-
一氧化氮(nitric oxide,NO)是一种气体信号分子,参与多种生理功能的调节,包括舒张血管平滑肌、抑制血小板聚集、调节机体免疫功能等,在神经、心血管、免疫等多个系统中均发挥重要作用[1]。在中枢神经系统中 NO 可作为神经递质参与神经信号传递,影响学习记忆、认知能力、情绪兴趣等多种生物学功能。在正常水平下,NO 参与中枢神经系统生理功能的维持,具有神经保护作用,然而当 NO水平增加时则表现出神经毒性作用[2]。近年来研究表明,阿尔茨海默病(Alzheimer’s disease, AD)、帕金森病(Parkinson’s disease,PD)、多发性硬化(multiple sclerosis,MS)、抑郁症、自闭症谱系障碍(austim spectrum disorder,ASD)等多种神经精神疾病的发病均与 NO 的水平升高密切相关[3-4]。文章综述了 NO 在中枢神经系统中的生理作用与致病机制,探讨了 NO 与多种神经精神疾病的关系,为神经精神疾病的发病机制及治疗研究提供思路。
-
1 NO在中枢神经系统中的合成与生理作用
-
1.1 NO在中枢神经系统中的合成
-
NO由一氧化氮合酶(nitric oxide synthase,NOS) 通过一系列氧化还原反应催化 L ⁃精氨酸分解生成。在氧气和烟酰胺腺嘌呤二核苷酸磷酸(nicotin⁃ amide adenine dinucleotide phosphate,NADPH)存在的条件下,L⁃精氨酸分解生成L⁃瓜氨酸和NO[4]。除了 NOS 介导的酶促反应外,NO 还可以在酸性条件下由亚硝酸盐还原生成[5]。
-
NOS 有 3 种亚型,分别为神经元型 NOS(neuro⁃ nal NOS,nNOS)、诱导型 NOS(inducible NOS,iNOS) 和内皮型 NOS(endothelial NOS,eNOS)。nNOS 和 eNOS广泛存在于神经组织中,对细胞内Ca2+ 水平具有高度依赖性,过量的谷氨酸与 N⁃甲基⁃D⁃天冬氨酸受体(N⁃methyl⁃D⁃aspartate receptor,NMDAR)结合,通过细胞内Ca2+ 水平升高触发nNOS和eNOS激活,使得NO生成增加。iNOS通常不在脑组织中表达,但在炎症诱导下,小胶质细胞和星形胶质细胞可出现iNOS表达上调,以不依赖于Ca2+ 的方式增加 NO的产生[6]。
-
1.2 NO在中枢神经系统中的生理作用
-
NO 主要通过 NO/cGMP 信号通路发挥作用[7]。 NO 激活可溶性鸟苷酸环化酶(soluble guanylate cyclase,sGC),sGC 将鸟嘌呤⁃5’⁃三磷酸(guanosine triphosphate,GTP)转化为环磷酸鸟苷(cyclic guano⁃ sine monophosphate,cGMP),cGMP 参与多种信号转导途径,在多种生理功能的调节中发挥重要作用。 cGMP 浓度升高可激活 cGMP 依赖性蛋白激酶 (cGMP⁃dependent protein kinase,PKG),PKG通过磷酸化不同底物,产生多种生物学效应,如通过增加 cAMP 应答元件结合蛋白(cAMP response element binding protein,CREB)磷酸化诱导长期记忆[5]。cGMP 还可靶向激活环核苷酸门控(cyclic nucleotide⁃gated, CNG)离子通道,参与感觉知觉和成人海马神经发生的调节[7]。CY6463 是一种 sGC 刺激剂,可通过促进 cGMP生成,增加NO/sGC/cGMP信号转导,通过恢复 NO信号缺陷发挥对神经退行性疾病的治疗作用[8]。 NO除了通过与cGMP构成信号通路这一经典途径外,还可通过诱导S⁃亚硝基化、S⁃谷胱甘肽酰化和酪氨酸硝化等蛋白质翻译后修饰发挥非经典途径作用[1]。
-
NO可作为神经递质通过逆行性扩散的方式参与突触间信号传递,具有调节突触可塑性的作用[5],可通过 NO/cGMP 途径诱导长时程增强(long ⁃term potentiation,LTP)。LTP与学习和记忆密切相关,因此当大脑病理状态引起NO功能失调时可出现学习与记忆障碍[9]。
-
2 NO介导中枢神经系统病理损伤的机制
-
在炎症状态和组织损伤等条件下,体内活性氧 (reactive oxygen species,ROS)/活性氮(reactive nitro⁃ gen species,RNS)水平急剧升高,通过与多种大分子相互作用介导氧化应激损伤。RNS由NO与超氧阴离子反应生成,包括亚硝酸根离子(NO2-)、二氧化氮 (NO2)、过氧亚硝酸盐(ONOO-)等[10],和ROS一样活性极强,可通过脱氧核糖核酸(deoxyribonucleic acid, DNA)分子损伤、脂质过氧化、蛋白质修饰、线粒体损伤等途径造成细胞功能失调甚至死亡。在多种神经精神疾病中可见 RNS 水平升高以及氧化应激通路的激活[4],其中神经元死亡、脱髓鞘、少突胶质细胞功能障碍等神经病理现象均与RNS相关[11]。
-
ONOO-是一种强氧化剂和硝化剂,除一般氧化应激损伤外,还可通过硝基化酪氨酸残基介导硝化应激。在生理 pH 下大部分 ONOO-以过氧亚硝酸 (ONOOH)的形式存在。ONOOH非常不稳定,可自发分解生成二氧化氮自由基(·NO2)和羟基自由基 (·OH)。这些活性自由基可以从酪氨酸(tyrosine, Tyr)中提取1个氢原子,形成酪氨酸自由基(·Tyr)。 ·Tyr与·NO2重新结合生成3⁃硝基酪氨酸(3⁃nitroty⁃ rosine,3⁃NT)[12]。3⁃NT的形成是众多神经精神疾病发病机制中的关键性因素之一,在神经退行性疾病模型中可见脑脊液3⁃NT水平升高,在给予神经保护性治疗后3⁃NT水平降低[13]。酪氨酸硝基化通过催化蛋白失活、结构蛋白异常组装以及干扰细胞内信号级联反应等途径在神经精神疾病中发挥作用[12]。许多神经变性相关蛋白均可见酪氨酸硝化修饰,如肌萎缩性侧索硬化症中的超氧化物歧化酶和神经丝轻链蛋白、PD中的α⁃突触核蛋白(α⁃synuclein,α⁃syn) 和酪氨酸羟化酶(tyrosine hydroxylase,TH)、AD中的 tau蛋白等[14](表1)。
-
除氧化应激与硝化应激外,NO还可介导亚硝化应激。NO与ROS的反应产物,如N2O3或NO+,可通过与蛋白质的半胱氨酸硫醇基团反应,在侧链硫醇上添加一个NO基团,该过程称为S⁃亚硝基化[15]。S⁃亚硝基化主要通过改变蛋白质构象与活性,诱导蛋白错误折叠、改变蛋白质⁃蛋白质相互作用以及影响蛋白质亚细胞定位,从而激活病理性信号通路,导致神经元毒性[16]。蛋白质错误折叠和纤维化引起的蛋白质聚集体异常积聚是多种神经退行性疾病的病理特征与发病机制,S⁃亚硝基化是导致这些蛋白质错误折叠并聚集的重要机制之一[16]。
-
病理性高浓度 NO 通过氧化/硝化/亚硝化应激和NO/cGMP信号通路介导一系列病理损伤,如线粒体损伤、神经发生抑制、血脑屏障破坏等,在神经精神疾病的发生中发挥重要作用(图1)。
-
2.1 线粒体损伤与神经兴奋性毒性
-
NO及其衍生物对线粒体的损伤作用主要表现为抑制线粒体呼吸、激活氧化/硝化/亚硝化应激以及诱导线粒体通透性转变(mitochondrial permeability transition,MPT)。NO 通过S⁃亚硝基化、亚硝酸盐结合等方式作用于复合体Ⅰ、Ⅱ、Ⅲ、Ⅳ和Ⅴ,抑制复合体活性,破坏线粒体的呼吸链,导致ATP消耗,从而诱导细胞凋亡、坏死等[17]。呼吸链抑制会增加ROS生成,NO与之反应生成RNS,从而激发氧化/硝化/亚硝化应激,进一步损伤线粒体。氧化应激损伤还会导致 MPT,膜间隙正离子进入基质导致膜两侧离子梯度消失,使得线粒体膜电位无法维持,氧化磷酸化解偶联,引起ATP消耗介导的细胞坏死[18]。另一方面MPT使得线粒体内部渗透压改变,线粒体肿胀导致膜破裂,释放出膜间蛋白激活细胞凋亡途径[19]。
-
NO 可诱导神经兴奋性毒性,其机制也与线粒体呼吸抑制相关。神经兴奋性毒性由兴奋性神经递质谷氨酸介导,谷氨酸过度释放导致NMDAR 持续激活,使得Ca2+ 内流增加,神经元细胞内Ca2+ 超载,从而激活下游细胞死亡信号通路,导致神经元细胞死亡。而NO通过促进星形胶质细胞内储存的Ca2+ 释放,刺激其囊泡性谷氨酸胞吐,使得谷氨酸释放增多。此外,NO还通过抑制线粒体呼吸,使神经元去极化,增加NMDAR对谷氨酸的敏感性[20]。因此, NO 可促进谷氨酸释放增加,并通过线粒体呼吸抑制导致神经元去极化,从而产生神经兴奋性毒性。同时谷氨酸介导的神经兴奋性毒性也会对线粒体造成损伤[21]。在多种神经退行性疾病中均可见线粒体损伤与神经兴奋性损伤的证据[21]。
-
图1 NO介导中枢神经系统病理损伤的机制
-
Figure1 Mechanisms of NO mediating pathological dam⁃ ages of central nervous system
-
2.2 神经发生抑制
-
神经发生是神经干细胞(neural stem cell,NSC) 增殖、分化、迁移形成新生神经元,以代替受损神经元并维持神经元功能的过程。神经发生损伤加速神经退行性疾病的发生,在AD、PD、亨廷顿病等多种神经退行性疾病中均可见神经元数量减少及功能异常[22]。NSC增殖是神经发生的必要过程,不同 NO 浓度水平调控 NSC 增殖。低浓度 NO 通过表皮生长因子(epidermal growth factor,EGF)下游信号通路促进 NSC 增殖[23],而病理性高浓度 NO 则表现出抑制神经发生的作用。
-
炎症刺激小胶质细胞产生的NO具有抗NSC增殖的作用,可通过介导 EGF 受体硝化阻止 ERK/ MAPK 途径介导的正常增殖信号转导,从而导致 NSC 增殖受阻[24]。在 C 型尼曼⁃匹克病小鼠中可见 NSC 中iNOS 表达升高,NO 通过激活糖原合成酶激酶 3β和 Caspase⁃3 诱导细胞凋亡,抑制 NSC 自我更新。NOS抑制剂可恢复NSC的自我更新能力,并部分恢复NSC 的分化能力,使神经元退化标志物Fluoro Jade C染色阳性的退行性神经元数量减少[25]。
-
在神经元和 NSC 中,nNOS 的细胞定位存在差异,对神经发生的调控作用也不同。nNOS位于NSC 的细胞核中,在神经元则主要分布于细胞质。NSC 中 nNOS 通过激活端粒酶刺激神经发生,而神经元来源的 nNOS 产生的细胞外 NO 通过阻碍环磷腺苷效应元件结合蛋白的激活,减少 nNOS 在 NSC 中的表达,从而对神经发生产生负向调控作用[23]。
-
2.3 血脑屏障损伤
-
血⁃脑屏障的组成结构包括脑血管内皮细胞、周细胞、血管平滑肌细胞、星形胶质细胞、小胶质细胞和基底膜[26]。血管内皮细胞之间的紧密连接形成连续屏障,是血⁃脑屏障保护作用最重要的保障。 NO具有血管舒张作用,因此病理性高浓度NO可导致血⁃脑屏障破坏,增加血⁃脑屏障通透性[27],使用 NOS抑制剂可以缓解血管舒张和血⁃脑屏障破坏[28]。血⁃脑屏障通透性增加使得炎症因子等有害物质通过,与脑中蛋白质、DNA等发生相互作用,导致病理性沉积物形成和神经细胞死亡。某些情况下,血⁃脑屏障损伤还与脑水肿的发生相关[29]。
-
2.4 脑源性神经营养因子(brain⁃derived neurotrophic factor,BDNF)分泌减少
-
BDNF具有神经营养作用,与神经元增殖分化、突触可塑性、LTP以及学习和记忆等脑功能有密切联系[30]。BDNF对神经系统具有营养、保护作用,多种神经精神疾病患者的BDNF水平降低[31]。研究表明,病理性高浓度NO可通过NO/cGMP/PKG信号通路下调1,4,5⁃三磷酸肌醇敏感钙库中Ca2+ 的释放,从而使BDNF分泌减少[32]。使用NO抑制剂可恢复 BDNF正常分泌,改善学习记忆功能[30]。
-
2.5 铁稳态失衡
-
铁是脑中多种生理功能的关键辅助因子,细胞内铁稳态的改变会导致神经毒性[33]。许多神经精神疾病常常伴有铁沉积的病理现象,包括AD、PD、肌萎缩性脊髓侧索硬化症等[34]。铁调节蛋白(iron⁃ regulatory protein,IRP)是一种 RNA 结合蛋白,通过与铁反应元件(iron⁃responsive element,IRE)结合,在转录后调节铁代谢基因表达。NO 可通过与 IRP 中铁硫簇发生氧化还原反应调节 IRP⁃IRE 结合,从而调节铁代谢相关蛋白的表达,影响细胞内铁稳态[35]。NO还可通过S⁃亚硝基化铁代谢相关蛋白影响其功能,如对二价金属离子转运蛋白 1(divalent metal transporter 1,DMT1)进行S⁃亚硝基化修饰,增强其摄取铁的能力,导致细胞内铁沉积[35]。
-
3 NO与神经精神疾病
-
3.1 AD
-
AD是一种神经退行性疾病,细胞外β⁃淀粉样蛋白(amyloid beta⁃protein,Aβ)沉积和细胞内tau 蛋白过度磷酸化形成的神经元纤维缠结(neurofibrillary tangle,NFT)是AD 的两大典型病理学特征,可通过干扰突触信号传递和激活小胶质细胞引起局部炎症反应,导致神经毒性[36-37]。
-
病理性高浓度 NO 通过硝化/亚硝化应激参与 AD 的发病。在 AD 模型中观察到 NOS 表达上调, NO 生成增加[38-39]。与年龄匹配的对照组相比,AD 患者NFT、tau蛋白以及Aβ硝化水平异常增高[39-41]。 Aβ被 NO 硝化后加速聚集沉积,并稳定毒性 Aβ低聚物、损害原纤维形成[42],NOS 缺乏或使用 NOS 抑制剂后 Aβ沉积和认知功能障碍得到显著改善[39]。 AD 模型中 Aβ表达升高对 NO 生成增加具有促进作用[43],其机制为 Aβ刺激细胞内 Ca2+ 水平升高和 NMDAR 对兴奋性氨基酸的反应增强,从而诱导 NOS表达上调[44]。酪氨酸硝化可以改变tau蛋白的构象,促进tau蛋白聚集,其过程出现在成熟的NFT 之前,可能为AD的早期事件[40]。除酪氨酸硝化外,多种蛋白质的S⁃亚硝基化也会促进AD发生,如Aβ、 tau蛋白、淀粉样前体蛋白、早老素等[45]。
-
一项研究表明,eNOS的过表达增加淀粉样前体蛋白、Aβ、p53、tau蛋白和过氧化物酶体增殖物激活受体δ和γ的水平,降低神经元标志物Hu蛋白、ATP 合成酶和乙酰胆碱转移酶的表达,提示NO参与AD发病的机制可能与氧化应激、线粒体功能障碍和乙酰胆碱稳态受损相关[38]。
-
3.2 PD
-
PD是一种神经退行性疾病,其主要特征为黑质致密部多巴胺(dopamine,DA)能神经元变性和α⁃syn 异常聚集形成路易小体[46]。在PD患者中可见丘脑底核、黑质中NOS表达上调[47-48],且NOS基因多个位点突变与PD发病存在显著相关性[49]。鱼藤酮、1⁃甲基⁃ 4⁃苯基⁃1,2,3,6⁃四氢吡啶(1⁃methyl⁃4⁃phenyl⁃1,2,3, 6⁃tetrahydropyridine,MPTP)和 6⁃羟基多巴胺(6⁃ hy⁃ droxydopamine,6⁃OHDA)可诱导PD模型,NOS在PD 模型的神经毒性中发挥作用[50-52]。在 MPTP 诱导的 PD模型中可见iNOS表达上调,提示MPTP激活小胶质细胞产生 NO[52]。使用 NOS 抑制剂或敲除 NOS 基因可发挥神经保护作用,减轻鱼藤酮、MPTP 和 6⁃OHDA诱导的神经退行性病变[53-54]。
-
研究表明,PD患者脑脊液和血清中硝酸盐和亚硝酸盐水平升高[55-56],提示 NO 通过硝化/亚硝化应激参与 PD 发生。PD 患者包涵体中检测到硝化 α⁃syn[57],而向大鼠黑质注射硝化α⁃syn可诱导神经元变性和PD样行为改变[58],表明硝化α⁃syn在PD的神经退行性病变中发挥作用。同时,研究发现硝化会加速α⁃syn聚集,并干扰其与膜脂的结合[16]。硝化 α⁃syn可以激活小胶质细胞引发炎症反应从而诱导神经元变性,激活的小胶质细胞也会生成 NO 进一步促进α⁃syn 硝化[59]。进一步研究发现,NOS 基因敲除可减轻 PD 中小胶质细胞和星形胶质细胞活化,并且使神经炎症相关基因表达发生改变,改善 α⁃syn相关的神经炎症[60]。而PD患者TH发生硝化会导致TH失活[61],TH是DA合成的限速酶,其硝化失活会导致 DA 合成减少,促进 PD 发生。PTEN 诱导假定激酶 1(PTEN induced putative kinase1, PINK1)、Parkin 和蛋白质二硫异构酶(protein disul⁃ fide isomerase,PDI)等与线粒体功能和细胞保护功能相关,其S⁃亚硝基化通过泛素⁃蛋白酶体损伤、细胞凋亡、内质网应激和线粒体功能障碍等途径参与 PD病理过程[6,45]。S⁃亚硝基化还可修饰铁代谢相关蛋白,如 Parkin S⁃亚硝基化修饰后可抑制 DMT1 泛素化,使得DMT1表达升高,铁摄取能力增强,介导 PD中的铁依赖性神经变性[62]。
-
DA 能神经元对氧化应激异常敏感[6]。NO 和 ROS 的反应产物过氧乙腈对线粒体复合物和线粒体DNA具有高度亲和力,且可使DA氧化生成对线粒体具有毒性作用的多巴胺醌,从而造成线粒体损伤。过氧乙腈还可以抑制突触前 DA 转运体使得 DA能神经元对DA的摄取减少,促进PD发生。
-
3.3 MS
-
MS是一种免疫介导的中枢系统慢性炎性脱髓鞘疾病,以炎性脱髓鞘和轴突变性为病理特征[63-64]。NO 是 MS 发病的生物学标志物,在MS患者中可观察到 NO水平升高[65]。NOS基因多态性与MS发病风险存在关联[66],与健康对照组相比,MS组患者脑中NOS表达上调且在病变处检测到星形胶质细胞中NOS催化活性增强[67],提示病理性高浓度NO参与MS发病。
-
病理性高浓度NO破坏血⁃脑屏障,参与MS炎症反应。在自身免疫性脑脊髓炎模型(最常用的 MS 模型)中可见NO水平升高,使用NOS抑制剂后临床评分降低,表明NO参与调节MS炎症反应[68]。在急性与慢性 MS 中,均可在病变区域星形胶质细胞中检测到iNOS表达升高[69]。星形胶质细胞iNOS产生的 NO 可发挥免疫调节和细胞毒性作用,参与炎症反应和神经元损伤,同时由于星形胶质细胞参与构成血⁃脑屏障,病理性高浓度NO还可通过损伤血⁃脑屏障促进中枢神经系统炎症反应的发生。在血管周围、细胞膜和髓鞘膜中检测到过氧亚硝酸盐水平升高[69],脑脊液中硝酸盐和亚硝酸盐水平升高与血⁃脑屏障功能障碍指标脑脊液白蛋白与血清白蛋白的比值升高相关[70]。这些研究支持病理性高浓度NO损伤血⁃脑屏障,在MS炎症反应中发挥作用。
-
线粒体损伤对MS发病过程至关重要。高浓度 NO 可通过氧化应激等途径诱导线粒体损伤,影响少突胶质细胞发育,或使髓磷脂基因表达下调,诱导少突胶质细胞死亡或功能障碍,从而导致脱髓鞘病变[71]。单羧酸转运体 1(monocarboxylate transporter 1,MCT1)是一种乳酸转运体,可提供乳酸作为线粒体能量代谢的底物,参与维持少突胶质细胞和神经元轴突的正常功能。NO 可通过对 MCT1 进行 S⁃亚硝基化修饰,抑制MCT1在少突胶质细胞中的表达与功能,介导线粒体代谢障碍,从而引起轴突能量不足导致轴突变性[72]。
-
3.4 抑郁症
-
抑郁症是一种精神障碍性疾病,严重时可产生自杀倾向[73]。研究表明NO具有致郁样作用[74],长期暴露于NO会导致抑郁症发病风险升高[75],同时抑郁症患者NO水平升高与自杀倾向升高相关[76-77]。研究发现,在抑郁小鼠动物模型中nNOS的表达上调,使用NOS抑制剂可改善小鼠抑郁样行为,具有抗抑郁效果[78]。多种抗抑郁药,如氯胺酮、帕罗西汀等,都有抑制NO的作用[79-80],提示NO可能参与抑郁症发病且具有作为抑郁症治疗靶点的潜在价值。
-
研究表明高水平 NO 通过 sGC/cGMP 途径和 ONOO- /ERK途径显著下调糖皮质激素受体的表达,从而促进糖皮质激素介导的抑郁样行为发生。抑制 nNOS 以及阻断 sGC/cGMP 信号通路可阻止这一作用[81]。除激活信号通路外,NO 还可通过蛋白质修饰发挥作用。细胞周期素依赖性蛋白激酶 5 (cyclin⁃dependent kinase5,CDK5)在神经系统中发挥重要调控作用,与神经元生长迁移、神经传递以及突触形成密切相关。研究发现,高浓度 NO 可通过对CDK5进行S⁃亚硝基化修饰影响其功能,从而介导抑郁样行为[82]。
-
单胺假说目前被认为是抑郁症发病的主要机制。单胺假说认为抑郁症的发生是由于单胺类神经递质即5⁃羟色胺(5⁃hydroxytryptamine,5⁃HT)、去甲肾上腺素(Norepinephrine,NE)和DA缺乏导致的,许多抗抑郁药物都具有升高单胺类神经递质的作用,如氟西汀是一种选择性5⁃HT再摄取抑制剂[83]。NO 可抑制 5⁃HT 神经元活动[84],并负向调节 5⁃HT、NE、DA 水平[85],因此参与抑郁症发生。
-
BDNF分泌减少是抑郁症发病机制的另一个重要假说。BDNF 具有调节神经发生、神经传递和突触可塑性的作用,抑郁症患者 BDNF 水平降低,且 BDNF水平降低可被抗抑郁药物恢复[86]。病理性高浓度NO可通过NO/cGMP/PKG信号通路减少BDNF 分泌,NOS抑制剂和sGC抑制剂可表现出与抗抑郁药物丙咪嗪类似的升高BDNF水平和抗抑郁的作用[87]。
-
3.5 ASD
-
ASD 简称自闭症,是一种神经发育障碍性疾病[88]。与正常对照组相比,ASD 儿童血中 NO、NO 代谢产物亚硝酸盐以及 NO 合成前体精氨酸水平升高[89-90]。在ASD模型小鼠中也可见NO及亚硝酸盐水平的升高,且使用 nNOS 抑制剂可逆转其升高并改善ASD相关症状[91]。由此可见NO可能与ASD 发病存在关联。SHANK3突变是导致自闭症的常见突变,研究显示,SHANK3突变模型中NO和S⁃亚硝基化蛋白水平异常升高,其机制为SHANK3突变导致Ca2+ 内流增加,激活nNOS 生成NO,NO 通过S⁃亚硝基化等蛋白质修饰介导突触、神经元损伤[92-93]。研究显示,SHANK3突变中众多经S⁃亚硝基化修饰的蛋白质参与氧化磷酸化、神经发育、神经传递、突触囊泡循环和谷氨酸调节等,提示病理性高浓度 NO可能通过干扰上述途径参与ASD发生[3]。
-
介于NO在ASD发生中发挥重要作用,NO可能作为靶点为 ASD 治疗提供新策略。目前已有研究显示,(±)儿茶素水合物以及去甲二氢愈创木酸可通过靶向NO介导的氧化和亚硝化应激发挥神经保护作用,改善动物模型中ASD相关行为[94-95]。
-
3.6 睡眠障碍
-
睡眠障碍常与多种神经精神疾病共同发生,且可作为神经精神疾病的风险因素存在。睡眠障碍的发生与睡眠⁃觉醒周期系统和昼夜节律系统的功能紊乱相关,NO 在两个系统中均发挥重要作用。 NO指挥中枢视交叉上核的细胞内和细胞外信号传导参与调节昼夜节律,并在睡眠⁃觉醒周期中具有诱导快速动眼睡眠和非快速动眼睡眠的作用[96]。
-
目前研究认为NO促进长时间觉醒导致的恢复性睡眠,并且在睡眠剥夺模型中可见 NO 水平增加。然而高水平 NO 也具有神经毒性作用,可能增加AD、PD、抑郁症等神经精神疾病的发病风险。睡眠剥夺小鼠的大脑海马、前额叶皮质和杏仁核nNOS 阳性神经元数量明显增加,神经元细胞形态明显改变,其机制为睡眠剥夺导致氧化应激破坏神经元细胞膜完整性,细胞内Ca2+ 水平升高激活nNOS产生NO增加,通过氧化/硝化/亚硝化应激等方式发挥神经毒性作用[97]。
-
睡眠障碍与炎症和氧化应激相关,NO 可能通过该途径参与其发生,使用iNOS抑制剂和褪黑素等抗氧化剂可抑制病毒诱导的睡眠障碍[98]。在咖啡因诱导的睡眠障碍模型中可见iNOS表达升高,镁⁃ L⁃茶氨酸复合物可通过逆转iNOS水平升高抑制神经炎症,改善睡眠质量[99]。黄花菜可抑制脂多糖激活的巨噬细胞中的 NO 生成,发挥抗炎效应从而改善睡眠质量[100]。
-
4 总结
-
NO 在中枢神经系统中发挥重要作用,其病理状态下浓度升高将产生神经毒性作用,通过 NO/ cGMP 信号通路和氧化/硝化/亚硝化应激介导线粒体损伤、神经兴奋性毒性、神经发生抑制、血⁃脑屏障损伤、BDNF分泌减少、铁稳态失衡等一系列病理损伤,从而参与神经精神疾病的发生。目前关于 NO 在各神经精神疾病中作用的临床试验证据相对缺乏,但介于 NO 与众多神经精神疾病的发生密切相关,积极开展临床试验有助于为神经精神疾病的发病机制提供新的研究思路,并且有望为开发新型治疗靶点与治疗药物提供实践方向。生理性低浓度NO在中枢神经系统中具有一定保护功能,目前NO 发挥保护作用的浓度范围尚未明确,如何有效控制 NO浓度至合理范围而不影响其正常生理功能将会成为临床转化的一大难点,且患者动态数据的缺乏也会对不同阶段临床用药的确定产生困难,这些将成为后续研究需要解决的问题。
-
参考文献
-
[1] LUNDBERG J O,WEITZBERG E.Nitric oxide signaling in health and disease[J].Cell,2022,185(16):2853-2878
-
[2] LIY P M,PUZI N N A,JOSE S,et al.Nitric oxide modulation in neuroinflammation and the role of mesenchymal stem cells[J].Exp Biol Med,2021,246(22):2399-2406
-
[3] TRIPATHI M K,KARTAWY M,AMAL H.The role of nitric oxide in brain disorders:Autism spectrum disorder and other psychiatric,neurological,and neurodegenerative disorders[J].Redox Biol,2020,34:101567
-
[4] TEWARI D,SAH A N,BAWARI S,et al.Role of nitric oxide in neurodegeneration:function,regulation,and inhibition[J].Curr Neuropharmacol,2021,19(2):114-126
-
[5] AZARGOONJAHROMI A.Dual role of nitric oxide in Alzheimer’s disease[J].Nitric Oxide,2023,134-135:23-137
-
[6] IOVA O M,MARIN G E,LAZAR I,et al.Nitric oxide/nitric oxide synthase system in the pathogenesis of neurodegenerative disorders⁃an overview[J].Antioxidants,2023,12(3):753
-
[7] TROPEA M R,GULISANO W,VACANTI V,et al.Nitric oxide/cGMP/CREB pathway and amyloid-beta crosstalk:from physiology to Alzheimer’s disease[J].Free Radic Biol Med,2022,193(Pt 2):657-668
-
[8] CORREIA S S,IYENGAR R R,GERMANO P,et al.The CNS-penetrant soluble guanylate cyclase stimulator CY6463 reveals its therapeutic potential in neurodegenerative diseases[J].Front Pharmacol,2021,12:656561
-
[9] SHARMA B,KOREN D T,GHOSH S.Nitric oxide modulates NMDA receptor through a negative feedback mechanism and regulates the dynamical behavior of neuronal postsynaptic components[J].Biophys Chem,2023,303:107114
-
[10] DUTTA S,SENGUPTA P,DAS S,et al.Reactive nitrogen species and male reproduction:physiological and pathological aspects[J].Int J Mol Sci,2022,23(18):10574
-
[11] TOBORE T O.Oxidative/nitroxidative stress and multiple sclerosis[J].J Mol Neurosci,2021,71(3):506⁃514
-
[12] SABADASHKA M,NAGALIEVSKA M,SYBIRNA N.Tyrosine nitration as a key event of signal transduction that regulates functional state of the cell[J].Cell Biol Int,2021,45(3):481-497
-
[13] BANDOOKWALA M,SENGUPTA P.3 ⁃ Nitrotyrosine:a versatile oxidative stress biomarker for major neurodegenerative diseases[J].Int J Neurosci,2020,130(10):1047-1062
-
[14] GUPTA R,SAHU M,SRIVASTAVA D,et al.Post⁃translational modifications:regulators of neurodegenerative proteinopathies[J].Ageing Res Rev,2021,68:101336
-
[15] MONTAGNA C,CIROTTI C,RIZZA S,et al.When S⁃ni-trosylation gets to mitochondria:from signaling to age⁃related diseases[J].Antioxid Redox Signal,2020,32(12):884-905
-
[16] NAKAMURA T,OH C K,ZHANG X,et al.Protein S⁃ni-trosylation and oxidation contribute to protein misfolding in neurodegeneration[J].Free Radic Biol Med,2021,172:562-577
-
[17] LÓPEZ⁃SÁNCHEZ L M,ARANDA E,RODRÍGUEZ⁃ARI-ZA A.Nitric oxide and tumor metabolic reprogramming[J].Biochem Pharmacol,2020,176:113769
-
[18] GODOY J A,RIOS J A,PICÓN⁃PAGÈS P,et al.Mitosta-sis,calcium and free radicals in health,aging and neuro-degeneration[J].Biomolecules,2021,11(7):1012
-
[19] ZAIB S,HAYYAT A,ALI N,et al.Role of mitochondrial membrane potential and lactate dehydrogenase a in apoptosis[J].Anticancer Agents Med Chem,2022,22(11):2048-2062
-
[20] BROWN G C.Mechanisms of inflammatory neurodegenera-tion:iNOS and NADPH oxidase[J].Biochem Soc Trans,2007,35(Pt 5):1119-1121
-
[21] VERMA M,LIZAMA B N,CHU C T.Excitotoxicity,calcium and mitochondria:a triad in synaptic neurodegeneration [J].Transl Neurodegener,2022,11(1):3
-
[22] CULIG L,CHU X,BOHR V A.Neurogenesis in aging and age-related neurodegenerative diseases[J].Ageing Res Rev,2022,78:101636
-
[23] KOUROSH-ARAMI M,HOSSEINI N,MOHSENZADE-GAN M,et al.Neurophysiologic implications of neuronal nitric oxide synthase[J].Rev Neurosci,2020,31(6):617-636
-
[24] CARREIRA B P,MORTE M I,SANTOS A I,et al.Nitric oxide from inflammatory origin impairs neural stem cell proliferation by inhibiting epidermal growth factor receptor signaling[J].Front Cell Neurosci,2014,8:343
-
[25] KIM S J,LIM M S,KANG S K,et al.Impaired functions of neural stem cells by abnormal nitric oxide-mediated signaling in an in vitro model of Niemann⁃Pick type C disease[J].Cell Res,2008,18(6):686-694
-
[26] KNOX E G,ABURTO M R,CLARKE G,et al.The blood-brain barrier in aging and neurodegeneration[J].Mol Psy⁃chiatry,2022,27(6):2659-2673
-
[27] WANG Y,HONG F,YANG S.Roles of nitric oxide in brain ischemia and reperfusion[J].Int J Mol Sci,2022,23(8):4243
-
[28] LAN G,WANG P,CHAN R B,et al.Astrocytic VEGFA:an essential mediator in blood⁃brain⁃barrier disruption in Parkinson’s disease[J].Glia,2022,70(2):337-353
-
[29] GU Y,ZHOU C,PIAO Z,et al.Cerebral edema after ischemic stroke:pathophysiology and underlying mechanisms [J].Front Neurosci,2022,16:988283
-
[30] MEMARPOUR S,BEHESHTI F,BAGHCHEGHI Y,et al.Neuronal nitric oxide inhibitor 7 ⁃ nitroindazole improved brain-derived neurotrophic factor and attenuated brain tissues oxidative damage and learning and memory impairments of hypothyroid juvenile rats[J].Neurochem Res,2020,45(11):2775-2785
-
[31] COLUCCI⁃D’AMATO L,SPERANZA L,VOLPICELLI F.Neurotrophic factor BDNF,physiological functions and therapeutic potential in depression,neurodegeneration and brain cancer[J].Int J Mol Sci,2020,21(20):7777
-
[32] CANOSSA M,GIORDANO E,CAPPELLO S,et al.Nitric oxide down⁃regulates brain⁃derived neurotrophic factor secretion in cultured hippocampal neurons[J].Proc Natl Acad Sci U S A,2002,99(5):3282-3287
-
[33] FICIARÀ E,STURA I,GUIOT C.Iron deposition in brain:Does aging matter?[J].Int J Mol Sci,2022,23(17):10018
-
[34] KIM Y,CONNOR J R.The roles of iron and HFE genotype in neurological diseases[J].Mol Aspects Med,2020,75:100867
-
[35] LIU C,LIANG M C,SOONG T W.Nitric oxide,iron and neurodegeneration[J].Front Neurosci,2019,13:114
-
[36] KHAN S,BARVE K H,KUMAR M S.Recent advancements in pathogenesis,diagnostics and treatment of Alzheimer’s disease[J].Curr Neuropharmacol,2020,18(11):1106-1125
-
[37] ANON.2023 Alzheimer’s disease facts and figures[J].Alzheimers Dement,2023,19(4):1598-1695
-
[38] DE LA MONTE S M,JHAVERI A,MARON B A,et al.Nitric oxide synthase 3⁃mediated neurodegeneration after intracerebral gene delivery[J].J Neuropathol Exp Neu-rol,2007,66(4):272-283
-
[39] KUMMER M P,HERMES M,DELEKARTE A,et al.Nitration of tyrosine 10 critically enhances amyloid β aggregation and plaque formation[J].Neuron,2011,71(5):833-844
-
[40] HORIGUCHI T,URYU K,GIASSON B I,et al.Nitration of tau protein is linked to neurodegeneration in tauopa-thies[J].Am J Pathol,2003,163(3):1021-1031
-
[41] SMITH M A,RICHEY HARRIS P L,SAYRE L M,et al.Widespread peroxynitrite⁃mediated damage in Alzheimer’ s disease[J].J Neurosci,1997,17(8):2653-2657
-
[42] GUIVERNAU B,BONET J,VALLS-COMAMALA V,et al.Amyloid ⁃ β peptide nitrotyrosination stabilizes oligomers and enhances NMDAR⁃mediated toxicity[J].J Neu-rosci,2016,36(46):11693-11703
-
[43] CUI Z Q,HU X Y,YANG T,et al.TMEM16F may be a new therapeutic target for Alzheimer’s disease[J].Neural Regen Res,2023,18(3):643-651
-
[44] KAWAMOTO E M,CARARO ⁃LOPES M M,KINOSHITA P F,et al.Influence of nitric oxide⁃cyclic GMP and oxidative stress on amyloid⁃β peptide induced decrease of Na,K⁃ATPase activity in rat hippocampal slices[J].J Membr Biol,2021,254(5⁃6):463-473
-
[45] NAKAMURA T,TU S,AKHTAR M W,et al.Aberrant protein s-nitrosylation in neurodegenerative diseases[J].Neuron,2013,78(4):596-614
-
[46] MARTINS-PINGE M C,DE JAGER L,DE CAMPOS B H,et al.Nitric oxide involvement in cardiovascular dysfunctions of parkinson disease[J].Front Pharmacol,2022,13:898797
-
[47] EVE D J,NISBET A P,KINGSBURY A E,et al.Basal ganglia neuronal nitric oxide synthase mRNA expression in Parkinson’s disease[J].Mol Brain Res,1998,63(1):62-71
-
[48] KNOTT C,STERN G,WILKIN G P.Inflammatory regulators in Parkinson’s disease:iNOS,lipocortin⁃1,and cyclo-oxygenases⁃1 and ⁃2[J].Mol Cell Neurosci,2000,16(6):724-739
-
[49] HANCOCK D B,MARTIN E R,VANCE J M,et al.Nitric oxide synthase genes and their interactions with environmental factors in Parkinson’s disease[J].Neurogenetics,2008,9(4):249-262
-
[50] GÜZELAD Ö,ÖZKAN A,PARLAK H,et al.Protective mechanism of syringic acid in an experimental model of Parkinson’s disease[J].Metab Brain Dis,2021,36(5):1003-1014
-
[51] KOCAK Y,OTO G,HUYUT Z,et al.Effects of fluoride on oxidative DNA damage,nitric oxide level,lipid peroxidation and cholinesterase enzyme activity in a rotenone-induced experimental Parkinson’s model[J].Neurol Res,2023,45(11):979-987
-
[52] CUI X,LI M,HE Z,et al.MiR⁃302b⁃5p enhances the neu-roprotective effect of IGF⁃1 in methyl⁃4⁃phenyl⁃1,2,3,6⁃ tetrahydropyridine ⁃induced Parkinson’s disease by regulating inducible nitric-oxide synthase[J].Cell Biochem Funct,2020,38(8):1025-1035
-
[53] HU X L,LV X Y,WANG R,et al.Optimization of of N⁃phenylpropenoyl⁃l⁃amino acids as potent and selective inducible nitric oxide synthase inhibitors for Parkinson’s Disease[J].J Med Chem,2021,64(11):7760-7777
-
[54] AGRAWAL S,KUMARI R,SOPHRONEA T,et al.Design and synthesis of benzo[d]thiazol⁃2⁃yl⁃methyl⁃4(⁃ substituted)⁃piperazine ⁃1⁃carbothioamide as novel neuronal nitric oxide inhibitors and evaluation of their neuropro-tecting effect in 6⁃OHDA⁃induced unilateral lesioned rat model of Parkinson’s disease[J].Biomed Pharmacother,2022,156:113838
-
[55] SANTOS-LOBATO B L,BORTOLANZA M,PINHEIRO L C,et al.Levodopa⁃induced dyskinesias in Parkinson’s disease increase cerebrospinal fluid nitric oxide metabolites’levels[J].J Neural Transm,2022,129(1):55-63
-
[56] BARMAKI H,MOROVATI A,EYDIVANDI Z,et al.The association between serum oxidative stress indexes and pathogenesis of Parkinson’s disease in the northwest of Iran[J].Iran J Public Health,2021,50(3):606-615
-
[57] BREMBATI V,FAUSTINI G,LONGHENA F,et al.Changes in α⁃synuclein posttranslational modifications in an AAV-based mouse model of Parkinson’s disease[J].Int J Mol Sci,2023,24(17):13435
-
[58] YU Z,XU X,XIANG Z,et al.Nitrated alpha⁃synuclein induces the loss of dopaminergic neurons in the substantia nigra of rats[J].PLoS One,2010,5(4):e9956
-
[59] 朱睿放,张宇,卢应梅.小胶质细胞及其介导的神经炎症在帕金森病中的作用[J].南京医科大学学报(自然科学版),2023,43(4):569-576
-
[60] KIM J,HAN J Y,LEE Y,et al.Genetic deletion of nitric oxide synthase 2 ameliorates Parkinson’s disease pathology and neuroinflammation in a transgenic mouse model of synucleinopathy[J].Mol Brain,2023,16(1):7
-
[61] ARA J,PRZEDBORSKI S,NAINI A B,et al.Inactivation of tyrosine hydroxylase by nitration following exposure to peroxynitrite and 1⁃methyl⁃4⁃phenyl⁃1,2,3,6⁃tetrahydro-pyridine(MPTP)[J].Proc Natl Acad Sci U S A,1998,95(13):7659-7663
-
[62] ZHONG Y,LI X,DU X,et al.The S⁃nitrosylation of parkin attenuated the ubiquitination of divalent metal transporter 1 in MPP + ⁃treated SH-SY5Y cells[J].Sci Rep,2020,10(1):15542
-
[63] MARCUS R.What is multiple sclerosis?[J].JAMA,2022,328(20):2078
-
[64] AMIN M,HERSH C M.Updates and advances in multiple sclerosis neurotherapeutics[J].Neurodegener Dis Manag,2023,13(1):47-70
-
[65] ABDEL N M,RABAH A M,RASHED L A,et al.Glutamate and nitric oxide as biomarkers for disease activity in patients with multiple sclerosis[J].Mult Scler Relat Dis-ord,2020,38:101873
-
[66] WIGNER P,DZIEDZIC A,SYNOWIEC E,et al.Variation of genes encoding nitric oxide synthases and antioxidant enzymes as potential risks of multiple sclerosis development:a preliminary study[J].Sci Rep,2022,12(1):10603
-
[67] BÖ L,DAWSON T M,WESSELINGH S,et al.Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains[J].Ann Neurol,1994,36(5):778-786
-
[68] SCHEPERS M,PAES D,TIANE A,et al.Selective PDE4 subtype inhibition provides new opportunities to intervene in neuroinflammatory versus myelin damaging hallmarks of multiple sclerosis[J].Brain Behav Immun,2023,109:1-22
-
[69] LIU J S,ZHAO M L,BROSNAN C F,et al.Expression of inducible nitric oxide synthase and nitrotyrosine in multiple sclerosis lesions[J].Am J Pathol,2001,158(6):2057-2066
-
[70] GIOVANNONI G.Cerebrospinal fluid and serum nitric oxide metabolites in patients with multiple sclerosis[J].Mult Scler,1998,4(1):27-30
-
[71] MALABENDU J,KALIPADA P.Downregulation of myelin gene expression in human oligodendrocytes by nitric oxide:implications for demyelination in multiple sclerosis[J].J Clin Cell Immunol,2013,4:10
-
[72] TANG X,LAN M,ZHANG M,et al.Effect of nitric oxide to axonal degeneration in multiple sclerosis via downregulating monocarboxylate transporter 1 in oligodendrocytes[J].Nitric Oxide,2017,67:75-80
-
[73] BONILLA ⁃JAIME H,SANCHEZ ⁃SALCEDO J A,ESTE-VEZ⁃CABRERA M M,et al.Depression and pain:use of antidepressants[J].Curr Neuropharmacol,2022,20(2):384-402
-
[74] BASKIN V,EROGLU E,HARMANCI N,et al.Antinoci-ceptive,anxiolytic,and depression ⁃like effects of hydrogen sulfide,nitric oxide,and carbon monoxide in rats and the role of opioidergic and serotonergic systems in antino-ciceptive activity[J].Fundam Clin Pharmacol,2022,36(4):674-686
-
[75] YANG T,WANG J,HUANG J,et al.Long⁃term exposure to multiple ambient air pollutants and association with incident depression and anxiety[J].JAMA Psychiatry,2023,80(4):305-313
-
[76] OSHNOKHAH M,BAGHERI M,GHANEIALVAR H,et al.The role of oxidant⁃antioxidant status in suicide behavior in kurdish ethnicity[J].Basic Clin Neurosci,2021,12(5):667-674
-
[77] MCNEILL R V,KEHRWALD C,BRUM M,et al.Unco ⁃vering associations between mental illness diagnosis,nitric oxide synthase gene variation,and peripheral nitric oxide concentration[J].Brain Behav Immun,2022,101:275-283
-
[78] WANG P,KONG F Z,HONG X H,et al.Neuronal nitric oxide synthase regulates depression-like behaviors in shortening-induced obese mice[J].Nutrients,2022,14(20):4302
-
[79] JOCA S R L,SARTIM A G,RONCALHO A L,et al.Nitric oxide signalling and antidepressant action revisited [J].Cell Tissue Res,2019,377(1):45-58
-
[80] BEVILACQUA L,CHARNEY A,PIERCE C R,et al.Role of nitric oxide signaling in the antidepressant mechanism of action of ketamine:a randomized controlled trial[J].J Psychopharmacol,2021,35(2):124-127
-
[81] ZHOU Q G,ZHU L J,CHEN C,et al.Hippocampal neuronal nitric oxide synthase mediates the stress-related depressive behaviors of glucocorticoids by downregulating glucocorticoid receptor[J].J Neurosci,2011,31(21):7579-7590
-
[82] YIN C Y,HUANG S Y,GAO L,et al.Neuronal nitric oxide synthase in nucleus accumbens specifically mediates susceptibility to social defeat stress through cyclin-dependent kinase 5[J].J Neurosci,2021,41(11):2523-2539
-
[83] MELINDA H,PARASTOO H,LAWRENCE P R.Integrating the monoamine and cytokine hypotheses of depression:Is histamine the missing link?[J].Eur J Neurosci,2022,55(9⁃10):2895-2911
-
[84] SUN N,YOU Y,YANG D,et al.Neuronal nitric oxide synthase in dorsal raphe nucleus mediates PTSD ⁃like behaviors induced by single-prolonged stress through inhibiting serotonergic neurons activity[J].Biochem Biophys Res Commun,2021,585:139-145
-
[85] WEGENER G,VOLKE V,ROSENBERG R.Endogenous nitric oxide decreases hippocampal levels of serotonin and dopamine in vivo[J].Br J Pharmacol,2000,130(3):575-580
-
[86] RANA T,BEHL T,SEHGAL A,et al.Unfolding the role of BDNF as a biomarker for treatment of depression[J].J Mol Neurosci,2021,71(10):2008-2021
-
[87] STANQUINI L A,BIOJONE C,GUIMARÃES F S,et al.Repeated treatment with nitric oxide synthase inhibitor attenuates learned helplessness development in rats and increases hippocampal BDNF expression[J].Acta Neuro-psychiatr,2018,30(3):127-136
-
[88] GENOVESE A,BUTLER M G.The Autism spectrum:behavioral,psychiatric and genetic associations[J].Genes-Basel,2023,14(3):677
-
[89] CHEN L,SHI X J,LIU H,et al.Oxidative stress marker aberrations in children with autism spectrum disorder:a systematic review and meta-analysis of 87 studies(N= 9109)[J].Transl Psychiatry,2021,11(1):15
-
[90] WANG B,DONG H,LI H,et al.A probable way vitamin D affects autism spectrum disorder:the nitric oxide signaling pathway[J].Front Psychiatry,2022,13:908895
-
[91] TRIPATHI M K,OJHA S K,KARTAWY M,et al.The NO answer for autism spectrum disorder[J].Adv Sci,2023,10(22):e2205783
-
[92] MEHTA R,KUHAD A,BHANDARI R.Nitric oxide pathway as a plausible therapeutic target in autism spectrum disorders[J].Expert Opin Ther Tar,2022,26(7):659-679
-
[93] HAMOUDI W,TRIPATHI M K,OJHA S K,et al.A crosstalk between nitric oxide and the glutamatergic system in a Shank3 mouse model of autism[J].Free Radic Biol Med,2022,188:83-91
-
[94] MEHTA R,BHANDARI R,KUHAD A.Exploring nordi-hydroguaretic acid(NDGA)as a plausible neurotherapeu-tic in the experimental paradigm of autism spectrum disorders targeting nitric oxide pathway[J].Metab Brain Dis,2021,36(7):1833-1857
-
[95] MEHTA R,BHANDARI R,KUHAD A.Effects of catechin on a rodent model of autism spectrum disorder:implications for the role of nitric oxide in neuroinflammatory pathway[J].Psychopharmacology(Berl),2021,238(11):3249-3271
-
[96] COOPER J M,HALTER K A,PROSSER R A.Circadian rhythm and sleep⁃wake systems share the dynamic extracellular synaptic milieu[J].Neurobiol Sleep Circadian Rhythms,2018,5:15-36
-
[97] CHITTORA R,JAIN A,SHUKLA S D,et al.Cytomorpho-logical analysis and interpretation of nitric oxide⁃mediated neurotoxicity in sleep⁃deprived mice model[J].Ann Neu-rosci,2022,29(1):7-15
-
[98] RAYMOND C,TATYANA S,PETER S S,et al.SARS-CoV ⁃ 2 infection and sleep disturbances:nitric oxide involvement and therapeutic opportunity[J].Sleep,2021,44(3):zsab009
-
[99] DASDELEN M F,SEZGIN E,KAPLAN B,et al.A novel theanine complex,Mg⁃L⁃theanine improves sleep quality via regulating brain electrochemical activity[J].Front Nutr,2022,9:874254
-
[100] HSU L M,CHEN H W,WU P C,et al.Daylily(Hemerocallis fulva Linn.)flowers improve sleep quality in human and reduce nitric oxide and interleukin ⁃ 6 production in macrophages[J].Chin J Physiol,2023,66(5):313-325
-
摘要
一氧化氮(nitric oxide,NO)作为气体信号分子参与多种生理功能的调节。在中枢神经系统中,生理浓度NO参与维持正常神经精神功能,病理性高浓度NO则表现出神经毒性作用,并通过一系列病理反应参与多种神经精神疾病的发生。文章综述了NO在中枢神经系统中的代谢与作用,并以阿尔茨海默病、帕金森病、多发性硬化、抑郁症和自闭症谱系障碍为例,探讨了NO与神经退行性疾病、神经炎症性疾病、精神障碍性疾病和神经发育障碍性疾病等神经精神疾病的关系与致病机制,为疾病发病机制研究和新型治疗药物开发提供思路和动力。
Abstract
As a kind of gas signaling molecules,nitric oxide(NO)is involved in the regulation of diverse physiological functions. In the central nervous system,physiological concentrations of NO participate in maintaining physiological neuropsychiatric functions, whereas high concentrations of NO are neurotoxic,which promote several neuropsychiatric diseases through a wide variety of pathological processes. This review discusses the metabolism and functions of NO in the central nervous system. Taking Alzheimer’s disease,Parkinson’s disease,multiple sclerosis,depression and autism spectrum disorder as examples,the relationship and pathogenic mechanism of NO with neurodegenerative diseases,neuroinflammatory diseases,mental disorders and neurodevelopmental disorders are described,which provides ideas and impetus for further development of pathogenic mechanism and therapeutic drugs.