-
氧是细胞赖以生存和组织发挥功能所必需的条件,作为代谢底物和细胞间通讯的重要分子,在整个植入结构体系中持续的供氧特别重要。缺氧,又称乏氧,可引起细胞结构损伤和代谢障碍,影响稳定性和新陈代谢,其损伤的程度取决于缺氧的程度,同时氧合不足也会破坏细胞内外的离子平衡,出现组织水肿和酸中毒,长时间的持续缺氧也会导致局部细胞坏死和凋亡,影响器官的正常功能,最终影响机体生理状态。近年来组织工程(tissue engineering,TE)在组织再生领域已经取得了相当大的成就,但由于组织深部的氧化应激和缺氧,移植细胞的存活率依然较低。释氧生物材料的出现很好地应对了这一挑战,尤其是在新生血管形成之前,氧气输送对整个TE中的细胞存活都起到了至关重要的作用[1]。目前已经通过多种不同类型的方案制备释氧生物材料用于体外和体内建立持续的氧气供应。大量实践应用表明,释氧生物材料在TE与再生医学方面具有不可忽视的应用前景。本综述分别从携氧材料、产氧生物材料以及新型产氧材料技术3个方面对释氧生物材料应用于TE的研究进展进行系统阐述[2]。
-
1 携氧材料
-
携氧材料,也被称为氧载体(oxygen carrier),应用时在特定条件下先与氧分子结合,将其置于氧分压减小和温度升高的条件下,又可逆地释放出氧气,提高相应组织的氧含量,以缓解局部缺氧状态。目前在TE领域中具有应用前景的方案是基于血红蛋白(hemoglobin,Hb)的氧载体(hemoglobin ⁃ based oxygen carrier,HBOC)和全氟化碳(perfluorinated compound,PFC)技术。
-
1.1 HBOC
-
HBOC 是一种以天然 Hb 作为携带氧气的部分半合成体系,它不仅能在经过化学修饰的无细胞悬液中保持稳定悬浮,而且能够与聚合物和保护酶结合并交联,封装在微米颗粒或纳米颗粒载体中。由于不受细胞膜的干扰,使用HBOC抗原性最小,同时能高效地释放血浆中的氧气[3]。
-
1.1.1 悬浮体系
-
20世纪初至50年代,无细胞Hb只是单纯地悬浮在乳酸林格氏液中,但应用发现,Hb在循环系统中滞留时间很短,并且迅速被内皮系统和肾脏清除,循环寿命较短。Hb及其解离后的一系列衍生物也可以渗出到血管内皮下层并迅速捕获一氧化氮(nitric oxide, NO),产生双加氧反应。此外,2,3⁃二磷酸甘油酸(2,3⁃ diphosphoglycerate,2,3⁃DPG)会使得Hb的氧亲和力大大增加,进而使氧气卸载成为棘手的问题[4]。
-
1.1.2 化学修饰HBOC交联
-
早期的研究利用琥珀酰水杨酸酰化 Hb,在人 Hb 的两个α亚基之间形成分子内交联构成了新的体系。与未交联Hb的循环停留时间(<6 h)相比,该产品的循环停留时间高达12 h。但由于改造Hb的复苏液体在休克的复苏治疗上与生理盐水相比有较高的死亡率,因而后续应用大大减少[5]。
-
1.1.3 封装式HBOC系统
-
由于化学修饰交联的HBOC产物的氧负载和卸载能力不够理想,同时不可逆地转化为高铁Hb带来的心血管和肾功能风险较大,目前,另一个平行的研究方向是将HBOC封装在各种微纳米载体中,以更确切地模拟Hb在红细胞中的生理封装状态。过去二十年,在颗粒分装技术的快速发展下,越来越多的研究通过药物递送平台技术将Hb封装在微米纳米颗粒中,能够保护Hb免受血浆诱导的影响,从而增加循环时间,达到对细胞、组织和器官的持续可用。
-
临床上建立了“隐形脂质体”(stealth liposome) 技术,用聚乙二醇(polyethylene glycol,PEG)对脂质纳米囊泡(直径100~200 nm)进行表面功能化,以增强储存稳定性,防止巨噬细胞快速摄取,显著延长了循环滞留时间[6]。
-
1.1.4 以Hb为氧气载体的新型分子和设计
-
Tomita等[7] 通过使用α⁃琥珀酰亚胺⁃ε⁃马来酰亚胺交联剂将人血清白蛋白(human serum albumin, HSA)与Hb表面的赖氨酸结合到HSA的半胱氨酸⁃34 上,形成了核⁃壳簇结构。这种Hb⁃HSA簇降低了快速清除和外渗的风险,提高了循环稳定性并延长停留时间。最近报道了对这些Hb⁃HSA核壳纳米簇的进一步修饰,其中抗氧化酶和铂纳米颗粒被嵌入到 HSA中以保护Hb。
-
1.2 PFC
-
PFC能大幅提升氧气的溶解量,且化学性质十分稳定,这两项优点使得它具有优异的携氧能力,可用于组织快速氧合。但是由于 PFC 具有极端疏水性,应用前需引入乳化剂对其进行乳化制成乳液,如脂类、蛋白质、含氟化合物等[8]。1967年,Lowe 等[9] 率先利用牛血清白蛋白(bovine serum albumin, BSA)将PFC在水中乳化,并在离体大鼠脑中灌注成功。这种乳化作用为在生理系统中使用 PFC 作为氧载体铺平了道路,提供了一种允许添加水溶性营养物质和药物的新方法。
-
2015年Culp等[10] 利用十二氟戊烷乳液(dodeca⁃ fluoropentane emulsion,DDFPe)纳米液滴制成了一种特殊的氧转运蛋白,在无需再灌注的卒中模型中,能够对缺血性脑组织提供长达 24 h 的保护。由于卒中发作后的延迟,目前的常规卒中治疗往往无法及时覆盖到患者。本课题组使用 DDFPe 进行了测试,以期延长组织纤溶酶原激活剂(tissue plamnipen activator,tPA)溶栓的时间窗口。经过测试DDFPe可以安全地将tPA溶栓的时间窗口延长至脑卒中后9 h。延长治疗窗口可为更多卒中患者提供完全康复的机会。
-
PFC乳液能够吸收大量的氧气,因而被广泛用作血液替代品,但是,它们不适合需要长时间持续供氧的情况。2017 年 Jalani 等[11] 设计了一种新的PFC 氧气输送系统,将全氟十氢萘(Perfluorode calin,PFC)与氧化石墨烯(graphene oxide,GO)相结合,GO既可作为乳化剂,又可作为稳定剂。所得乳液 (PFC⁃GO)释放氧气的速度比用其他常用表面活性剂制备的乳液慢1个数量级。并且通过改变石墨烯层的厚度可以控制释放速率以期实现氧气的可控释放,使得这些乳液成为需要持续氧气输送的组织的优良氧气载体,例如组织再生和血管伤口愈合。
-
2 产氧生物材料
-
对于组织工程的构建体,细胞的存活依赖于氧气的充分扩散以及邻近血管和组织中营养物质的运输。然而,这仅限于在距离邻近血管100~200 μm内。超过阈值距离的细胞和组织接受氧气供应较为困难,随着缺氧程度的不同,发生不同水平的坏死和凋亡[12]。例如,在骨TE植入支架的最初4~6周,血管化在骨再生过程中发挥了关键的支持和促进作用,提供氧气和营养物质的递送及扩散作用,从而加速了骨组织的修复与再生[13]。
-
2.1 氧源材料
-
治疗型的氧气可以单凭气体的形式,也可以为液体和固体来源。气体主要借助高压氧的形式,因只能作用于体表,应用范围较小。应用最广泛的氧源材料是固体过氧化物,包括过氧化钙(calcium peroxide,CPO)、过氧化镁(magnesium dioxide, MPO)、过碳酸钠(sodium percarbonate,SPO)以及过氧化氢(hydrogen peroxide,H2O2)载体等。对于过氧化物来说,第一步均首先将其解离为 H2O2,作为氧气的前驱体。相反,H2O2载体则通过直接运输和释放H2O2,从而进一步分解产生氧气[14](表1)。
-
2.2 产氧生物材料载体种类
-
氧源材料装载后的产氧支架可有效解决新生血管形成前局部组织的氧气供应问题[15]。然而,基于过氧化物的产氧生物材料作为反应中间体会产生自由基,自由基的积累会增加氧化应激反应,从而降低细胞活力。为了应对这一限制,天然抗氧化剂,如过氧化氢酶,被纳入产氧生物材料,以减少氧自由基的产生。然而,酶的掺入可能会使支架设计进一步复杂化;掺入的酶也可能失去其稳定性。
-
2.2.1 聚己内酯(polycaprolactone,PCL)
-
具有氧气产生元件的TE支架已显示能够在特定条件下提高氧气和细胞活力的水平。Touri等[16] 用 60% 羟基磷灰石(hydroxylapatite,HA)与 40% β ⁃ 磷酸三钙(β⁃tricalcium phosphate,β⁃TCP)混合组成制备了一种双相磷酸钙(biphasic calcium phos⁃ phate,BCP)支架。在三维打印的支架上涂有不同比例的脱氧剂CPO,并将其涂封装在PCL基质中用于在植入部位原位产生氧气。此外,他们还探索了支架的氧释放动力学和生物学。结果表明,随着PCL涂层体系中封装的CPO浓度的变化,氧气的释放量和速率也会随之不同。含量为3% CPO的涂层支架在缺氧条件下具有促进成骨细胞活力和增殖的巨大潜力。
-
Park等[17] 将CPO与SPO联合应用,制备了含有 CPO的巯基化硫醇化水凝胶,将水凝胶植入PCL⁃聚乙烯醇(polyvinyl alcohol,PVA)伤口补片中,过氧化钙介导的氧化交联反应会与释放的氧气原位形成水凝胶网络,可以在局部位置迅速产生达到高氧水平的分子氧,并在体外和体内维持高氧水平长达12 d 和4 h。这种高水平的分子氧浓度能够诱导血管内皮细胞浸润,进而形成毛细血管样结构,从而进一步改善了局部的血液供应和组织修复情况,在组织再生医学应用方面具有巨大潜力。
-
2021年,Suvarnapathaki等[18] 使用CPO和PCL制作了一种释氧支架,CPO 水解后会降解生成氧气,可作为宿主的氧气供应来源。体外研究亦证实通过改变CPO的负载量,能够实现溶解氧释放水平从 5%到29%的可预测性变化。2022年该团队又成功制得一种产氧组织支架,用PCL内乳化CPO组成的微粒加固,该支架具有可预测的氧释放动力学,可以代替脉管系统为移植物提供充足的即时氧气。经过优化的体外细胞培养体系在pH 8~9的环境下保持相对稳定,体内实验也证实了该支架在临界尺寸的颅骨缺损中获得了90%以上的骨再生[19]。
-
2.2.2 聚乳酸⁃羟基乙酸共聚物(poly lactic⁃co⁃glycolic acid,PLGA)
-
2011年,Abdi等[20] 用过氧化氢酶接枝的海藻酸盐包覆PLGA基质,充当保护层的同时促进H2O2分解。他们发现可以通过控制包裹 H2O2的微球中海藻酸钠的浓度来控制氧气的释放。在所构建的该双层结构系统中,H2O2分解产生的持续供氧已被证明可以提高细胞在缺血条件下的存活率。
-
2018 年,Tapeinos 等[21] 开发了一种生物可降解的PLGA微球,该微球被Ⅰ型胶原蛋白(collagen type Ⅰprotein,ColⅠ)包覆,并修饰了MnO2 纳米颗粒,作为 ROS 清除剂,控制 H2O2介导的氧化应激细胞凋亡。结果表明,即使在非常恶劣的氧化应激条件下,功能化的胶原球也可以保护细胞。
-
2020年Hsieh等[22] 还开发了一种可注射复合体系,通过PLGA包裹CPO/ MnO2微粒。体外研究证实在低氧张力诱导培养的环境下,它们能够促进前成骨细胞的分化。该复合体系能有效增强局部氧合,改善骨再生潜力。
-
2.2.3 聚二甲基硅氧烷(polydimethylsiloxane,PDMS)
-
Pedraza 等[23] 设计了一种固体CPO 封装在疏水性 PDMS 中的圆盘,发现 PDMS⁃CPO 持续释氧长达 6 周。单个PDMS⁃CPO 膜片就足以将β细胞系和大鼠胰岛的细胞功能调节至常氧对照水平。与常氧条件相比,在缺血条件下,随着PDMS⁃CPO圆盘持续的供氧,β细胞系的活力维持了近1个月。
-
2017 年,Forget 等[24] 研究了一种以 PDMS 为基底,将其氧化并填充以CPO或过氧化尿素为基础的释氧微粒(micro particle,MP)。将CPO 夹在等离子体聚合物膜的基础层和外层之间。将其植入后表面包覆氧的过氧化物能够在水相环境中释放出游离氧。基于过氧化尿素的涂层被证实可以更有效地提高MIN6细胞在缺氧条件下的存活率。
-
2.2.4 甲基丙烯酸化水凝胶(methacrylic anhydride gelatin hydrogel,GelMA)
-
2017年Alemdar等[25] 设计了一种由明胶GelMA 负载 CPO 组成的产氧水凝胶。能够在低氧条件 (1% O2)下释放大量氧气超过5 d,释氧量足够缓解封装在CPO⁃GelMA 水凝胶中的心脏侧细胞群细胞的代谢应激。与仅使用 GelMA 的水凝胶相比,在 GelMA水凝胶中掺入 CPO可显著提高细胞活力。
-
Newland等[26] 将CPO与结冷胶物理交联成水凝胶,当加载过氧化氢酶时,水凝胶可提高培养基的溶解氧含量长达64 h。
-
3 新型产氧材料技术
-
3.1 光合藻类(photosynthetic algae)
-
Hopfner等[27] 在将3T3成纤维细胞与光合莱茵衣藻共培养进行研究,并在低氧条件(1% O2)下持续光照22 h。借助藻类的光合作用为局部的缺氧环境提供氧气。研究显示,与藻类共培养的成纤维细胞缺氧诱导因子1α(hypoxia inducible factor 1α,HIF⁃1α)的表达比单独培养的成纤维细胞显著升高,说明共培养的培养基中氧气水平可能存在显著的升高。
-
3.2 肌红蛋白⁃聚合物表面活性剂复合物[Mb_C][S]
-
Armstrong 等[28] 的研究通过使用[Mb_C][S]为干细胞功能化,能够实现为每个细胞提供自己的氧气输送分子。他们将阳离子化的肌红蛋白与阴离子表面活性剂结合,产生能够锚定在细胞膜上的两亲性分子。随后将[Mb_C][S]与人骨髓间充质干细胞(human bone marrow mesenchymal stem cell, hMSC)结合,测试了 hMSC 在聚乙醇酸(polyglycolic acid,PGA)支架中形成软骨的能力。将修饰后的 hMSC 在支架中培养 35 d 后,发现[Mb_C][S]修饰的hMSC显著提高了Ⅱ/Ⅰ型胶原蛋白的比例,坏死中心的大小也从42.24%降低到7.60%。
-
3.3 核型微球(μtanks)
-
2021年,Guan等[29] 开发了一种释氧微球,由外部具有感知周围氧浓度响应能力的壳层和内部装载氧气的核层组成。壳层的亲水性和降解速率可以随着环境氧水平的增加而降低,导致氧气释放速度减慢,达到缓释的目的。体外实验验证,在低氧条件下,该微球释放的氧气可以显著增强间充质干细胞(mesenchymal stem cell,MSC)的存活,而不诱导ROS的产生。在体内实验中,将MSC和微球释氧体系一并递送到小鼠缺血肢体,发现微球显著改善了 MSC在缺血条件下的存活、增殖和旁分泌作用。它可以在不引起组织炎症的情况下,对血管生成、血流动力恢复和骨骼肌再生起到显著的加速作用。同时,微球还能够直接释放分子氧,比释放H2O2并依靠其分解形成氧气的释氧生物材料更加安全。
-
2022年,Farris等[30] 开发了一种基于PVA和PLGA 的壳核型微球。核层由 PVA 组成,可减少氧的释放;壳层由 PLGA 组成,来延缓支架的降解。将这些微球装载到 3D 打印的 PCL 支架中,并用纯氧来填充装载支架。体外实验证实产氧支架可以有效增强人脂肪干细胞(human adipose⁃derived stem cell, hADSC)的存活且体外释放氧气的持续时间长达 8 h。将支架移植到皮下模型和颅骨缺损模型时,发现其短期释放的氧气诱导了更多的成骨蛋白产生,有效地改善了细胞外基质的沉积。
-
4 展望
-
释氧生物材料在改善组织愈合与TE再生等领域具有革命性的作用,多种氧源材料如CPO和SPO 已被用于体内组织产生氧气。为了实现氧气的持续释放,各种生物材料也被广泛用作载体,如PCL, PLGA和GelMA等用以装载氧源实现可控释放。对这一系列材料的研究也越来越广泛和深入,该领域的研究有望进一步扩展,以提高细胞活力,并延缓氧气释放速率。生物材料的体内应用也面临诸多挑战,包括实现持续稳定地氧气释放,材料的生物相容性以及活性氧产生的细胞毒性等。选择合适的氧源、载体材料和释放控制方法,可以在多种应用领域建立成功的氧合,并有助于将结果转化为临床实践。
-
未来可以将氧源与可注射水凝胶结合,用于微创和再生治疗,氧气的供应有助于提高递送细胞的存活率。亦可以利用无创成像,结合计算建模和机器学习,提供关于氧气水平和其他参数所需调整的反馈,还可以帮助建立有效治疗的个性化疾病模型,达到生理模拟条件,以评估体内应用的效果。
-
参考文献
-
[1] GHOLIPOURMALEKABADI M,ZHAO S S,HARRISON B S,et al.Oxygen ⁃generating biomaterials:a new,viable paradigm for tissue engineering?[J].Trends Biotechnol,2016,34(12):1010-1021
-
[2] AGARWAL T,KAZEMI S,COSTANTINI M,et al.Oxygen releasing materials:towards addressing the hypoxia⁃related issues in tissue engineering[J].Mater Sci Eng C Mater Biol Appl,2021,122:111896
-
[3] SEN GUPTA A.Hemoglobin-based oxygen carriers:current state⁃of⁃the⁃art and novel molecules[J].Shock,2019,52(Suppl 1):70-83
-
[4] ALAYASH A I.Setbacks in blood substitutes research and development:a biochemical perspective[J].Clin Lab Med,2010,30(2):381-389
-
[5] SLOAN E P,KOENIGSBERG M D,PHILBIN N B,et al.Diaspirin cross⁃linked hemoglobin infusion did not influence base deficit and lactic acid levels in two clinical trials of traumatic hemorrhagic shock patient resuscitation[J].J Trauma,2010,68(5):1158-1171
-
[6] IMMORDINO M L,DOSIO F,CATTEL L.Stealth liposomes:review of the basic science,rationale,and clinical applications,existing and potential[J].Int J Nanomedicine,2006,1(3):297-315
-
[7] TOMITA D,KIMURA T,HOSAKA H,et al.Covalent core ⁃shell architecture of hemoglobin and human serum albumin as an artificial O2 carrier[J].Biomacromole⁃cules,2013,14(6):1816-1825
-
[8] JÄGERS J,WROBELN A,FERENZ K B.Perfluorocarbon⁃based oxygen carriers:from physics to physiology[J].Pflugers Arch,2021,473(2):139-150
-
[9] LOWE K C,DAVEY M R,POWER J B.Perfluorochemicals:their applications and benefits to cell culture[J].Trends Biotechnol,1998,16(6):272-277
-
[10] CULP W C,BROWN A T,LOWERY J D,et al.Dodeca⁃fluoropentane emulsion extends window for tPA therapy in a rabbit stroke model[J].Mol Neurobiol,2015,52(2):979-984
-
[11] JALANI G,JEYACHANDRAN D,BERTRAM CHURCH R,et al.Graphene oxide⁃stabilized perfluorocarbon emulsions for controlled oxygen delivery[J].Nanoscale,2017,9(29):10161-10166
-
[12] FARRIS A L,RINDONE A N,GRAYSON W L.Oxygen delivering biomaterials for tissue engineering[J].J Mater Chem B,2016,4(20):3422-3432
-
[13] SHAFIQ M,CHEN Y J,HASHIM R,et al.Reactive oxygenspecies⁃basedbiomaterialsforregenerativemedicine and tissue engineering applications[J].Front Bioeng Biotechnol,2021,9:821288
-
[14] ASHAMMAKHI N,DARABI M A,KEHR N S,et al.Advances in controlled oxygen generating biomaterials for tissue engineering and regenerative therapy[J].Biomacromolecules,2020,21(1):56-72
-
[15] RAFIQUE M,ALI O,SHAFIQ M,et al.Insight on oxygen⁃supplying biomaterials used to enhance cell survival,retention,and engraftment for tissue repair[J].Biomedicines,2023,11(6):1592
-
[16] TOURI M,MOZTARZADEH F,OSMAN N A A,et al.3D⁃printed biphasic calcium phosphate scaffolds coated with an oxygen generating system for enhancing engineered tissue survival[J].Mater Sci Eng C Mater Biol Appl,2018,84:236-242
-
[17] PARK S,PARK K M.Hyperbaric oxygen-generating hydrogels[J].Biomaterials,2018,182:234-244
-
[18] SUVARNAPATHAKI S,NGUYEN M A,GOULOPOU⁃LOS A A,et al.Engineering calcium peroxide based oxygen generating scaffolds for tissue survival[J].Biomater Sci,2021,9(7):2519-2532
-
[19] SUVARNAPATHAKI S,WU X C,ZHANG T F,et al.Oxygen generating scaffolds regenerate critical size bone defects[J].Bioact Mater,2022,13:64-81
-
[20] ABDI S I H,NG S M,LIM J O.An enzyme ⁃modulated oxygen⁃producing micro⁃system for regenerative therapeutics[J].Int J Pharm,2011,409(1/2):203-205
-
[21] TAPEINOS C,LARRAÑAGA A,SARASUA J R,et al.Functionalised collagen spheres reduce H2O2 mediated apoptosis by scavenging overexpressed ROS[J].Nanomed⁃Nanotechnol Biol Med,2018,14(7):2397-2405
-
[22] HSIEH T E,LIN S J,CHEN L C,et al.Optimizing an injectable composite oxygen⁃generating system for relieving tissue hypoxia[J].Front Bioeng Biotechnol,2020,8:511
-
[23] PEDRAZA E,CORONEL M M,FRAKER C A,et al.Preventing hypoxia ⁃induced cell death in beta cells and islets via hydrolytically activated,oxygen-generating biomaterials[J].Proc Natl Acad Sci U S A,2012,109(11):4245-4250
-
[24] FORGET A,STAEHLY C,NINAN N,et al.Oxygen-releasing coatings for improved tissue preservation[J].ACS Biomater Sci Eng,2017,3(10):2384-2390
-
[25] ALEMDAR N,LEIJTEN J,CAMCI⁃UNAL G,et al.Oxygen⁃generating photo⁃cross⁃linkable hydrogels support cardiac progenitor cell survival by reducing hypoxia-induced necrosis[J].ACS Biomater Sci Eng,2017,3(9):1964-1971
-
[26] NEWLAND B,BAEGER M,EIGEL D,et al.Oxygen-producing gellan gum hydrogels for dual delivery of either oxygen or peroxide with doxorubicin[J].ACS Biomater Sci Eng,2017,3(5):787-792
-
[27] HOPFNER U,SCHENCK T L,CHÁVEZ M N,et al.Development of photosynthetic biomaterials for in vitro tissue engineering[J].Acta Biomater,2014,10(6):2712-2717
-
[28] ARMSTRONG J P K,SHAKUR R,HORNE J P,et al.Artificial membrane-binding proteins stimulate oxygenation of stem cells during engineering of large cartilage tissue[J].Nat Commun,2015,6:7405
-
[29] GUAN Y,GAO N,NIU H,et al.Oxygen-release microspheres capable of releasing oxygen in response to environmental oxygen level to improve stem cell survival and tissue regeneration in ischemic hindlimbs[J].J Control Release,2021,331:376-389
-
[30] FARRIS A L,LAMBRECHTS D,ZHOU Y X,et al.3D-printed oxygen⁃releasing scaffolds improve bone regeneration in mice[J].Biomaterials,2022,280:121318
-
摘要
一定程度的局部缺氧会引起不同水平的组织细胞损伤,释氧生物材料能持续给移植细胞供氧。近年来,许多研究致力于开发更有应用价值的释氧生物材料和体系,来增加体内的氧气输送以保证植入组织的有效氧供。根据提供氧气的形式释氧生物材料可以分为携氧材料和产氧材料。前者基于特定条件下结合氧分子后提供治疗性氧合,后者则是借助氧源材料组合入聚合物内,通过在体内的水解达到氧气释放的效果。文章归纳和总结携氧材料发展现状与产氧材料的氧源供应、装载材料和控制释放等多方面的最新研究,论述释氧生物材料进行氧气递送的实践应用和控制缓释的一系列方案。
Abstract
Some degree of localized hypoxia can cause varying degrees of cellular damage in tissues. Oxygen-releasing biomaterials can sustainably provide oxygen to transplanted cells. In recent years,extensive research efforts have been dedicated to developing more pratical oxygen-releasing biomaterials and systems to enhance oxygen delivery in vivo and ensure effective oxygen supply to implanted tissues. Based on the form of oxygen provision,these materials can be calssified into oxygen-carrying materials and oxygen-producing materials. The former deliver therapeutic oxygenation by binding oxygen molecules under specific conditions,while the latter incorporate oxygen source materials into polymers,achieving oxygen release through in vivo hydrolysis. This paper summarizes the current development of oxygen-carrying materials and oxygen-producing materials,including oxygen source supply,loading materials, and controlled release. It discusses practical application of oxygen-releasing biomaterials for oxygen delivery and various strategies for controlled release.
Keywords
hypoxia ; oxygen-releasing biomaterials ; controlled release ; hydrogel ; oxygen-producing stent