-
随着人们生活质量的提高,饮食结构发生改变,肥胖的发病率也与日俱增。世界肥胖联合会在 2023 年发布的《世界肥胖地图》中预测,全球年龄 >5岁的人群中,肥胖率将由2020年的14%上升至 2035年的24%,人数将达到近20亿[1]。肥胖与相关的胰岛素抵抗、脂代谢异常、高血压及代谢综合征已成为严重的社会性健康问题[2],然而肥胖发生发展的机制仍存在较大争议,肥胖时食欲反而增加、减重困难,这种恶性循环产生的具体机制尚未明确[3]。 既往的研究和干预手段多集中于外周器官生理过程或解剖结构[4],有学者指出现有的肥胖治疗手段存在 3 个主要缺陷:①缺乏特异性,不良反应多; ②许多作用机制未明;③主要抑制肠道吸收和食欲,而非增加能量消耗。人们急需提高对肥胖的认识,寻找更好的方式防治肥胖[5]。
-
近年来,“能量平衡模型”(energy balance model, EBM)被提出。研究者认为,大脑是调节体重的主要器官,能够整合来自环境中食物消化吸收的外部信号以及来自体内外周器官代谢的内部信号,调控能量代谢平衡[6-8]。其中,下丘脑是调节代谢的重要中枢,含有各种特化的神经元组成的不同核团,可整合来自外部环境和外周器官的代谢信号,再通过许多复杂的调节回路来平衡食物摄入和能量消耗以达到能量稳态。根据EBM推测,近几十年来肥胖人口的增加主要是由于饮食成分与饮食偏好等不断向高糖、高脂转变,破坏了体内的一些代谢调节回路,使得原本完整的负反馈调节系统进入“失代偿期”,推动肥胖的发生发展。下丘脑中除成熟神经元细胞、星形胶质细胞、少突胶质细胞、小胶质细胞外,尚存在一类具有自我更新能力和多向分化潜能的神经干细胞(neural stem cell,NSC),即下丘脑神经干细胞(hypothalamic neural stem cell,htNSC)[9]。有别于传统的对于下丘脑各个核团神经元细胞以及各种胶质细胞的研究,近年来针对htNSC的探索可从成体神经发生和外泌体分泌等新角度阐释肥胖发生发展过程中摄食与能量消耗改变的机制,也为寻找潜在的治疗靶点提供了全新的思路与方向。
-
1 下丘脑是调控能量稳态的中枢
-
1.1 下丘脑整合代谢信号并调控能量平衡
-
下丘脑是调节代谢最重要的中枢,含有各种特化的神经元组成的核团,如弓状核(arcuate nucleus, ARC)、室旁核(paraventricular nucleus,PVN)、腹内侧核(ventromedial nucleus,VMN)、下丘脑外侧区 (later hypothalamus area,LHA)等,可感知和整合来自外部环境和外周器官的代谢信号,通过复杂的调控网络调节相应的生理反应,对食物摄入及能量消耗进行短效和长期调节,从而响应机体的动态能量需求以适应不同环境因素的影响,最终维持能量代谢稳态[10-11]。其中,位于第三脑室附近的ARC属于中基底下丘脑(mediobasal hypothalamus,MBH),是最具特征的摄食与能量消耗调节核团。ARC中,刺鼠相关肽(agouti ⁃ related peptide,AgRP)/神经肽 Y (neuropeptide Y,NPY)神经元主要发挥促进食欲的作用,而阿黑皮素原(pro⁃opiomelanocortin,POMC) 神经元主要发挥抑制食欲的作用。外部环境的变化一方面通过视觉、嗅觉等信号直接传入中枢,另一方面改变胃肠道、脂肪、肝脏等外周器官向中枢传递的神经或内分泌信号,以上两种信号可促进或抑制AgRP/NPY神经元和POMC神经元分泌对应的食欲调节神经肽,如 AgRP、NPY、黑素细胞刺激素 (α⁃melanocyte⁃stimulating hormone,α⁃MSH)等,投射至 PVN、VMN、LHA 等核团的相关二级神经元及受体,最终通过产生饥饿感或饱腹感以调控食欲,以及通过自主神经系统调控外周器官的能量消耗,以维持能量平衡[12-16]。
-
1.2 下丘脑调节回路失衡的研究现状
-
来自外部环境与外周器官的营养代谢信号如何引发下丘脑调节回路紊乱仍众说纷纭。肥胖是一种全身慢性低度炎症状态已被人们广泛认识[17-18]。 Cai等[19] 通过总结近年来的相关研究,在2019年提出了“下丘脑微炎症”的概念,认为肥胖时下丘脑中亦处于非典型的慢性低度炎症状态,下丘脑中神经元细胞、星形胶质细胞、小胶质细胞以及htNSC中炎症通路被激活,并产生和释放新的炎症因子进一步促进微炎症环境,导致各类细胞的形态和功能改变,使得下丘脑调节回路受损,外周器官能量摄入与消耗失衡,最终诱导相关疾病如肥胖、代谢综合征的发生发展。“下丘脑微炎症”理论有别于单一的神经或激素调节,更具整体观,从炎症网络的角度更好地将肠道、脂肪组织等外周器官与代谢中枢相联系,在阐明长期饮食结构改变导致代谢调节回路破坏方面更具说服力。
-
MBH 是下丘脑调节回路失衡机制研究的重点区域[20-21],这一脑区位于脑室周围,特点是具有相对较大的血管周围空间、高度特化的室管膜细胞和开窗毛细血管,导致此处的血脑屏障并不完整[22]。由于MBH独特的位置及结构,位于此处的各类细胞得以直接感知来自血液循环中的代谢信号,并作出应答与改变。因此,MBH是探究下丘脑与外周器官之间互相感知与调控机制的核心门户,薄弱的血脑屏障亦使得此处成为治疗干预的理想靶区[23]。htNSC 亦分布于MBH,且拥有成熟神经元细胞和胶质细胞所欠缺的成体神经发生与外泌体调控功能,在代谢失衡的机制研究与治疗尝试方面有独特优势,已取得了突破性进展[9]。
-
2 htNSC的生物学特性
-
2.1 htNSC与成体神经发生
-
在成体哺乳动物脑中有一类具有自我更新能力和多向分化潜能的细胞,负责脑细胞的发生与再生,被称为NSC。既往研究认为,NSC主要存在于2个 NSC库中,分别为侧脑室的脑室下区(subventricular zone,SVZ)和海马齿状回的颗粒下区(subgranular zone,SGZ)[24]。近期研究表明,除SVZ和SGZ这2个熟为人知的NSC库外,成体哺乳动物的下丘脑中还存在着第 3 个能够生成新生神经细胞的区域。 Huang 等[25] 于 1998 年首次报道了成体动物的下丘脑中仍存在新生神经元细胞的现象。此后,Kokoeva 等[26] 在2007年使用溴脱氧尿苷(bromodeoxyuridine,BrdU)标记法证实了在出生后位于小鼠下丘脑靠近第三脑室附近的区域存在着神经发生的过程。 Sousa⁃Ferreira等[27] 成功从新生大鼠的下丘脑中分离并体外培养了悬浮生长的下丘脑神经球,这些神经球在经过分化条件培养后可分化成为各种成熟的神经元细胞,并表达相应的标志物。SOX2和Nestin 是两种NSC的标志蛋白,通过对SOX2和Nestin进行检测,Li等[28] 确定了在出生后小鼠的MBH、正中隆起(median eminence,ME)和第三脑室侧壁均存在着 htNSC,它们具有完整的NSC功能,在不同条件下可被诱导分化为不同的成熟神经细胞,包括神经元细胞、星形胶质细胞和少突胶质细胞等。以上研究均表明,成体下丘脑中存在第3个 NSC 库——htNSC。 htNSC 可在成体下丘脑中通过增殖、迁移和分化形成各种新的神经元细胞,这对神经元的更新以及损伤的修复都具有十分重要的意义[29]。
-
2.2 htNSC的分泌功能
-
htNSC 在神经球状态即可分泌多种下丘脑肽,包括 AgRP、NPY、POMC 等调控摄食功能的肽类激素。且在经过分化条件培养成为对应的成熟神经元细胞后,这些下丘脑肽的表达量进一步增加[27]。 Tang等[30] 发现,除上述下丘脑肽外,小鼠htNSC还可产生胰岛素、胰高血糖素、生长抑素等胰腺肽,并且通过对胰岛素启动子活性进行分选可筛选出htNSC 的一个亚群,具有感受葡萄糖水平并分泌胰岛素的功能,用于移植治疗可获得适度的抗糖尿病作用。这表明,htNSC 能够分泌多种肽类激素调控机体的能量摄入与代谢过程,具有内分泌与代谢性疾病的治疗潜力。
-
除分泌肽类激素外,htNSC 尚具有分泌外泌体的功能。外泌体是一种膜性囊泡,其内容物包括 mRNA、微小 RNA(microRNA,miRNA)及功能性蛋白质等,外泌体可通过与靶细胞膜融合进入相邻或远处的细胞,发挥细胞间信息传递与调控的功能[31]。既往多项研究表明,NSC分泌的外泌体可在神经发育、成体神经发生、神经保护、神经损伤后修复及免疫调节中发挥关键的调控作用[32]。而下丘脑作为能量平衡的调节中枢,这一脑区NSC分泌的外泌体在调控代谢方面有其重要且独特的功能。 Zhang等[33] 研究发现,小鼠htNSC分泌的外泌体中含有丰富的miRNA,是小鼠脑脊液中外泌体miRNA最主要的来源,远比成熟神经元细胞、星形胶质细胞、海马NSC来源的更丰富,对机体能量平衡发挥重要的调控作用。
-
3 htNSC与肥胖的相关研究
-
3.1 成体神经发生调控能量平衡
-
Pierce等[34] 的研究发现,在AgRP神经元基因敲除的小鼠中,htNSC可增殖并分化为新的AgRP神经元以改善厌食,这表明成体神经发生可能是一种代偿机制,有助于对环境和损伤作出反应,维持能量平衡。Lee等[35] 通过对不同年龄段的小鼠进行高脂饮食(high⁃fat diet,HFD)喂养和 BrdU 标记,发现喂食1个月HFD的成年小鼠MBH中神经发生率较对照组大幅增加,而使用辐照法特异性抑制MBH的神经发生后,小鼠体重和脂肪量明显减少,且氧耗、能量消耗和总活动量显著升高,这表明在短期HFD喂养后,成年小鼠MBH中活跃的神经发生降低了机体的能量消耗并促进了脂肪堆积,最终导致体重增加与肥胖发生。而Li等[28] 的研究发现,长期(4个月) HFD喂养的成年小鼠MBH中的神经发生较对照组显著减少。进一步的机制研究揭示,长期HFD喂养导致htNSC中的炎症通路IKKβ/NF⁃κB特异性激活,一方面调控细胞凋亡导致htNSC耗损,另一方面通过 Notch 信号通路导致 htNSC 向厌食神经元如 POMC神经元分化的能力受损,最终造成小鼠暴饮暴食和体重增加,发展为肥胖和糖尿病前期。胡晓泉等[36] 的研究发现,果糖可激活 TLR4 介导的炎症通路,从而促进猪htNSC增殖与分化,进而提高促食神经肽 AgRP 的分泌以促进食欲。以上研究提示, htNSC 对不同营养状态较敏感,可呈现出不同的增殖能力与分化方向,调控能量摄入与消耗。
-
3.2 htNSC外泌体调控能量平衡
-
Zhang等[33] 的研究发现,使用年轻小鼠htNSC分泌的外泌体治疗后,老年小鼠下丘脑中NF⁃κB、肿瘤坏死因子⁃α、白介素⁃6等炎症基因表达量明显降低,说明这些外泌体miRNA 可以起到抑制下丘脑炎症的作用,具有极强的改善代谢紊乱的潜力。路宗博等[37] 使用转基因技术使得小鼠内源性多不饱和脂肪酸含量增加,从而改变了 htNSC 分泌的外泌体 miRNA,起到抑制下丘脑炎症、改善肥胖的作用。进一步的miRNA差异表达分析提示,小鼠htNSC分泌的外泌体miRNA可下调炎症因子的表达,亦可调节脂质代谢相关基因表达。
-
当下,直接运用干细胞进行治疗的相关研究普遍面临着风险性大及伦理道德审核难以通过等问题[38],而利用干细胞自身所分泌的或者基于干细胞培养出的类器官(organoid)所分泌的外泌体来治疗相关疾病则具有更低的风险性,面临更少的伦理道德问题,拥有更好的研究价值与临床转化前景[39-40]。探究htNSC的外泌体功能,为预防和治疗肥胖等代谢性疾病开辟了崭新的道路。
-
3.3 htNSC是“下丘脑微炎症”的重要部分
-
上述研究均表明,htNSC 是“下丘脑微炎症”理论的重要组成部分,这些位于MBH区域的细胞极易受到“下丘脑微炎症”的影响。当IKKβ/NF⁃κB等炎症通路被激活后,htNSC 增殖分化能力和分泌外泌体的功能发生改变,最终影响了摄食以及外周器官糖脂代谢等能量平衡过程,在外周营养状态改变 (如 HFD)引发下丘脑调节回路破坏的过程中起关键作用。
-
htNSC 在一定条件下亦可抑制下丘脑炎症,发挥防治代谢性疾病的作用。除前文已述研究外, Zhang 等[33] 还通过基因技术生成了 IκBα⁃htNSC,这类htNSC能够抵抗NF⁃κB介导的炎症,可在“下丘脑微炎症”的环境中存活下来,避免因htNSC耗损而引起的代谢损害。Liu等[41] 的研究发现,Hnscr是一种主要在小鼠htNSC中特异性表达的长链非编码RNA (long non⁃coding RNA,lncRNA),特异性敲除htNSC 中的Hnscr会加重HFD诱导的胰岛素抵抗和肝脏脂肪变性,特异性过表达 Hnscr 则获得了抑制 NF⁃κB 活化的效果,从而减轻了HFD小鼠的下丘脑炎症,改善了胰岛素信号转导通路异常激活所介导的糖脂代谢异常。总之,针对htNSC的研究可为防治肥胖及代谢综合征提供大量可行性较佳的全新靶点。
-
4 小结与展望
-
肥胖及代谢综合征已成为当下重要的健康问题,既往对于改善肥胖的研究多停留于对肠道、脂肪、肝脏等外周器官的干预上,而随着研究水平的提高,人们对能量代谢中枢即下丘脑的重视程度不断提高。下丘脑作为体内能量代谢的中枢,尤其是 MBH 这一区域中的 htNSC 可感受外周环境与外周器官的能量信号与代谢因子,并作出相应的反应,包括增殖分化成特定的神经元细胞、分泌含有抑制炎症功能的外泌体以减轻炎症状态等。而当内外环境改变程度超出htNSC的调节水平时,下丘脑对于维持机体能量平衡的保护作用便会减弱,导致调节回路失衡。通过对htNSC的起源及作用的研究,有助于提高我们对机体能量代谢机制的认知水平,并从全局上和根源上理解能量代谢紊乱的发生发展过程,为预防及治疗肥胖及代谢综合征提供新的思路。
-
参考文献
-
[1] World Obesity Federation.World obesity atlas 2023[EB/OL].(2023-02-24)[2024-01-01].https://data.worldo⁃ besity.org/publications/?cat=19
-
[2] WANG H H,LEE D K,LIU M,et al.Novel insights into the pathogenesis and management of the metabolic syn⁃ drome[J].Pediatr Gastroenterol Hepatol Nutr,2020,23(3):189-230
-
[3] CAREAU V,HALSEY L G,PONTZER H,et al.Energy compensation and adiposity in humans[J].Curr Biol,2021,31(20):4659-4666
-
[4] PERDOMO C M,COHEN R V,SUMITHRAN P,et al.Contemporary medical,device,and surgical therapies for obesity in adults[J].Lancet,2023,401(10382):1116-1130
-
[5] MUKHERJEE S,DIÉGUEZ C,FERNØ J,et al.Obesity wars:hypothalamic sEVs a new hope[J].Trends Mol Med,2023,29(8):622-634
-
[6] HALL K D,FAROOQI I S,FRIEDMAN J M,et al.The energy balance model of obesity:beyond calories in,calories out[J].Am J Clin Nutr,2022,115(5):1243-1254
-
[7] SPEAKMAN J R,HALL K D.Carbohydrates,insulin,and obesity[J].Science,2021,372(6542):577-578
-
[8] HAO S,YANG Y,HELMY M,et al.Neural regulation of feeding behavior[J].Adv Exp Med Biol,2020,1284:23-33
-
[9] PLAKKOT B,DI AGOSTINO A,SUBRAMANIAN M.Implications of hypothalamic neural stem cells on aging and obesity⁃associated cardiovascular diseases[J].Cells,2023,12(5):769
-
[10] DE ARAUJO I E,SCHATZKER M,SMALL D M.Re⁃ thinking food reward[J].Annu Rev Psychol,2020,71:139-164
-
[11] WATTS A G,KANOSKI S E,SANCHEZ⁃WATTS G,et al.The physiological control of eating:signals,neurons,and networks[J].Physiol Rev,2022,102(2):689-813
-
[12] SAKERS A,DE SIQUEIRA M K,SEALE P,et al.Adi⁃ pose ⁃ tissue plasticity in health and disease[J].Cell,2022,185(3):419-446
-
[13] 龚雪娜,贾婷,张浩,等.肠脑轴参与动物食欲的调节机制[J].生命的化学,2021,41(1):61-67
-
[14] ROSSI M A.Control of energy homeostasis by the lateral hypothalamic area[J].Trends Neurosci,2023,46(9):738-749
-
[15] HENNINGSEN J B,SCHEELE C.Brown adipose tissue:a metabolic regulator in a hypothalamic cross talk?[J].Annu Rev Physiol,2021,83:279-301
-
[16] KOUIDHI S,CLERGET⁃FROIDEVAUX M S.Integrating thyroid hormone signaling in hypothalamic control of me⁃ tabolism:crosstalk between nuclear receptors[J].Int J Mol Sci,2018,19(7):E2017
-
[17] ARTEMNIAK⁃WOJTOWICZ D,KUCHARSKA A M,PYŻ⁃ AK B.Obesity and chronic inflammation crosslinking[J].Cent Eur J Immunol,2020,45(4):461-468
-
[18] 张文娜,朱浩,王晓东.血管周围脂肪与心血管疾病的研究进展[J].南京医科大学学报(自然科学版),2023,43(5):725-731
-
[19] CAI D,KHOR S.“Hypothalamic microinflammation”par⁃ adigm in aging and metabolic diseases[J].Cell Metab,2019,30(1):19-35
-
[20] FAN S,GUO W,XIAO D,et al.Microbiota⁃gut⁃brain axis drives overeating disorders[J].Cell Metab,2023,35(11):2011-2027
-
[21] GABANYI I,LEPOUSEZ G,WHEELER R,et al.Bacterial sensing via neuronal Nod2 regulates appetite and body temperature[J].Science,2022,376(6590):eabj3986
-
[22] HEISS C N,GRAVERT E,HULTÉN M,et al.MyD88 deficiency,but not gut microbiota depletion,is sufficient to modulate the blood ⁃brain barrier function in the medio⁃ basal hypothalamus[J].Mol Neurobiol,2022,59(6):3755-3766
-
[23] LIU T M,XU Y,YI C X,et al.The hypothalamus for whole⁃ body physiology:from metabolism to aging[J].Protein Cell,2022,13(6):394-421
-
[24] PELLEGRINO G,TRUBERT C,TERRIEN J,et al.A comparative study of the neural stem cell niche in the adult hypothalamus of human,mouse,rat and gray mouse lemur(Microcebus murinus)[J].J Comp Neurol,2018,526(9):1419-1443
-
[25] HUANG L,DEVRIES G J,BITTMAN E L.Photoperiod regulates neuronal bromodeoxyuridine labeling in the brain of a seasonally breeding mammal[J].J Neurobiol,1998,36(3):410-420
-
[26] KOKOEVA M V,YIN H,FLIER J S.Evidence for consti⁃ tutive neural cell proliferation in the adult murine hypo⁃ thalamus[J].J Comp Neurol,2007,505(2):209-220
-
[27] SOUSA⁃FERREIRA L,ÁLVARO A R,AVELEIRA C,et al.Proliferative hypothalamic neurospheres express NPY,AGRP,POMC,CART and Orexin ⁃A and differentiate to functional neurons[J].PLoS One,2011,6(5):e19745
-
[28] LI J X,TANG Y Z,CAI D S.IKKβ/NF⁃κB disrupts adult hypothalamic neural stem cells to mediate a neurodegen⁃ erative mechanism of dietary obesity and pre⁃diabetes[J].Nat Cell Biol,2012,14(10):999-1012
-
[29] MU W,LI S,XU J,et al.Hypothalamic Rax + tanycytes contribute to tissue repair and tumorigenesis upon onco⁃ gene activation in mice[J].Nat Commun,2021,12(1):2288
-
[30] TANG Y,ZUNIGA⁃HERTZ J P,HAN C,et al.Multifaceted secretion of htNSC ⁃ derived hypothalamic islets induces survival and antidiabetic effect via peripheral implanta⁃ tion in mice[J].Elife,2020,9:e52580
-
[31] 赫义君,盛云露,夏凡,等.高脂饮食通过小肠上皮组织外泌体促进心脏纤维化[J].南京医科大学学报(自然科学版),2023,43(5):663-668
-
[32] BONETTO V,GRILLI M.Neural stem cell⁃derived extra⁃ cellular vesicles:mini players with key roles in neurogen⁃ esis,immunomodulation,neuroprotection and aging[J].Front Mol Biosci,2023,10:1187263
-
[33] ZHANG Y,KIM M S,JIA B,et al.Hypothalamic stem cells control ageing speed partly through exosomal miR⁃ NAs[J].Nature,2017,548(7665):52-57
-
[34] PIERCE A A,XU A W.De novo neurogenesis in adult hypothalamus as a compensatory mechanism to regulate energy balance[J].J Neurosci,2010,30(2):723-730
-
[35] LEE D A,BEDONT J L,PAK T,et al.Tanycytes of the hypothalamic Median eminence form a diet ⁃ responsive neurogenic niche[J].Nat Neurosci,2012,15(5):700-702
-
[36] 胡晓泉.果糖对猪下丘脑神经干细胞增殖分化及采食调控机能的影响[D].广州:华南农业大学,2017
-
[37] 路宗博,张盈月,葛科立,等.内源性n⁃3多不饱和脂肪酸对下丘脑神经干细胞来源外泌体miRNA的调节[J].食品科学,2022,43(13):140-145
-
[38] 张秋菊,周吉银,蒋辉.我国干细胞临床研究现状与伦理问题分析[J].中国医学伦理学,2022,35(3):259-262
-
[39] JI X,ZHOU S,WANG N,et al.Cerebral⁃organoid⁃derived exosomes alleviate oxidative stress and promote LMX1A ⁃ dependent dopaminergic differentiation[J].Int J Mol Sci,2023,24(13):11048
-
[40] KIM S W,WOO H J,KIM E H,et al.Neural stem cells derived from human midbrain organoids as a stable source for treating Parkinson’s disease:midbrain organoid⁃ NSCs(Og ⁃NSC)as a stable source for PD treatment[J].Prog Neurobiol,2021,204:102086
-
[41] LIU Y,GUO Y F,PENG H,et al.Hypothalamic Hnscr regulates glucose balance by mediating central inflamma⁃ tion and insulin signal[J].Cell Prolif,2023,56(1):e13332
-
摘要
近年来,作为能量代谢的中枢,下丘脑在肥胖发生发展中的作用已愈发得到重视。下丘脑中存在一类控制神经发生的干细胞,称为下丘脑神经干细胞(hypothalamic neural stem cell,htNSC),其除了具有成体神经发生的作用外,还可感受机体代谢状态并作出反应,表现为改变分化方向与分泌外泌体功能、抑制炎症通路活化等,从而调节机体能量代谢平衡。通过对下丘脑及 htNSC 的研究,可深入了解肥胖时机体能量代谢紊乱背后的机制,并寻找针对肥胖及代谢综合征的潜在治疗靶点。
Abstract
In the recent years,as the center of energy metabolism,the role of hypothalamus in the development of obsity has been increasingly emphasised. Hypothalamic neural stem cells(htNSCs)which control adult neurogenesis play a crucial role in sensing the metabolic state of the body and maintaining energy balance by altering differentiation pathways,exosome functions,and mitigating inflammatory. By studying the hypothalamus and htNSCs,we can gain a better understanding of the mechanisms behind energy metabolism disorders in obesity and identify potential therapeutic targets for obesity and metabolic syndrome.
Keywords
obesity ; energy balance ; hypothalamus ; neural stem cell ; exosome