-
转移是引起恶性肿瘤相关死亡的主要原因[1]。从原发肿瘤或转移性肿瘤脱落到外周血中的游离肿瘤细胞被称为循环肿瘤细胞(circulating tumor cell,CTC)[2],其在肿瘤转移过程中扮演重要角色,因此 CTC 的检测及分析对于了解转移的生物特性及发展抗转移治疗具有重要意义[3]。
-
黏蛋白1(Mucin 1,MUC1)基因是最先被发现的黏蛋白家族成员之一[4],其所编码的Ⅰ型跨膜糖蛋白在大多数腺上皮和导管上皮(如肺、乳腺、前列腺、胃肠道等)中都有表达[5]。MUC1 的启动子序列总长约为 2.9 kb,其中顺式作用元件主要位于 5′的 743 bp 序列内[6-7]。启动子包含许多潜在的转录调控因子结合位点,包括Sp1、AP1⁃4、NF⁃κB、E⁃box和 GC盒等,其中Sp1 [8]、NF⁃κB [9] 在许多肿瘤中过表达,如肺癌、乳腺癌、胃癌和胰腺癌等,AP1⁃4在乳腺癌、结肠癌和间变性大细胞淋巴瘤等中过表达[10]。MUC1 在多种肿瘤组织中均异常高表达[11],这一特征使 MUC1蛋白可作为肿瘤诊断及预后的标志物之一。有研究证明在MUC1阳性的肿瘤细胞中,MUC1的转录调控序列可介导目的基因选择性表达[12]。
-
本研究设计一款含有DF3/MUC1启动子转录调控序列和绿色荧光蛋白(green fluorescent protein, GFP)基因的重组腺病毒(Ad⁃DF3⁃copGFP),该病毒在感染细胞后,能在DF3/MUC1转录环境作用下启动下游copGFP基因的表达,从而进行CTC示踪。本研究使用Ad⁃DF3⁃copGFP与本实验室构建保存的含人端粒酶逆转录酶(human telomerase reverse tran⁃ scriptase,hTERT)启动子腺病毒(Ad⁃hTERT⁃copGFP) 进行对比研究,评价其在CTC检测方面的效果。
-
1 材料和方法
-
1.1 材料
-
1.1.1 细胞系及主要试剂
-
人胚肾细胞系HEK293、人肺腺癌细胞系A549、 H1299(本实验室保存);感受态细胞 DH5α、Ad ⁃ hTERT⁃copGFP、pDC⁃2insX⁃hTERTp△⁃CMV⁃copGFP⁃4FP、pUC57⁃DF3、pDC316、pBHGlox△E1,3Gre 及 pTC⁃E1A⁃P2A⁃E1B 质粒(本实验室保存);Polyplus jetPRIME(Polyplus公司,法国);DMEM高糖培养基、胎牛血清、胰酶(Hyclone公司,美国);限制性内切酶 XbaⅠ、EcoRⅠ、HindⅢ、PacⅠ(Thermo公司,美国); T4 DNA 连接酶、质粒提取试剂盒、凝胶回收试剂盒 (Takara 公司,日本);Adeno ⁃XTM 病毒纯化试剂盒 (BD Biosciences公司,美国)。
-
1.1.2 临床标本收集
-
静脉血液样本采集对象:10例原发性肺癌患者为南京市第二医院肿瘤科2023年收治(临床及病理确诊为非小细胞肺癌、TNM分期为Ⅲ~Ⅳ期)、5例健康对照为体检中心志愿者。本研究通过南京市第二医院伦理审批(编号:2016⁃LY⁃kt038),所有患者对本研究均知情同意。
-
1.2 方法
-
1.2.1 骨架质粒pBHG⁃Ad5⁃DF3⁃copGFP的构建
-
以pUC57⁃DF3为模板,XbaI⁃DF3⁃F/EcoRI⁃DF3⁃R 为引物(表1),PCR 扩增DF3片段(786 bp),PCR 产物与 pDC316 双酶切(XbaⅠ+EcoRⅠ)后连接,得到 pDC⁃DF3,以DF3为检测条带,XbaⅠ⁃DF3⁃F/pDC316⁃R 为引物,PCR 鉴定(967 bp)并测序验证。以 pDC ⁃ 2insX⁃hTERTp△⁃CMV⁃copGFP⁃4FP为模板,EcoRⅠ⁃ copGFP⁃F/HindⅢ⁃copGFP⁃R为引物,PCR扩增copGFP 片段(759 bp),PCR 产物与 pDC⁃DF3 双酶切(EcoR Ⅰ+HindⅢ)后连接,得到 pDF3⁃copGFP,以 copGFP 为检测条带,EcoRⅠ⁃copGFP⁃F/pDC316⁃R 为引物, PCR鉴定(922 bp)并测序验证。
-
以pDF3⁃copGFP为模板,PacⅠ⁃DF3⁃F/PacⅠ⁃TC⁃R 为引物,PCR 扩增 DF3⁃ copGFP 片段(1 745 bp), PCR 产物与 Pac Ⅰ单酶切线性化的 pBHGlox△E1, 3Cre骨架质粒同源重组,得到pBHG⁃Ad5⁃DF3⁃copGFP,以DF3⁃copGFP为检测条带,PacⅠ⁃DF3⁃F/VECTOR⁃R 为引物,PCR鉴定(2 091 bp)并测序验证。
-
1.2.2 穿梭质粒pDF3⁃E1A⁃P2A⁃E1B的构建
-
以pTC⁃E1A⁃P2A⁃E1B为模板,MC⁃F/SalⅠ⁃E1B⁃R为引物,PCR 扩增 E1A⁃P2A⁃E1B 片段(1 521 bp), PCR产物与线性化的pDF3⁃copGFP(EcoRⅠ+HindⅢ 酶切)同源重组,得到pDF3⁃E1A⁃P2A⁃E1B,以E1A⁃ P2A⁃E1B为检测条带,MC⁃F/pDC316⁃R为引物,PCR 鉴定(1 671 bp)并测序验证。
-
1.2.3 重组病毒Ad⁃DF3⁃copGFP的包装
-
于六孔板中接种HEK293细胞,37℃、5%CO2条件下培养,细胞达到50%~60%汇合时用于转染,取 2 μL穿梭质粒pDF3⁃E1A⁃P2A⁃E1B、0.5 μL骨架质粒 pBHG ⁃Ad5⁃DF3⁃copGFP 与 3 μL Polyplus jetPRIME 共转染 HEK293细胞,转染前后4 h更换培养液,转染后10~15 d,当大量细胞出现病变且约一半的细胞变圆呈团状飘起时,通过低速离心收集细胞后 DMEM 重悬,反复冻融、振荡 3 次,在 4℃条件下,7 000 g离心5 min,收集病毒上清于-70℃保存。
-
1.2.4 重组腺病毒的扩增、纯化与滴度测定
-
将重组病毒粗提液加入到状态良好的HEK293 细胞中进行二轮扩增,收集细胞后DMEM重悬,反复冻融、振荡3 次,在4℃条件下7 000 g离心5 min,收集病毒上清于-70℃保存。经二轮扩增后的病毒液按 Adeno⁃XTM 病毒纯化试剂盒步骤纯化后分装入库。纯化后的重组病毒感染HEK293细胞,通过终点稀释法测定病毒滴度,病毒滴度计算公式:滴度= 10(X+0.8)(PFU/mL),X为1×10-1~1×10-13依次稀释度下细胞病变阳性率的总和。
-
1.2.5 最佳感染条件研究
-
将A549细胞接种于96孔板中并于培养箱中培养过夜,细胞融合达到 50%时换液,设置感染复数 (multiplicity of infection,MOI)梯度(1、3、5、10)并添加相应体积的病毒,培养箱中培养10~16 h后换液,继续37℃、5%CO2培养。选取4个感染时间点(18 h、 24 h、40 h、48 h),高内涵细胞成像系统(high content screening system,HCS)拍照并分析感染情况,感染率 80%左右,且细胞生长状态良好时对应的感染时间和 MOI即最佳感染条件。
-
1.2.6 检测 Ad⁃DF3⁃copGFP 对肺腺癌细胞的感染效率
-
为了明确腺病毒(Ad⁃DF3⁃copGFP)在肺腺癌细胞中的感染效率,使用Ad⁃DF3⁃copGFP与Ad⁃hTERT⁃ copGFP重组腺病毒按MOI=3比例感染A549、H1299 细胞,随后HCS拍照并初步评估感染效率。
-
1.2.7 检测Ad⁃DF3⁃copGFP非特异性感染率
-
抽取健康志愿者外周血 4 mL,通过 Ficoll 密度梯度离心法分离人外周血单个核细胞(peripheral blood mononuclear cell,PBMC),加入 DMEM 重悬,加入按 MOI=3 比例配制的 Ad⁃DF3⁃copGFP 及 Ad ⁃ hTERT ⁃ copGFP 病毒胶液(含 10% FBS 的 DMEM、抗人 CD45 抗体及重组病毒),后接种于 24 孔板中,37℃放置22 h后加Hoechst染色,23.5 h 时加0.3%多聚甲醛胶固定并于24 h时HCS成像,计数GFP+ /CD45+ 细胞并初步比对非特异性感染率。
-
1.2.8 模拟CTC的检出率测定
-
抽取健康志愿者外周血4 mL,A549细胞计数后分为 10、50、100、200 个,分别依次加入血液样本中来模拟 CTC,对血样进行预处理后,分别加入 Ad⁃DF3⁃copGFP及Ad⁃hTERT⁃copGFP病毒胶液,后接种于24孔板中,37℃放置,按要求进行Hoechst染色与多聚甲醛胶固定,24 h 时 HCS 成像并计数 CD45- /GFP+ 细胞(标记为肿瘤细胞),得出检出细胞数后通过线性回归模型分析各自的检出率。
-
1.2.9 临床CTC检测
-
采用EDTA⁃K2抗凝采血管收集肺癌患者外周血4 mL,Ficoll 密度梯度离心法进行血液预处理,按 MOI=3比例配制两种病毒胶液,加入病毒胶液的血样接种于6孔板中,37℃放置,按要求进行Hoechst染色与多聚甲醛胶固定,24 h时HCS成像计数CD45- / GFP+ 细胞后,通过箱线图及散点图进行数据分析。
-
1.3 统计学方法
-
使用软件Rstudio及GraphPad Prism 8进行统计学分析,所有数据均采用均数±标准差()表示,两组间差异分析使用t检验,多组间比较采用方差分析,实验均重复5次,P <0.05为差异有统计学意义。
-
2 结果
-
2.1 骨架质粒pBHG⁃Ad5⁃DF3⁃copGFP的构建
-
DF3、copGFP及DF3⁃copGFP经PCR扩增后,产物经凝胶电泳,DNA片段大小分别为786 bp、759 bp、 1 745 bp,与目的基因相符(图1A~C);以重组质粒 pDC⁃DF3、pDF3⁃copGFP及重组骨架质粒pBHG⁃Ad5⁃ DF3⁃copGFP为模板进行PCR鉴定,片段大小分别为 967 bp、922 bp、2 091 bp(图1D~F),且测序结果与 GenBank中对应序列一致(图1G~I),表明重组质粒pDC⁃DF3、pDF3⁃copGFP及重组骨架质粒pBHG⁃Ad5⁃ DF3⁃copGFP构建成功。
-
图1 PCR产物、PCR鉴定及重组质粒测序图谱
-
Figure1 PCR products,PCR identification,and recombinant plasmid sequencing map
-
2.2 穿梭质粒pDF3⁃E1A⁃P2A⁃E1B的构建
-
E1A⁃P2A⁃E1B经PCR扩增后,产物经凝胶电泳后可见约 1 521 bp 的条带,与目的基因相符(图2A),以重组穿梭质粒pDF3⁃E1A⁃P2A⁃E1B为模板进行PCR鉴定,可见大小约为1 671 bp的条带,电泳条带大小正确(图2B),测序结果与GenBank公布的序列一致(图2C),证明穿梭质粒构建成功。
-
2.3 重组病毒Ad⁃DF3⁃copGFP的包装与滴度测定
-
穿梭质粒 pDF3⁃E1A ⁃P2A ⁃E1B 与骨架质粒 pBHG ⁃Ad5⁃DF3⁃copGFP 转染至 HEK293 细胞后, HCS 成像结果显示绿色荧光拖尾(图3),表明穿梭质粒中的 GFP 成功表达,初步判断病毒包装成功。重组病毒经扩增纯化后,通过终点稀释法进行滴度测定,1×10-1 到1×10-13依次稀释度下病变阳性率总和X=1×8+0.8+0.4=9.2,根据滴度计算公式,本研究中病毒滴度=10(9.2+0.8) =1×1010 PFU/mL。
-
2.4 最佳感染条件确定
-
重组腺病毒(Ad⁃DF3⁃copGFP与Ad⁃hTERT⁃cop⁃ GFP)分别以 MOI 为 1、3、5、10 的剂量感染 A549 细胞,0~48 h 通过 HCS 分析感染情况。感染 24 h 及 MOI=3时,感染率接近90%(图4),且细胞生长状态良好,24 h 后及 MOI>3 时,感染率降低且细胞状态不佳,提示病毒量过大及感染时间过长对细胞生长产生了影响。因此选择感染 24 h 与 MOI=3 为最佳感染条件。
-
2.5 感染效率评估
-
HCS成像结果显示A549细胞感染Ad⁃DF3⁃copGFP 及 Ad⁃hTERT⁃copGFP 后的感染率分别为 80.18% 与 73.40%,H1299 细胞感染 Ad⁃DF3⁃copGFP 及 Ad ⁃hTERT ⁃ copGFP 后的感染率分别为 79.62%与 82.08%,两种细胞感染后均稳定表达GFP白且感染效率相近(图5),进一步说明成功构建腺病毒且感染效率高。
-
图2 PCR产物、PCR鉴定及穿梭质粒测序图谱
-
Figure2 PCR products,PCR identification,and shuttle plasmid sequencing diagram
-
图3 在 HEK293 细胞中重组腺病毒的包装( 比例尺 = 100 μm,×100)
-
Figure3 The packaging of recombinant adenovirus in HEK293 cells(scale bar=100 μm,×100)
-
2.6 非特异性感染率测定
-
Ad⁃DF3⁃copGFP 与 Ad⁃hTERT⁃copGFP 的非特异性感染率分别为 0.047%与 0.625%(P <0.001,图6),说明通过采用 DF3 启动子替换 hTERT 启动子,有效地抑制了病毒在PBMC中的非特异性感染,进一步证明本研究构建的重组腺病毒在检测 CTC 方面具有更高的特异性,使准确检测CTC而不产生假阳性成为可能。
-
2.7 两种病毒对模拟CTC的检出率对比
-
在外周血中分别加入 10、50、100、200 个 A549 细胞以模拟CTC,两种病毒都成功检测到肿瘤细胞, Ad⁃DF3⁃copGFP法检出细胞数分别为(6.20±0.84)、 (33.20±3.27)、(680.80±5.59)、(152.20±9.78)个, Ad ⁃ hTERT ⁃ copGFP 法检出细胞数分别为(5.80 ±1.30)、(31.80±3.56)、(59.00±5.14)、(138.20±8.58)个,线性回归模型分析得出检出率分别为 77.3% (Ad⁃DF3⁃copGFP 法)和 69.6%(Ad⁃hTERT⁃copGFP 法)。且分析结果表明,检测到的 CD45- /GFP+ 细胞与CTC模型中的肿瘤细胞数量存在相关性,Ad⁃DF3⁃ copGFP模型R2 =0.988 5,Ad⁃hTERT⁃copGFP模型R2 = 0.984 6(图7)。证明重组腺病毒Ad⁃DF3⁃copGFP相比 Ad⁃hTERT⁃copGFP,具有更高的模拟CTC检出率 (P <0.05)。
-
图4 感染条件优化
-
Figure4 Optimization of infection conditions
-
2.8 CTC检测效果鉴定
-
两种病毒都成功在非小细胞肺癌患者外周血中检测到CTC,Ad⁃DF3⁃copGFP 法检出肿瘤细胞数为每 4 mL(10.90±2.42)个,Ad⁃hTERT⁃copGFP 法检出肿瘤细胞数为每 4 mL(6.20±1.81)个,Ad ⁃DF3⁃ copGFP 法检出的肿瘤细胞数明显高于 Ad⁃hTERT⁃ copGFP 法(P <0.001,图8),由此可见重组腺病毒 Ad⁃DF3⁃copGFP 能检出更多的 CTC,证明其临床 CTC检测效果更突出。
-
3 讨论
-
肿瘤转移是指肿瘤细胞在远离其原发器官的远端器官中生长的一种现象,是导致肿瘤患者死亡的最主要因素[13]。而CTC是发生转移的基本前提[14],通过研究CTC能够深入了解恶性肿瘤转移的机制、过程和影响因素[15]。目前的 CTC 检测技术主要基于细胞的物理特性(如大小和表面电荷)及生物学特征[16],包括Cell Search system[17]、ISET[18]、CTC⁃iChip 等[19],然而这些检测法都存在着相应的缺点:检测过程中CTC的损坏[20]、EpCAM丢失产生的检测遗漏等[21]。CTC在外周血中数量极少及其表型具有异质性,CTC的检测仍然具有挑战性[22]。
-
图5 A549、H1299细胞感染两种病毒后的感染率
-
Figure5 Infection rates of A549 and H1299 cells after infection with the two viruses
-
图6 Ad⁃hTERT⁃copGFP与Ad⁃DF3⁃copGFP的非特异性感染率
-
Figure6 The non⁃specific infection rates of Ad⁃hTERT⁃copGFP and Ad⁃DF3⁃copGFP
-
图7 Ad⁃hTERT⁃copGFP与Ad⁃DF3⁃copGFP的检出率
-
Figure7 The detection rates of Ad⁃hTERT⁃copGFP and Ad⁃DF3⁃copGFP
-
图8 Ad⁃hTERT⁃copGFP与Ad⁃DF3⁃copGFP检测临床样本中的CTC
-
Figure8 Clinical detection of CTC for Ad⁃hTERT⁃copGFP and Ad⁃DF3⁃copGFP
-
已有研究构建含有 hTERT 启动子的腺病毒来检测CTC[23],其检测的是活CTC,理论上具有更高的诊断价值。由于外周造血干细胞和白细胞(特别是 B细胞和CD4+ T细胞)端粒酶活性较高[24],会引起病毒非特异性感染 PBMC,而导致基于端粒酶活性的检测技术的高假阳性率。因此为了改善病毒检测 CTC法的特异性与敏感性,使用特异性更高的启动子至关重要。本研究采用DF3/MUC1启动子,MUC1 在正常情况下主要存在于上皮细胞的顶端边界[25],而MUC1的低糖基化导致其在包括乳腺、卵巢和胃肠道等恶性肿瘤在内的多种恶性肿瘤中异常过表达[26],且MUC1异常表达受其转录水平调控[25],因此构建含有 DF3/MUC1 启动子的重组腺病毒,其能够在 MUC1阳性肿瘤细胞中特异性复制[27]。
-
本研究所构建的重组腺病毒(Ad⁃DF3⁃copGFP) 包含DF3/MUC1启动子,使病毒能够在肿瘤细胞中特异性复制且通过GFP来检测CTC,并与本实验室保存的重组腺病毒(Ad⁃hTERT⁃copGFP)进行对比研究,通过感染肺腺癌 A549、H1299 细胞,证明其具有高感染效率,非特异性感染率测定实验结果表明 Ad⁃DF3⁃copGFP可以显著降低GFP阳性的PBMC数量,进一步证明了 DF3/MUC1 启动子的高特异性, CTC检出率测定与非小细胞肺癌患者样本检测实验证明,相比Ad⁃hTERT⁃copGFP,Ad⁃DF3⁃copGFP具备更高的敏感性。
-
综上,本研究成功完成重组腺病毒(Ad⁃DF3⁃ copGFP)的制备,提高了病毒检测 CTC 法的特异性与敏感性,为肺癌CTC检测提供了新方法。本研究也存在局限性,例如在检测中存在少数假阳性细胞及临床样本数量较少等,仍需要进一步研究以降低假阳性率及扩大样本规模并进行验证实验,以确保检测结果的可靠性和稳定性。
-
参考文献
-
[1] YANG Y T,ZHANG Z X,LI W,et al.ME2 promotes hepatocellular carcinoma cell migration through pyruvate[J].Metabolites,2023,13(4):540
-
[2] RING A,NGUYEN ⁃STRÄULI B D,WICKI A,et al.Biology,vulnerabilities and clinical applications of circulating tumour cells[J].Nat Rev Cancer,2023,23(2):95-111
-
[3] BATES M,MOHAMED B M,WARD M P,et al.Circulating tumour cells:the good,the bad and the ugly[J].Biochim Biophys Acta Rev Cancer,2023,1878(2):188863
-
[4] ZHANG H J,JI J N,LIU Q,et al.MUC1 downregulation promotes TNF⁃α⁃induced necroptosis in human bronchial epithelial cells via regulation of the RIPK1/RIPK3 pathway[J].J Cell Physiol,2019,234(9):15080-15088
-
[5] GENDLER S J,SPICER A P.Epithelial mucin genes[J].Annu Rev Physiol,1995,57:607-634
-
[6] KOVARIK A,PEAT N,WILSON D,et al.Analysis of the tissue-specific promoter of the MUC1 gene[J].J Biol Chem,1993,268(13):9917-9926
-
[7] GENDLER S J.MUC1,the renaissance molecule[J].J Mammary Gland Biol Neoplasia,2001,6(3):339-353
-
[8] BEISHLINE K,AZIZKHAN-CLIFFORD J.Sp1 and the ‘hallmarks of cancer’[J].FEBS J,2015,282(2):224-258
-
[9] DOLCET X,LLOBET D,PALLARES J,et al.NF-kB in development and progression of human cancer[J].Vir⁃chows Arch,2005,446(5):475-482
-
[10] SONG D D,LIAN Y,ZHANG L.The potential of activator protein 1(AP⁃1)in cancer targeted therapy[J].Front Immunol,2023,14:1224892
-
[11] OCHSENREITHER S,FIEDLER W M,CONTE G D,et al.Safety and preliminary activity results of the GATTO study,a phase Ib study combining the anti⁃TA⁃MUC1 antibody gatipotuzumab with the anti⁃EGFR tomuzotuximab in patients with refractory solid tumors[J].ESMO Open,2022,7(2):100447
-
[12] KHODABAKHSH F,MERIKHIAN P,EISAVAND M R,et al.Crosstalk between MUC1 and VEGF in angiogenesis and metastasis:a review highlighting roles of the MUC1 with an emphasis on metastatic and angiogenic signaling[J].Cancer Cell Int,2021,21(1):200
-
[13] GERSTBERGER S,JIANG Q W,GANESH K.Metastasis[J].Cell,2023,186(8):1564-1579
-
[14] COLMENARES R,ÁLVAREZ N,BARRIO S,et al.The minimal residual disease using liquid biopsies in hematological malignancies[J].Cancers,2022,14(5):1310
-
[15] SAVELIEVA O E,TASHIREVA L A,KAIGORODOVA E V,et al.Heterogeneity of stemlike circulating tumor cells in invasive breast cancer[J].Int J Mol Sci,2020,21(8):2780
-
[16] TAYOUN T,FAUGEROUX V,OULHEN M,et al.CTC-derived models:a window into the seeding capacity of circulating tumor cells(CTCs)[J].Cells,2019,8(10):1145
-
[17] ONIDANI K,SHOJI H,KAKIZAKI T,et al.Monitoring of cancer patients via next⁃generation sequencing of patient⁃derived circulating tumor cells and tumor DNA[J].Cancer Sci,2019,110(8):2590-2599
-
[18] WANG H S,LI H,YUAN Y P,et al.A preliminary study on the association between epithelial⁃mesenchymal transition and circulating tumor cells in renal cell carcinoma[J].Transl Androl Urol,2022,11(4):460-471
-
[19] RIVERA ⁃BÁEZ L,LOHSE I,LIN E,et al.Expansion of circulating tumor cells from patients with locally advanced pancreatic cancer enable patient derived xenografts and functional studies for personalized medicine[J].Cancers,2020,12(4):1011
-
[20] AKPE V,KIM T H,BROWN C L,et al.Circulating tumour cells:a broad perspective[J].J R Soc Interface,2020,17(168):20200065
-
[21] BUDNA⁃TUKAN J,ŚWIERCZEWSKA M,MAZEL M,et al.Analysis of circulating tumor cells in patients with non⁃metastatic high⁃risk prostate cancer before and after radiotherapy using three different enumeration assays[J].Cancers,2019,11(6):802
-
[22] PAN Y,WANG Z L,MA J L,et al.Folic acid ⁃modified fluorescent-magnetic nanoparticles for efficient isolation and identification of circulating tumor cells in ovarian cancer[J].Biosensors,2022,12(3):184
-
[23] KOJIMA T,HASHIMOTO Y,WATANABE Y,et al.A simple biological imaging system for detecting viable human circulating tumor cells[J].J Clin Invest,2009,119(10):3172-3181
-
[24] LIN J,EPEL E,CHEON J,et al.Analyses and comparisons of telomerase activity and telomere length in human T and B cells:insights for epidemiology of telomere maintenance[J].J Immunol Methods,2010,352(1/2):71-80
-
[25] KUFE D,INGHIRAMI G,ABE M,et al.Differential reactivity of a novel monoclonal antibody(DF3)with human malignant versus benign breast tumors[J].Hybridoma,1984,3(3):223-232
-
[26] GAO S L,YIN R,ZHANG L F,et al.The oncogenic role of MUC12 in RCC progression depends on c ⁃Jun/TGF ⁃β signalling[J].J Cell Mol Med,2020,24(15):8789-8802
-
[27] CHEN L,CHEN D,MANOME Y,et al.Breast cancer selective gene expression and therapy mediated by recombinant adenoviruses containing the DF3/MUC1 promoter[J].J Clin Invest,1995,96(6):2775-2782
-
摘要
目的:构建含 DF3/MUC1 启动子转录调控序列和绿色荧光蛋白(green fluorescent protein,GFP)的重组腺病毒 (Ad-DF3-copGFP),探讨其在循环肿瘤细胞(circulating tumor cell,CTC)检测方面的作用。方法:制备并纯化重组腺病毒 (Ad-DF3-copGFP),与本实验室构建保存的重组腺病毒(Ad-hTERT-copGFP)进行对比研究,通过感染肺腺癌A549、H1299细胞及健康人外周血单核细胞(peripheral blood mononuclear cell,PBMC)以评估感染效率与非特异性感染率;将A549细胞按一定数量加入到健康人外周血中来模拟CTC,使用两种重组病毒感染并检测模拟CTC细胞以进行检出率测定;使用Ad-DF3-copGFP 法及 Ad-hTERT-copGFP 法检测肺癌患者临床样本中的 CTC,初步评估临床 CTC 检测的效果。结果:成功构建了重组腺病毒 Ad-DF3-copGFP,其对A549、H1299细胞有较高感染效率,且与Ad-hTERT-copGFP相比,Ad-DF3-copGFP非特异性感染率更低 (P < 0.001);Ad-DF3-copGFP法模拟CTC检出率(77.3%)高于Ad-hTERT-copGFP法(69.6%);在临床CTC检测中,Ad-DF3-copGFP 法CTC检出数[每4 mL(10.90±2.42)个]明显高于Ad-hTERT-copGFP法[每4 mL(6.20±1.81)个,P < 0.001]。结论:成功构建重组腺病毒(Ad-DF3-copGFP),其检测CTC具有可靠性和高效性,为CTC检测提供了新方法。
Abstract
Objective:To construct a recombinant adenovirus(Ad-DF3-copGFP)containing the DF3/MUC1 promoter transcriptional regulatory sequence and green fluorescent protein(GFP)and to investigate its role in the detection of circulating tumor cells(CTC). Methods:A recombinant adenovirus(Ad-DF3 - copGFP)was prepared and purified. Comparative studies were conducted with a previously constructed and stored recombinant adenovirus(Ad-hTERT-copGFP)in our laboratory. Infection efficiency and non-specific infection rates were evaluated by infecting lung adenocarcinoma A549 and H1299 cells,as well as peripheral blood mononuclear cells (PBMC)from healthy individuals. A549 cells were artificially added to healthy peripheral blood to simulate CTC,and the infection with both recombinant viruses was used to detect simulate CTC for detection rate determination. The Ad-DF3-copGFP and Ad-hTERT-copGFP methods were used to detect CTC in clinical samples from lung cancer patients,and the initial clinical CTC detection performance was evaluated. Results:The recombinant adenovirus(Ad -DF3 - copGFP)was successfully constructed,showing a high infection efficiency for both A549 and H1299 cells. Compared with Ad-hTERT-copGFP,Ad-DF3-copGFP showed a lower non-specific infection rate(P < 0.001). The overall detection rate using the Ad-DF3-copGFP method(77.3%)was higher than that using the Ad-hTERT-copGFP method(69.6%). In clinical CTC detection,the number of CTC detected by the Ad-DF3-copGFP method[(10.90± 2.42)cells per 4 mL]was significantly higher than that by the Ad-hTERT-copGFP method[(6.20±1.81)cells per 4 mL,P < 0.001]. Conclusion:The recombinant adenovirus(Ad-DF3 - copGFP)is successfully constructed,demonstrating a reliable and efficient detection of CTC,thus providing a new method for CTC detection.