BERREBEH N,HUERTAS A,et al.Phenotypic diversity of vascular smooth muscle cells in pulmonary arterial hypertension:implications for thera⁃ py[J].Chest,2022,161(1):219-231
-
[85] ABU ⁃ HANNA J,ANASTASAKIS E,PATEL J A,et al.Prostacyclin mimetics inhibit DRP1⁃mediated pro ⁃ proli⁃ ferative mitochondrial fragmentation in pulmonary arterial hypertension[J].Vascul Pharmacol,2023,151:107194
-
[86] JIANG C,ZHANG J,XIE H,et al.Baicalein suppresses lipopolysaccharide⁃induced acute lung injury by regulating Drp1⁃dependent mitochondrial fission of macrophages[J].Biomed Pharmacother,2022,145:112408
-
[87] SON E S,KIM S H,RYTER S W,et al.Quercetogetin protects against cigarette smoke extract⁃induced apoptosis in epithelial cells by inhibiting mitophagy[J].Toxicol In Vitro,2018,48:170-178
-
[88] RAHMANI S,ROOHBAKHSH A,KARIMI G.Inhibition of Drp1⁃dependent mitochondrial fission by natural com⁃ pounds as a therapeutic strategy for organ injuries[J].Pharmacol Res,2023,188:106672
-
摘要
线粒体是多细胞生命不可缺少的组成部分,通过融合和裂变进行形态上的变化和空间上的重新排列以适应细胞的需求,维持能量平衡,这个过程称为线粒体动力学。大量研究表明线粒体通过融合和裂变参与细胞凋亡、细胞增殖、细胞迁移、能量代谢等多种细胞生物学过程。近年来呼吸系统疾病成为全球主要的健康问题。最新的研究发现线粒体动力学障碍在许多呼吸系统疾病的发生发展过程中起重要作用,研究线粒体动力学障碍为呼吸系统疾病形成机制提供新的视野。
Abstract
Mitochondria are an indispensable component of multicellular life. They undergo morphological changes and spatial rearrangement to meet the needs of cells and maintain energy balance through fusion and fission,a process called mitochondrial dynamics. A large number of studies have shown that mitochondria participate in a variety of cell biological processes such as apoptosis,cell proliferation,cell migration,and energy metabolism through fusion and fission. In recent years,respiratory diseases have become a major global health problem. Recent studies have found that mitochondrial dynamics disorder plays an important role in the formation of many respiratory diseases. The study of mitochondrial dynamics disorders provides a new perspective for the formation mechanism of respiratory diseases.
Keywords
pulmonary disease ; mitochondria ; mitochondrial dynamics ; fusion ; fission