-
随着社会进步和人类生活方式的演变,肥胖及其相关并发症的患病率呈现出快速上升的趋势。据预测,到2025年全球将有18%的男性和25%的女性迈入肥胖症行列[1]。肥胖状态下,体内脂肪的增长速度超过组织氧化分解的速度,导致过多的脂肪在肝、骨骼肌、心脏和胰腺等非脂肪组织器官中蓄积,形成异位脂肪沉积,进而引发器官功能障碍[2]。目前,大网膜脂肪和皮下脂肪的研究已相对成熟[3],而针对肌间脂肪组织(intramuscular adipose tissue, IMAT)的研究依然有待深入[4]。IMAT 作为一种独特的脂肪组织库,因其毗邻肌肉的解剖学特征,在维持肌肉正常功能、骨骼肌功能不良以及一系列代谢性疾病的发生发展中发挥着不可或缺的作用。在正常生理状态下,IMAT承担着储存能量、提供物质代谢原料、分泌脂肪因子及炎症因子、调节局部肌肉微环境和信号转导等功能[5-6]。当脂肪生成超出IMAT的承受能力时,会引起局部脂肪浸润,即骨骼肌异位脂肪沉积,导致骨骼肌功能不良,增加代谢性疾病的风险。尽管IMAT在1972年已被首次报道,但早期的研究主要集中于啮齿动物模型和农业研究动物模型上。直到21世纪初,随着人类疾病谱的变化,主要疾病研究转向寿命延长、延缓老化及预防代谢性疾病等相关领域,研究者们才开始针对人 IMAT 展开探索。然而,迄今为止,关于 IMAT 的基本生物学机制仍缺乏深入的研究。现有研究显示,IMAT 含量的增加与代谢性疾病、老化、活动耐力减退及骨骼肌创伤等不良事件密切相关[7]。因此,深入理解骨骼肌IMAT浸润的机制,并寻求安全、有效的干预措施,有助于延缓代谢紊乱和老化的进程。随着对肌间脂肪浸润机制的深入探索,有望为治疗肥胖及其相关并发症提供新的思路和方法。
-
1 IMAT的起源、分布和生理功能
-
1.1 IMAT的起源与分布
-
IMAT 是一种独特的脂肪组织库,主要分布在骨骼肌群之间和周围,由脂肪细胞、成纤维细胞、免疫细胞、内皮细胞等多种细胞组成[8]。IMAT的含量虽然仅占整体体脂量的1%~2%,但其具有重要的作用,如提供能量、保护骨骼肌等。随着年龄的增长, IMAT的含量也会逐渐增加,每年可能增长9~70 g,到了老年时甚至可能升至体脂总量的11%[9]。IMAT不仅分布在骨骼肌肌群周围,还散在分布于骨骼肌间隙中,为骨骼肌提供支持和营养。目前研究认为, IMAT 主要由脂肪细胞组成,但其中还含有成纤维细胞、免疫细胞、内皮细胞等其他类型的细胞。其中,脂肪细胞主要来源于纤维脂肪祖细胞(fibro⁃ adipogenic progenitor,FAP)[8],而FAP具有双向分化能力,可以根据诱导条件的不同在体内分化为脂肪细胞、成纤维细胞或成骨细胞[10]。FAP的分化方向受到其所处微环境的调控,例如在成脂培养基的作用下,FAP会分化为脂肪细胞,并表达特异性的成脂标志物,如过氧化物酶体增生物激活受体γ(peroxisome proliferator ⁃activated receptor γ,PPARγ)、瘦素及脂联素等[11-12]。此外,除了FAP可以分化为脂肪细胞外,肌肉卫星细胞(satellite cell,SC)也可在包括过氧化物酶体增殖物激活受体(peroxisome proliferator⁃ activated receptors,PPAR)、肌源性因子、白介素 (interleukin,IL)⁃4、血管内皮生长因子(vascular endo⁃ thelial growth factor,VEGF)、胰岛素样生长因子⁃1 (insulin like growth factor,IGF⁃1)、肌肉生成抑制素 (myostatin,MSTN)、IL⁃6 等的作用下,分化成为脂肪细胞[13],在脂肪含量增加时可提高IMAT存储脂肪的能力。
-
1.2 IMAT的生理功能
-
IMAT具有不同于皮下及内脏脂肪的独特解剖学位置,并主要由白色脂肪细胞构成[10],不仅具备储存多余能量的功能,还能为肌肉提供能量。此外,IMAT能分泌炎症因子,通过旁分泌的方式调节局部肌肉微环境和信号转导。与皮下和内脏脂肪相比,IMAT 的胰岛素敏感性更强。其分泌的瘦素和脂联素通过体循环,发挥内分泌作用,影响胰岛素抵抗和代谢性疾病的发生[14]。
-
在细胞内,脂滴作为脂肪储存、运输和代谢的中心,对细胞代谢起至关重要的作用。在正常生理状态下,骨骼肌中存在一定量的脂滴,被称为 IMAT。这些脂滴在细胞内起着储存能量的作用,同时参与脂肪酸的代谢和运输。然而,当脂肪摄取过度或脂肪细胞功能异常时,脂滴会被过度水解,释放出大量的游离脂肪酸(free fatty acid,FFA)进入血液。这些FFA随后与血清蛋白结合,通过血液流动进入骨骼肌。此外,骨骼肌还可以通过酰基甘油脂肪酶的催化作用,从乳糜微粒和极低密度脂蛋白中获取脂肪酸。最后,在获取了 FFA 之后,骨骼肌细胞将其引入不同的代谢途径,并进行氧化、结合成甘油三酯或存储为脂肪滴[15]。此外,腘窝脂肪垫被称为“肌间脂肪库”,它位于膝后部的腘窝。在小鼠模型中,腘窝脂肪(IMAT 库)具有较高的脂肪酸合成能力,能够将葡萄糖迅速转化为脂肪酸,其速率是附睾脂肪垫或骨骼肌的近2倍[16]。此外,在豚鼠的运动训练研究中,除了腘窝IMAT库外,其他脂肪库在进行有氧负荷训练后对葡萄糖的利用能力均下降[17]。训练后腘窝IMAT库中脂质量的减少与肌肉中蛋白质的增加呈正比,这表明IMAT可为邻近的肌肉组织提供能量代谢与物质合成所需的原料[18]。综上所述,IMAT 在正常生理状态下发挥着储存能量、提供物质代谢原料、分泌脂肪因子及炎症因子、改变局部肌肉微环境和信号转导等多种功能。然而,当脂肪摄取过度或脂肪细胞功能异常时,脂滴过度水解和FFA的释放可能导致骨骼肌功能受损,进而参与肥胖、糖尿病等疾病的发病。
-
2 IMAT导致的病理生理变化
-
2.1 IMAT浸润
-
在肥胖、损伤及衰老等病理状态下,FAP 及 SC 具有向脂肪细胞分化的潜能,导致 IMAT 浸润的发生。随着年龄的增长,身体运动机能退化,肌肉受损,以及在肥胖或疾病(如糖尿病、慢性阻塞性肺疾病、神经系统疾病等)的情况下,IMAT的含量也会相应增加。在衰老过程中,Wnt10b信号的改变能够上调关键脂肪基因的表达,从而促进IMAT的浸润[19]。此外,Notch信号通路和炎症因子也可能参与这一过程[20]。在肌营养不良的情况下,FAP高表达Wnt5a,通过 Wnt/GSK3β信号通路促进脂肪生成[21]。另一方面,线粒体生物形成减少可能会降低肌肉细胞的氧化能力,导致骨骼肌干细胞向脂肪细胞分化[22]。此外,骨骼肌中脂肪细胞数量的增加会进一步减少线粒体的生物形成,从而降低骨骼肌的脂肪酸氧化代谢能力,加剧 IMAT 的积累。因此,了解 IMAT浸润的机制以及相关影响因素对于深入理解骨骼肌功能紊乱和相关疾病的发病机制具有重要意义,为治疗策略的开发提供理论依据。
-
2.2 IMAT浸润引起机体炎症
-
IMAT 不仅包含成熟的脂肪细胞,还含有少量的血管基质成分。它可产生多种促炎和抗炎因子,如瘦素、抵抗素、脂联素及肿瘤坏死因子⁃α(tumor necrosis factor ⁃α,TNF ⁃α)等。Vella 等[23] 的研究发现,IMAT 的面积和密度与炎症指标之间存在显著的正相关关系。具体而言,腹部 IMAT 面积每增加 1 个标准差,IL⁃6、瘦素和C反应蛋白的水平会相应上升 21%、36%和 20%,而脂联素的表达则会下降 19%。这些数据提示IMAT与机体炎症之间存在显著的相关性。在肥胖状态下,IMAT 会促进炎症的发生,而炎症因子的增加也会加剧 IMAT 浸润[24]。体内大量促炎细胞因子(包括TNF⁃α和肌抑制素等) 的分泌,会进一步抑制线粒体功能,引起脂质氧化失调,导致脂质积累,从而加剧肌间脂肪变性[25-26]。故肥胖时,IMAT不仅会进一步分泌炎症因子,促进机体炎症的发生,而且机体炎症水平的升高也会进一步影响 IMAT 的功能,形成恶性循环。这种循环会导致IMAT浸润加剧,运动功能下降,进而引发代谢综合征、老化等现象。
-
2.3 IMAT浸润引起胰岛素抵抗(insulin resistance,IR)
-
在骨骼肌中,IMAT 的脂肪分解由脂蛋白脂肪酶介导,这一过程涉及脂肪甘油三酯脂肪酶(adi⁃ pose triacylglyceride lipase,ATGL)和激素敏感脂肪酶(hormone sensitive lipase,HSL)的协调作用[27]。当 IMAT浸润发生时,ATGL和HSL活性的不协调被认为是导致肥胖和2型糖尿病(type2 dibetes mellitus, T2DM)个体中骨骼肌IMAT分解失调和IR的原因[28]。 IMAT 浸润后,脂质分解的次级产物,如二酰甘油 (diacyl glycerol,DAG)、神经酰胺和其他脂质在骨骼肌细胞中积累,这些脂质代谢产物可以通过阻断胰岛素信号转导的下游效应,如葡萄糖转运蛋白⁃4 (glucose transporter⁃4,GLUT4)易位,直接诱导细胞 IR[29-30],进而导致糖尿病、肥胖等代谢综合征的发生。此外,衰老过程中线粒体脂质氧化失调也会使个体易患肌肉IR。值得注意的是,异位脂质浸润本身可能并不会直接诱导肌肉IR,但如果合并年龄增长导致的线粒体累积活性氧(reactive oxygen species, ROS)损伤,IMAT 浸润会加重肌肉 IR 的现象,这一现象在年轻耐力运动员中尤为常见,被称为“运动员悖论”[31]。但由于线粒体功能障碍随着年龄的增长,脂质氧化诱导的ROS和局部炎症导致应激信号通路的激活,如 c⁃Jun N⁃末端激酶(JNK)、IκB 激酶 (inhibitor of kappa B kinase,IKK)、蛋白激酶 C(pro⁃ tein kinase C,PKC)和 p38 ⁃丝裂原活化蛋白激酶 (p38⁃mitogen⁃activated protein kinase,p38⁃MAPK),这些都抑制胰岛素⁃PI3K⁃mTOR 信号转导[32]。此外,胰岛素⁃PI3K⁃mTOR 信号受损进一步抑制肌肉线粒体功能,导致进一步的脂质积累和脂质氧化诱导的ROS,从而随着年龄的增长而产生IMAT浸润、脂毒性和肌肉 IR 的恶性循环[33-34]。因此,IMAT 在骨骼肌脂质代谢和IR中的作用不容忽视。深入了解其功能和作用机制对预防和治疗相关疾病具有重要的科学意义和应用价值。
-
3 IMAT浸润与临床疾病
-
3.1 IMAT浸润与衰弱
-
衰弱是导致老年人机能下降和死亡的主要原因。现已被定义为一种以肌少症为基本特征的全身多系统(包括神经、代谢内分泌及免疫等)受损的非特异性状态。这种状态表现为生理储备下降、对抗打击能力减退以及应激后恢复能力降低,是最具临床意义的老年综合征[35]。衰弱的评估通常基于以下 5 项标准中的 3 项:非干涉性体重减轻、疲惫感、体力活动减少、步态速度缓慢以及低握力[36]。这些标准共同构成了对衰弱状态的全面评估体系。近期一项针对男性和女性的大型横断面研究显示,IMAT 的增加与下肢功能下降之间存在显著关联。具体而言,IMAT 含量较多的个体更容易罹患衰弱。这一发现提示IMAT可能在衰弱的发病机制中扮演着重要角色[37]。此外,炎症因子如 IL⁃6、 CXC 趋化因子配体 10(CXC chemokine ligand 10, CXCL10)和趋化因子(C⁃X3⁃C 基序)配体 1[chemo⁃ kine(C⁃X3⁃C motif)ligand 1,CX3CL1]等也被发现可以影响个体对衰弱的易感[35]。国外一项针对衰弱和非衰弱个体的对照活检研究显示,衰弱个体的 IMAT 含量明显高于非衰弱个体。这可能与 IMAT 增加导致IL⁃6等炎症因子的产生增多,进而引发肌肉炎症水平升高有关[38-39]。综上所述,IMAT浸润可能增加个体对衰弱的易感性,并加速年龄诱导的肌肉功能减退过程。
-
3.2 IMAT浸润与肌少症
-
肌少症是指随着年龄增长,肌肉质量逐渐下降,同时伴随着骨骼肌强度和功能的减退。肌肉的结构是决定其功能的重要因素,对肌肉的研究至关重要。随着年龄的增长,老年人握力和肌肉组织重量都会逐渐减少。但值得注意的是,握力的下降程度相对肌肉组织的减少更为显著。这一现象的原因在于IMAT的增加对肌肉功能产生了负面影响[40-41]。随着年龄的增长,肌少症的患病率明显上升,这主要与IMAT的累积及其引发的脂毒效应有关。脂毒效应在影响肌肉强度和肌肉量减少方面起到了关键作用。一方面,IMAT 浸润会导致脂肪组织渗透入骨骼肌中,改变肌纤维的固有排列,从而降低肌肉的力量。另一方面,IMAT和内脏脂肪一样,能产生炎症因子,引发炎症反应,引起肌肉萎缩并削弱肌肉力量。此外,IMAT还会影响肌肉的活动能力[42]。多项研究结果表明,老年人中体内 IMAT 的占比是影响肌肉活动能力的重要因素,IMAT 的出现可能导致肌肉力量减少32%~36%[43-44]。另有研究指出,股四头肌中 IMAT 的存在使得老年人的行走速度、上下楼梯以及定时步行的能力下降8%~15%[45]。值得注意的是,T2DM 患者下肢近端肌肉力量和体积的下降与糖尿病周围神经病变有关,而下肢远端肌肉力量的减少则主要归因于IMAT的累积[46]。日本的一项横向分析研究也说明,IMAT 对肌肉功能的影响甚至超越了肌肉质量的影响[47]。此外,IMAT 增加也会引起肌肉质量降低。学者们已经研究制作出含有收缩纤维的综合生物材质的腓肠肌塑型,发现脂肪含量较高的腓肠肌塑型产生的力量不如脂肪含量较低的腓肠肌塑型。这是因为脂肪的物质特性比肌肉纤维更为坚硬。当 IMAT 含量提高,生物材质的硬度会随之上升,导致纤维应力的降低,同时脂肪的包裹会使肌肉纤维发生变形,影响其与肌腱腱膜的互动,造成肌肉品质和力度的降低[48-49]。总体而言,IMAT 的增加及其脂毒性对肌肉的结构和功能产生了显著影响,会改变肌肉的几何结构,引发炎症反应,导致骨骼肌重量、质量和力量的下降,进而引发肌少症的产生。
-
3.3 IMAT浸润与T2DM
-
IMAT的堆积与T2DM的发生呈显著正相关,这一关联在排除年龄和性别因素后依然显著。然而, IMAT 的堆积与体重、体重指数(body mass index, BMI)及腰围的相关性不显著。其潜在的生理机制可能包括 IMAT 和脂肪细胞的增多,从而产生多种脂肪因子。同时,过量的脂肪酸氧化生成了大量不完全氧化的活性中间产物,这些脂肪因子和中间产物可以抑制胰岛素信号的传递,引起IR[50]。另外,高脂肪含量可能会导致肌肉内线粒体数量减少,过度的脂肪酸氧化可能会损伤线粒体功能,导致骨骼肌内的IR。另一方面,肌肉中脂肪含量的增加也可能降低肌肉的营养血液流动,进一步抑制胰岛素和受体的结合,引发IR[51-52]。总的来说,IMAT是IR和 T2DM发病的重要驱动因素。
-
4 IMAT浸润的干预措施
-
根据现有的研究证据,持久且有规律的体育锻炼是防治 IMAT 浸润最为直接也最为有效的办法[53]。Prior等[54] 研究发现,半年的有氧训练有助于降低60岁以上男性小腿部位的IMAT含量,并可显著改善空腹胰岛素水平和糖耐量。另一项研究显示, 55岁及以上的人群每周接受3次的阻力训练,有助于减少大腿肌肉的IMAT[55]。另一个随机对照实验发现,60岁及以上的老年人群每周进行1~2次30 min的快行锻炼,能够有效防止大腿肌肉的IMAT浸润[56]。对于长久进行阻力训练的老年人来说,如果中断训练24周,四肢肌的脂肪侵袭会增加,但在恢复训练12周后,脂肪侵袭会有显著减轻,同时骨骼肌的质量没有明显变化[57-58]。这些研究表明,无论是长期还是短期增加运动量或活动强度都可以降低IMAT 含量,并且改善肌肉功能不良。因此,鼓励老年人进行持久而有规律的体育锻炼对于防治IMAT浸润和改善肌肉功能具有重要意义。
-
此外,一项采用磁共振成像技术前瞻性评估体成分的研究表明,长达24个月的能量限制饮食不仅能够有效减重,同时还能显著减少全身、皮下、内脏以及 IMAT 的体积[59],这一发现为饮食干预在体脂调控中的重要性提供了有力证据。另有研究针对 BMI≥40 kg/m2 的肥胖患者群体进行了深入探讨。结果显示,在接受 Roux⁃en⁃Y 胃旁路术(roux⁃en⁃Y gastric bypass,RYGB)后的12个月内,女性患者的体重出现了显著下降,与此同时,她们的IMAT也呈现出了大幅下降(约50%)。值得注意的是,在手术后的 12~24 个月,尽管患者的体重基本保持稳定,但 IMAT仍然呈现持续下降趋势(约14%)[60]。这一发现进一步强调了饮食干预在降低IMAT方面的重要作用。
-
目前,针对 IMAT 的干预方法主要集中在体育训练和饮食调整两个方面。然而,药物干预手段 (如维生素D、p38 MAPK抑制剂、利克飞龙等)目前仍处于动物实验阶段,尚未实际应用于人类[61]。未来仍需进一步研究,以更深入地理解不同干预手段对减少IMAT及改善代谢健康的独立影响。
-
5 总结和展望
-
脂肪组织的主要功能是储存脂质、参与能量代谢,对于维持机体的能量平衡具有重要作用。当体内脂肪含量过多,超出脂肪组织的承受能力时,脂肪会堆积在脂肪组织以外的器官中。目前,关于肥胖时异位脂肪沉积及其不良影响的研究多集中在皮下及内脏脂肪组织上。在机体内除皮下及内脏脂肪外,尚存在一类分布于骨骼肌周围的脂肪组织,即IMAT。在生理状态下,IMAT能为局部骨骼肌组织提供能量。然而,在肌营养不良症、肌萎缩、肥胖和糖尿病等病理状态下,IMAT 中的过多脂滴会溢出,导致骨骼肌脂肪浸润。这种情况会引发机体炎症和IR,增加衰弱、肌少症和糖尿病等临床代谢性疾病的发生风险。目前骨骼肌IMAT浸润的确切来源仍不够明确,相关机制仍有待深入研究。积极探索减少IMAT含量的新方法,对改善IR和提高肌肉功能有重要意义,有利于糖尿病、肥胖症、肌少症等慢性病的防治,提高患者的生活质量,并减轻患者个人和社会经济负担。
-
参考文献
-
[1] NCD Risk Factor Collaboration.Trends in adult body⁃mass index in 200 countries from 1975 to 2014:a pooled analy⁃ sis of 1698 population ⁃ based measurement studies with 19.2 million participants[J].Lancet,2016,387(10026):1377-1396
-
[2] LONGO M,ZATTERALE F,NADERI J,et al.Adipose tis⁃ sue dysfunction as determinant of obesity⁃associated meta⁃ bolic complications[J].Int J Mol Sci,2019,20(9):2358
-
[3] 张文娜,朱浩,王晓东.血管周围脂肪与心血管疾病的研究进展[J].南京医科大学学报(自然科学版),2023,43(5):725-731
-
[4] HUCIK B.Intramuscular adipose tissue:a cause for con⁃ cern[J].J Physiol,2020,598(19):4151-4152
-
[5] BEGAYE L,SIMCOX J A.Intramuscular adipocytes:a buried adipose tissue depot deserving more exploration[J].J Lipid Res,2019,60(4):753-754
-
[6] HAUSMAN G J,BASU U,DU M,et al.Intermuscular and intramuscular adipose tissues:bad vs.good adipose tis⁃ sues[J].Adipocyte,2014,3(4):242-255
-
[7] KITAGAWA F,OGAWA M,YOSHIKO A,et al.Factors related to trunk intramuscular adipose tissue content ⁃ a comparison of younger and older men[J].Exp Gerontol,2022,168:111922
-
[8] XU Z,YOU W,CHEN W,et al.Single⁃cell RNA sequenc⁃ ing and lipidomics reveal cell and lipid dynamics of fat in⁃ filtration in skeletal muscle[J].J Cachexia Sarcopenia Muscle,2021,12(1):109-129
-
[9] CHENG X,JIANG S,PAN B,et al.Ectopic and visceral fat deposition in aging,obesity,and idiopathic pulmonary fibrosis:an interconnected role[J].Lipids Health Dis,2023,22(1):201
-
[10] ZHANG T,LI J,LI X,et al.Intermuscular adipose tissue in obesity and related disorders:cellular origins,biologi⁃ cal characteristics and regulatory mechanisms[J].Front Endocrinol(Lausanne),2023,14:1280853
-
[11] YANG J,VAMVINI M,NIGRO P,et al.Single ⁃cell dis⁃ section of the obesity⁃exercise axis in adipose⁃muscle tis⁃ sues implies a critical role for mesenchymal stem cells[J].Cell Metab,2022,34(10):1578-1593
-
[12] GIULIANI G,ROSINA M,REGGIO A.Signaling path⁃ ways regulating the fate of fibro/adipogenic progenitors(FAPs)in skeletal muscle regeneration and disease[J].FEBS J,2022,289(21):6484-6517
-
[13] XU J,STRASBURG G M,REED K M,et al.Temperature and growth selection effects on proliferation,differentia⁃tion,and adipogenic potential of turkey myogenic satellite cells through frizzled⁃7⁃mediated wnt planar cell polarity pathway[J].Front Physiol,2022,13:892887
-
[14] GOODPASTER B H,BERGMAN B C,BRENNAN A M,et al.Intermuscular adipose tissue in metabolic disease[J].Nat Rev Endocrinol,2023,19(5):285-298
-
[15] AL SAEDI A,DEBRUIN D A,HAYES A,et al.Lipid me⁃ tabolism in sarcopenia[J].Bone,2022,164:116539
-
[16] KANNAN R,PALMQUIST D L,BAKER N.Contribution of intermuscular fat to lipogenesis from dietary glucose carbon in mice[J].Biochim Biophys Acta,1976,431(2):225-232
-
[17] MATTACKS C A,SADLER D,POND C M.The effects of exercise and dietary restriction on the activities of hexoki⁃ nase and phosphofructokinase in superficial,intra⁃abdom⁃ inal and intermuscular adipose tissue of guinea ⁃ pigs[J].Comp Biochem Physiol B,1987,87(3):533-542
-
[18] BAGCHI D P,MACDOUGALD O A.Identification and dissection of diverse mouse adipose depots[J].J Vis Exp,2019(149):10.3791/59499
-
[19] KUWAHARA Y,KISHIMOTO K N,ITOIGAWA Y,et al.Fatty degeneration and Wnt10b expression in the supra⁃ spinatus muscle after surgical repair of torn rotator cuff tendon[J].J Orthop Surg(Hong Kong),2019,27(3):2309499019864817
-
[20] MARINKOVIC M,FUOCO C,SACCO F,et al.Fibro⁃adi⁃ pogenic progenitors of dystrophic mice are insensitive to NOTCH regulation of adipogenesis[J].Life Sci Alliance,2019,2(3):e201900437
-
[21] REGGIO A,ROSINA M,PALMA A,et al.Adipogenesis of skeletal muscle fibro/adipogenic progenitors is affected by the WNT5a/GSK3/beta ⁃ catenin axis[J].Cell Death Differ,2020,27(10):2921-2941
-
[22] WANG S,LIU J,YAO Y,et al.Polystyrene microplastics⁃ induced ROS overproduction disrupts the skeletal muscle regeneration by converting myoblasts into adipocytes[J].J Hazard Mater,2021,417:125962
-
[23] VELLA C A,ALLISON M A.Associations of abdominal intermuscular adipose tissue and inflammation:the multi⁃ ethnic study of atherosclerosis[J].Obes Res Clin Pract,2018,12(6):534-540
-
[24] LIVSHITS G,KALINKOVICH A.Inflammaging as a com⁃ mon ground for the development and maintenance of sar⁃ copenia,obesity,cardiomyopathy and dysbiosis[J].Age⁃ ing Res Rev,2019,56:100980
-
[25] GRAPENTINE S,SINGH R K,BAKOVIC M.Skeletal muscle consequences of phosphatidylethanolamine syn⁃ thesis deficiency[J].Function(Oxf),2023,4(4):zqad020
-
[26] MEYER G A,SHEN K C.A unique sarcopenic progres⁃ sion in the mouse rotator cuff[J].J Cachexia Sarcopenia Muscle,2022,13(1):561-573
-
[27] GRABNER G F,XIE H,SCHWEIGER M,et al.Lipoly⁃ sis:cellular mechanisms for lipid mobilization from fat stores[J].Nat Metab,2021,3(11):1445-1465
-
[28] LAIR B,LAURENS C,VAN DEN BOSCH B,et al.Novel insights and mechanisms of lipotoxicity⁃driven insulin re⁃ sistance[J].Int J Mol Sci,2020,21(17):6358
-
[29] LIU Z J,ZHU C F.Causal relationship between insulin re⁃ sistance and sarcopenia[J].Diabetol Metab Syndr,2023,15(1):46
-
[30] PARK S S,SEO Y K.Excess accumulation of lipid im⁃ pairs insulin sensitivity in skeletal muscle[J].Int J Mol Sci,2020,21(6):1949
-
[31] KAKEHI S,TAMURA Y,TAKENO K,et al.Endurance runners with intramyocellular lipid accumulation and high insulin sensitivity have enhanced expression of genes related to lipid metabolism in muscle[J].J Clin Med,2020,9(12):3951
-
[32] YUNG J H M,GIACCA A.Role of c⁃Jun N⁃terminal ki⁃ nase(JNK)in obesity and type 2 diabetes[J].Cells,2020,9(3):706
-
[33] KIM K H,CHOI S,ZHOU Y,et al.Hepatic FXR/SHP ax⁃ is modulates systemic glucose and fatty acid homeostasis in aged mice[J].Hepatology,2017,66(2):498-509
-
[34] LI C W,YU K,SHYH⁃CHANG N,et al.Pathogenesis of sarcopenia and the relationship with fat mass:descriptive review[J].J Cachexia Sarcopenia Muscle,2022,13(2):781-794
-
[35] 杨锦竹,何凌骁,方亚.老年衰弱生物标志物研究进展[J].中国公共卫生,2023,39(8):1073-1077
-
[36] YANG Z C,LIN H,JIANG G H,et al.Frailty is a risk fac⁃ tor for falls in the older adults:a systematic review and meta ⁃ analysis[J].J Nutr Health Aging,2023,27(6):487-595
-
[37] VISSER M,KRITCHEVSKY S B,GOODPASTER B H,et al.Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79:the health,aging and body composition study[J].J Am Geriatr Soc,2002,50(5):897-904
-
[38] ADDISON O,DRUMMOND M J,LASTAYO P C,et al.In⁃ tramuscular fat and inflammation differ in older adults:the impact of frailty and inactivity[J].J Nutr Health Ag⁃ ing,2014,18(5):532-538
-
[39] BROGNARA L,LUNA O C,TRAINA F,et al.Inflamma⁃ tory biomarkers and gait impairment in older adults:a sys⁃ tematic review[J].Int J Mol Sci,2024,25(3):1368
-
[40] YOSHIKO A,SHIOZAWA K,NIWA S,et al.Association of skeletal muscle oxidative capacity with muscle func⁃ tion,sarcopenia ⁃ related exercise performance,and intra⁃ muscular adipose tissue in older adults[J].Geroscience,2024,46(2):2715-2727
-
[41] 王瑾,赵婷,王馥婕,等.老年肌肉衰减人群的营养干预与人体成分研究[J].南京医科大学学报(自然科学版),2019,39(11):1654-1657
-
[42] FARSIJANI S,SANTANASTO A J,MILJKOVIC I,et al.The relationship between intermuscular fat and physical performance is moderated by muscle area in older adults[J].J Gerontol A Biol Sci Med Sci,2021,76(1):115-122
-
[43] GOODPASTER B H,CARLSON C L,VISSER M,et al.Attenuation of skeletal muscle and strength in the elderly:the health ABC study[J].J Appl Physiol(1985),2001,90(6):2157-2165
-
[44] MIZUKAMI Y,ONISHI H,MIFUKU Y,et al.The role of fat indices as factors leading to sarcopenia in older adults residing in underpopulated areas[J].J Clin Biochem Nutr,2024,74(1):70-73
-
[45] MARCUS R L,ADDISON O,DIBBLE L E,et al.Intra⁃ muscular adipose tissue,sarcopenia,and mobility func⁃ tion in older individuals[J].J Aging Res,2012,2012:629637
-
[46] VAN EETVELDE B L M,LAPAUW B,PROOT P,et al.The impact of sensory and/or sensorimotor neuropathy on lower limb muscle endurance,explosive and maximal muscle strength in patients with type 2 diabetes mellitus [J].J Diabetes Complications,2020,34(6):107562
-
[47] AKAZAWA N,OKAWA N,HINO T,et al.Dysphagia is more strongly associated with increased intramuscular adi⁃ pose tissue of the quadriceps than with loss of muscle mass in older inpatients[J].Nutr Res,2019,65:71-78
-
[48] RAHEMI H,NIGAM N,WAKELING J M.The effect of intramuscular fat on skeletal muscle mechanics:implica⁃ tions for the elderly and obese[J].J R Soc Interface,2015,12(109):20150365
-
[49] PALLAORO M,MODINA S C,FIORATI A,et al.To⁃ wards a more realistic in vitro meat:the cross talk be⁃ tween adipose and muscle cells[J].Int J Mol Sci,2023,24(7):6630
-
[50] MESINOVIC J,ZENGIN A,DE COURTEN B,et al.Sar⁃ copenia and type 2 diabetes mellitus:a bidirectional rela⁃ tionship[J].Diabetes Metab Syndr Obes,2019,12:1057-1072
-
[51] CHANDRASEKARAN P,WEISKIRCHEN R.The role of obesity in type 2 diabetes mellitus ⁃an overview[J].Int J Mol Sci,2024,25(3):6630
-
[52] NISHIDA Y,NISHIJIMA K,YAMADA Y,et al.Whole ⁃ body insulin resistance and energy expenditure indices,serum lipids,and skeletal muscle metabolome in a state of lipoprotein lipase overexpression[J].Metabolomics,2021,17(3):26
-
[53] AL SAEDI A,DUQUE G,STUPKA N.Targeting intramus⁃ cular adipose tissue expansion to preserve contractile function in volumetric muscle loss:a potentially novel therapy?[J].Curr Opin Pharmacol,2021,58:21-26
-
[54] PRIOR S J,JOSEPH L J,BRANDAUER J,et al.Reduc⁃ tion in midthigh low⁃density muscle with aerobic exercise training and weight loss impacts glucose tolerance in older men[J].J Clin Endocrinol Metab,2007,92(3):880-886
-
[55] MARCUS R L,ADDISON O,KIDDE J P,et al.Skeletal muscle fat infiltration:impact of age,inactivity,and exer⁃ cise[J].J Nutr Health Aging,2010,14(5):362-366
-
[56] ZOICO E,CORZATO F,BAMBACE C,et al.Myosteato⁃ sis and myofibrosis:relationship with aging,inflammation and insulin resistance[J].Arch Gerontol Geriatr,2013,57(3):411-416
-
[57] TAAFFE D R,HENWOOD T R,NALLS M A,et al.Alter⁃ ations in muscle attenuation following detraining and re⁃ training in resistance ⁃trained older adults[J].Gerontolo⁃ gy,2009,55(2):217-223
-
[58] MADRID D A,BEAVERS K M,WALKUP M P,et al.Ef⁃ fect of exercise modality and weight loss on changes in muscle and bone quality in older adults with obesity[J].Exp Gerontol,2023,174:112126
-
[59] SHEN W,CHEN J,ZHOU J,et al.Effect of 2⁃year caloric restriction on organ and tissue size in nonobese 21⁃ to 50⁃ year⁃old adults in a randomized clinical trial:the CALER⁃ IE study[J].Am J Clin Nutr,2021,114(4):1295-1303
-
[60] TORO⁃RAMOS T,GOODPASTER B H,JANUMALA I,et al.Continued loss in visceral and intermuscular adipose tissue in weight ⁃ stable women following bariatric sur⁃ gery[J].Obesity(Silver Spring),2015,23(1):62-69
-
[61] 谭玲玲,杨茗.老年人脂肪肌的研究进展[J].中华老年医学杂志,2020,39(6):732-736
-
摘要
伴随着人类疾病谱的改变,肥胖及其并发症已成为重要的健康危险因素。在正常生理状态下,骨骼肌中存在一定量的脂滴,这被称为肌间脂肪。然而,当机体肥胖时,脂滴的生成速率超过消耗,导致脂肪组织的存储能力超负荷,进而引发异位脂肪沉积。这种肌间脂肪的过度积累会严重干扰骨骼肌的正常功能,并在肌少症、肥胖及糖尿病的发生和发展过程中发挥关键作用。尽管肌间脂肪浸润在肥胖及相关代谢性疾病中的重要性已得到广泛认可,但其具体的调控机制尚不明确。因此,探索新的策略和方法以改善肌间脂肪浸润的状况,不仅有助于更深入理解这些疾病的发病机制,还可能为治疗上述疾病提供全新的视角和思路。文章全面阐述了肌间脂肪组织的生理功能,以及在病理状态下导致肌间脂肪浸润的机制。同时,对目前对肌间脂肪浸润干预手段的研究进展进行综述,以期为治疗与肌间脂肪浸润相关的临床疾病提供潜在的治疗策略和方法。
Abstract
With changes of human disease spectrum,obesity and its complications have become important health risk factors. Under normal physiological conditions,there is a certain amount of lipid droplets in skeletal muscle,known as intramuscular fat. However, when the body becomes obese,the rate of lipid droplet generation exceeds consumption,leading to the overload of adipose tissue and resulting in ectopic fat deposition. This excessive accumulation of intramuscular fat severely disrupts the normal function of skeletal muscle and plays an important role in the occurrence and development of sarcopenia,obesity and diabetes. Although the importance of intramuscular fat infiltration in obesity and related metabolic diseases is widely recognized,its specific regulatory mechanism remains unclear. Therefore,exploring new strategies and methods to improve intramuscular fat infiltration not only helps us to better understand the pathogenesis of these diseases but also provide new perspectives for the treatment of these diseases. The core content of this article lies in comprehensively elucidating the physiological functions of intramuscular fat tissue and the mechanisms leading to intramuscular fat infiltration under pathological conditions. Additionally,the research progress on the intervention for intramuscular fat infiltration is reviewed,aiming to provide potential therapeutic strategies for the treatment of clinical diseases related to intramuscular fat infiltration.
Keywords
intramuscular fat tissue ; obesity ; insulin resistance ; frailty ; sarcopenia ; type 2 diabetes mellitus