-
随着现代生活方式和饮食结构的改变,糖尿病和肥胖已经成为全球范围内重要的公共卫生问题[1]。预计到2040年,全球2型糖尿病患者将增加到 6.42 亿例,同时肥胖的成年人口将增至目前的 6 倍[2],肥胖合并 1 型糖尿病患者人数也在逐年上升[3]。肥胖不仅增加心血管疾病的风险,也是糖尿病最主要的危险因素之一。目前糖尿病的治疗取得了许多进展,但相关心血管并发症仍然是患者致病和死亡的主要原因之一。心肌缺血⁃再灌注 (ischemia/reperfusion,I/R)损伤仍是治疗糖尿病心脏病的主要挑战。尽管血管重建和溶栓治疗能够恢复心肌血流,但糖尿病患者的心功能恢复通常较差,且病死率相对较高。
-
脂肪细胞在应激状态下释放细胞外囊泡(extra⁃ cellular vesicle,EV),对维持全身代谢稳态和细胞间通讯至关重要。此类 EV 在调控心脏功能,尤其是与2型糖尿病相关的心脏疾病中发挥重要作用。文章重点探讨了糖尿病/肥胖状态下,脂肪源性细胞外囊泡(adipocyte ⁃ derived extracellular vesicle,AdEV) 如何参与并调控心脏I/R损伤的过程及机制。
-
1 脂肪组织与AdEV
-
1.1 脂肪组织的分类与功能
-
脂肪组织通常分为3种具有不同功能、表型和解剖学定位的类型:白色脂肪组织(white adipose tissue,WAT)、棕色脂肪组织(brown adipose tissue, BAT)和米色脂肪组织。脂肪组织及其多种细胞类型构成了人体最大的内分泌器官,可通过旁分泌和内分泌交流发挥调节作用。
-
1.2 AdEV的结构特征与释放调控
-
AdEV在糖尿病、肥胖、心血管疾病和癌症等多种疾病相关的代谢调节过程中,扮演了关键角色。 AdEV 可以通过 3 个特征来识别:脂肪细胞标志蛋白、脂肪细胞富含的微小核糖核酸(microRNA, miRNA)以及脂质(甘油三酯和脂肪酸)。内源性脂肪细胞蛋白,如脂联素、抵抗素和脂肪酸结合蛋白 4等,可以用来识别AdEV。此外,Lazar等[4] 证明,线粒体蛋白同样可以鉴定 AdEV。除了蛋白质,一些 miRNA 也是 AdEV 的指标,如 miR ⁃221、miR ⁃201、 miR⁃222和miR⁃16都是其中高度富集的miRNA[5]。甘油三酯和脂肪酸的存在也可以是AdEV的一个特征[6]
-
AdEV的产生和释放与细胞应激有关。研究表明,AdEV的释放增加是对缺氧、促炎细胞因子和脂肪酸的反应[7]。在2型糖尿病/肥胖状态下,过量生成的脂肪酸会导致线粒体功能障碍,伴随着更多活性氧(reactive oxygen species,ROS)的产生。ROS 诱导的AdEV释放增加通常由脂肪细胞中线粒体特异性的氧化应激引起。Yan 等[8] 观察到脂肪细胞中 AMP依赖的蛋白激酶(AMP⁃activated protein kinase, AMPK)的激活可减少AdEV释放。而特异性敲除脂肪细胞沉寂信息调节因子会导致AdEV释放增加[9]。
-
调节脂肪细胞 EV 释放的机制仍不完全清楚。有研究表明,脂肪细胞以p53依赖的方式促进AdEV释放,哺乳动物雷帕霉素靶蛋白复合体1可参与并调节其释放,但具体机制尚未明确[10]。
-
1.3 AdEV的生物功能
-
AdEV已被证明能够调节多种脂肪组织常驻细胞和浸润细胞的功能,还可以进入循环与远端器官参与信号转导(图1)。
-
1.3.1 AdEV介导分子水平的交流
-
AdEV可通过自分泌、旁分泌等方式维持细胞、组织间分子水平的交流,调节靶细胞中目的基因转录和蛋白质修饰等,进而影响生理和病理过程。 BAT分泌的AdEV携带miR⁃99b,可以抑制肝细胞中成纤维细胞生长因子21(fibroblast growth factor 21, FGF21)的表达[5]。WAT分泌的AdEV携带miR⁃23a/b,通过靶向抑癌基因 VHL(von Hippel⁃Lindau disease tumor suppressor)对缺氧诱导因子1α进行泛素化标记,以蛋白酶体依赖的方式进行降解,从而促进肝癌细胞的生长和迁移[11]。临床上也发现,肥胖患者 AdEV中存在有较高浓度的促炎细胞因子,如白细胞介素6、单核细胞趋化蛋白1、视黄醇结合蛋白4和脂联素等,诱导肝细胞和肌细胞产生胰岛素抵抗[12]。
-
1.3.2 AdEV介导的细胞间交流
-
AdEV能够介导脂肪细胞和肿瘤细胞之间的交流,建立二者的代谢共生关系。在侵袭性黑色素瘤中,脂肪细胞将含有脂肪酸和线粒体脂肪酸氧化酶的AdEV传递给肿瘤细胞,从而增强其侵袭性[4]。
-
AdEV 可以促进前脂肪细胞的分化和脂质积累。在新生脂肪生成途径中,AdEV 可促进前脂肪细胞的脂肪生成,并刺激间充质干细胞分化为脂肪细胞[13]。
-
AdEV可以介导脂肪细胞和内皮细胞之间的交流。Crewe 等[14] 的研究揭示了由代谢状态控制的脂肪细胞⁃内皮细胞⁃EV 轴。脂肪细胞与内皮细胞通过 EV 相互转移微囊蛋白 1,当体内胰高血糖素高表达时,交流增强,肥胖状态下,交流减弱。另外,AdEV 可以诱导病理性血管生成和破坏动脉粥样硬化斑块,也可通过激活 M1 巨噬细胞来加剧动脉粥样硬化。胰岛素抵抗脂肪细胞中分离的AdEV 也与2型糖尿病相关的营养血管生成有关[15]。
-
AdEV可以介导脂肪细胞和巨噬细胞之间的交流。内脏脂肪组织是2型糖尿病早期应激的主要来源之一,而脂肪组织巨噬细胞对微环境变化的反应失调是局部和全身代谢紊乱以及胰岛素抵抗发展的关键因素。有研究表明,AdEV 在体外和体内均可诱导单核细胞分化为 M1 样促炎状态[16]。AdEV还可通过脂滴的直接转移促进巨噬细胞的脂质积累,参与胰岛素抵抗[17]。
-
图1 脂肪源性细胞外囊泡介导的细胞间与器官间交流
-
Figure1 Intercellular and interorgan crosstalk through Adipocyte⁃derived extracellular vesicles
-
1.3.3 AdEV介导器官间通信
-
AdEV可以保护高脂肪喂养的小鼠免于呼吸机诱导的肺损伤[18],并诱导骨骼肌和肝脏的胰岛素抵抗[19]。非酒精性脂肪性肝病中的AdEV可使转化生长因子⁃β通路失调,介导肝脏纤维病变[20]。AdEV 还可向下丘脑发出信号,以调整食物摄入[21]。此外,来源于肥胖人群的AdEV 能诱导肝细胞产生胰岛素抵抗,从而进一步加剧肝脏的脂质负荷[22]。过去10年的研究增进了对脂肪组织在心血管疾病中作用的理解。大量研究证实,AdEV 及其载物对心脏功能具有保护或损害作用。以心包脂肪为例, Man 等[23] 的研究表明,来自心包脂肪组织的 AdEV 中大量的降脂蛋白可减轻心肌梗死后的心脏重构。但在Shaihov⁃Teper等[24] 的研究中,心外膜脂肪衍生的 AdEV 含有更多的促炎因子以及促纤维 miRNA,可诱发心房颤动。AdEV在糖尿病心脏I/R 损伤中的调控作用将在后文详细阐述。
-
2 AdEV在糖尿病心脏I/R损伤中的调控作用
-
2.1 糖尿病心脏I/R损伤的特征
-
据报道,糖尿病人群超过50%的死亡是由缺血性心脏病引起的[2],而且糖尿病患者在冠状动脉搭桥手术后的死亡率是非糖尿病患者的 2 倍[25]。因此,糖尿病患者缺血性心脏病的治疗具有挑战性。 I/R 损伤的特征是初期器官的血液供应受到限制,在恢复灌注并复氧后出现组织损伤的加剧[26]。糖尿病心脏是否更容易发生I/R损伤这一问题仍值得探究。
-
研究表明,糖尿病心肌在严重高血糖的急性期对 I/R 诱导的心肌损伤具有抵抗性。这可能涉及心肌蛋白激酶 B(protein kinase B,PKB)激活、内皮型一氧化氮合成酶激活、一氧化氮生成、蛋白激酶 C(protein kinase C,PKC)激活、热休克蛋白 27 和热休克蛋白90的上调,以及血红素加氧酶⁃1与过氧化氢酶的表达。因此,糖尿病急性期中的一些适应性生存途径可能被激活,从而对急性糖尿病心肌产生保护。相反,大量研究表明慢性糖尿病心肌更容易发生 I/R 损伤。Hekimian 等[27] 的研究发现,糖尿病大鼠4周后心肌梗死面积较小,而20周后心肌梗死面积则较大。这种改变证实了糖尿病急性期(4周) 和慢性期(20 周)在心肌 I/R 损伤中的差异,I/R 后糖尿病大鼠心功能失常会更严重。Forrat 等[28] 和 Annapurna等[29] 也在其他慢性糖尿病动物模型中观察到类似的现象。糖尿病慢性期心肌敏感性可能与心肌细胞外调节蛋白激酶磷酸化降低有关,但其确切信号机制仍尚不清楚。
-
糖尿病状态下,AdEV 可以介导功能失调脂肪组织与心脏的交流。越来越多的研究表明,AdEV 也参与糖尿病心肌I/R损伤过程并起到一定的调控作用(图2)。棕色脂肪细胞分泌的EV可以介导脂肪细胞与心脏的交流,减轻心肌梗死后的再灌注损伤[30]。肥大脂肪细胞来源的 EV 中富集 miR⁃802⁃ 5p,已被证明可以通过下调热休克蛋白60诱导心肌细胞的胰岛素抵抗和氧化应激,与糖尿病并发症 (如糖尿病心脏病)密切相关,这一发现也为心外膜脂肪组织损害心脏功能提供了新机制[31]。
-
2.2 AdEV中miRNA的调控作用
-
Thomou等[5] 的研究显示,脂肪细胞是循环中含 miRNA 的 EV 的主要来源。在血清 EV 中可检测到 653 种 miRNA。特异性敲除脂肪组织中 miRNA 处理酶 Dicer 的小鼠中,血清 EV 中 miRNA 水平大幅下降,其中 419 种 miRNA 显著减少,大约有 369 种 miRNA减少了至少80%。多项研究显示,肥胖/糖尿病患者的功能失调脂肪细胞释放的EV会促进远端器官的病理重塑。下面将从不同脂肪细胞的角度分别探讨AdEV中RNA与糖尿病心脏I/R损伤之间的关系。
-
2.2.1 白色脂肪细胞来源EV中miRNA对心脏的影响
-
白色脂肪细胞与糖尿病心脏关系密切。在与心脏纤维化程度相关的脂肪库中,EV 相关基因明显富集。白色脂肪细胞来源的 EV,可以将其中的 miRNA 传递至糖尿病心脏,引起心脏的功能代谢紊乱。Lin 等[32] 的研究揭示了衰老脂肪分泌的 miR⁃326⁃3p可加重糖尿病小鼠的心肌代谢。EV中的miR⁃194与miR⁃29a可降低糖尿病/肥胖小鼠心脏线粒体活性,导致其心脏功能受损,但EV的分泌机制及其潜在作用仍有待研究[33-34]。
-
Gan等[35] 最近的研究揭示了EV介导的功能失调脂肪细胞和心肌细胞之间的病理通信加剧糖尿病小鼠 I/R 损伤的作用机制,即 EV 携带 miR⁃130b⁃3p 从功能失调的脂肪细胞到心脏,抑制AMPK和解偶联蛋白 3 等心脏保护分子,并加剧心肌 I/R 损伤。靶向miR⁃130b⁃3p介导的病理通信可能是一种减轻糖尿病心肌 I/R 损伤的新策略。但 Ren 等[36] 认为 miRNA 的纯度和潜在的临床应用仍有限制。另外 miR⁃130b⁃3p如何分泌入血,miR⁃130b⁃3p是否可用于糖尿病心脏I/R损伤的早期诊断,AMPK又是否可作为对抗miR⁃130b⁃3p反应的阳性指标?这些问题值得进一步研究。Li等[37] 认为,研究应该不仅仅针对白色脂肪细胞,还应该强调脂肪组织中不同类型细胞总体效益对心脏病的影响。例如,脂肪组织巨噬细胞也参与了心脏损伤以及修复的调节。
-
有研究表明,脂肪组织巨噬细胞来源的 EV 含有miRNA,可被肝脏和其他器官的胰岛素靶细胞吸收,并直接影响葡萄糖稳态和胰岛素敏感性[37]。已知心肌组织中的M2巨噬细胞可以缓解心肌梗死后的不良重构,然而糖尿病患者体内功能失调脂肪细胞分泌的 AdEV 被心脏摄取后,其中的 miR⁃34a 对 M2巨噬细胞极化具有抑制作用[38]。因此,EV在受体心脏巨噬细胞的极化中扮演何种角色,这将是一个有趣的问题。
-
2.2.2 棕色脂肪细胞来源EV中miRNA对心脏的保护作用
-
在健康成人中,运动时由棕色脂肪细胞释放的 EV 将 miR⁃30d、miR⁃125b、miR⁃128、miR125⁃5p、 miR⁃128⁃3p以及miR⁃30d⁃5p传递到心脏,可降低丝裂原活化蛋白激酶通路诱导的凋亡,从而减轻缺血性心肌损伤[30]。但是在超重或肥胖患者中,BAT会明显减少甚至完全消失,其介导的心脏保护作用受到显著影响[39]。有研究表明,静脉注射由BAT中分离的 EV 至糖尿病/肥胖小鼠 6 周后,其心功能明显改善[40]。
-
2.3 AdEV中脂肪因子的调控作用
-
脂肪因子是脂肪组织特异性释放的细胞因子,是调控代谢的重要肽类激素。大量研究证实,脂肪因子可通过旁分泌或者内分泌途径在心肌保护方面发挥重要作用。
-
白色脂肪细胞来源的脂肪因子脂联素,对维持血糖稳态和胰岛素敏感性至关重要。肥胖状态下,脂联素表达水平降低与心脏代谢疾病相关[41]。此外,心肌细胞中脂联素能够降低 NADPH 氧化酶的活性,发挥抗氧化作用,这可能归功于远端脂肪组织的内分泌信号以及来自心外膜脂肪组织的旁分泌信号[42]。最近研究证明,脂联素可存在于循环EV 中并具有信号转导作用。Man等[23] 的研究发现,心包脂肪组织EV中的降脂蛋白可以减轻心肌梗死后的心脏重构。
-
棕色脂肪也具有内分泌功能,其分泌的FGF⁃21、白细胞介素6、神经调节蛋白4等脂肪因子在机体代谢中发挥重要作用。Pinckard等[43] 的研究揭示了米色脂肪细胞分泌的脂因子 12,13⁃dihome 可通过激活心脏神经元一氧化氮合酶来改善心脏功能。
-
2.4 AdEV中线粒体的调控作用
-
Crewe 等[44] 揭示了白色脂肪细胞来源的 AdEV 中线粒体对糖尿病心脏I/R损伤具有保护作用。该研究发现,利用线粒体功能障碍小鼠模拟2型糖尿病/肥胖患者的代谢环境,进入循环后的AdEV会特异性地分布到心肌细胞。从线粒体功能失调的白色脂肪细胞中分离出富集有线粒体蛋白的 AdEV,并将这些AdEV 转移到非糖尿病小鼠时,会引起心肌细胞氧化应激。其AdEV中的线粒体碎片被纳入心脏线粒体网络后迅速降解,并引发心脏中的抗氧化反应。这突显了心脏初始摄取 AdEV 时,由 ROS 爆发式增长启动的预处理机制,在急性心肌梗死期间表现出心脏保护特性。线粒体功能障碍在AdEV 介导的脂肪组织与心脏通讯过程中具有关键作用。
-
上述研究揭示了AdEV介导的线粒体转运产生的心脏保护信号。这可能与“肥胖悖论”的机制有关,有证据表明,在I/R损伤之前增加心脏中的ROS 信号会引起缺血预处理保护效应[45]。然而,AdEV 介导的脂肪细胞与心肌细胞之间线粒体转运的具体机制仍需进一步研究。
-
2.4.1 AdEV介导的线粒体转运机制
-
线粒体转运可分为细胞接触依赖机制及细胞外转运机制两种途径。细胞外转运机制有两种形式:①以完整的线粒体和/或线粒体衍生囊泡的形式转运;②以EV的形式释放并转运[46]。
-
完整的线粒体可通过直径约为1 μm的EV从细胞中释放。Borcherding等[47] 的研究表明,部分脂肪细胞来源的线粒体以EV的形式存在于血液中。在缺血性脑卒中后的大脑中,星形胶质细胞释放的EV将完整线粒体传递给缺氧的神经元以支持其存活[48]。
-
2.4.2 AdEV介导线粒体质量控制与心脏保护机制
-
线粒体功能障碍被认为是糖尿病心肌病变的标志[49]。线粒体功能影响心肌细胞代谢、氧化应激、信号转导和细胞死亡等各个方面,这些效应依赖于线粒体质量控制系统[50]。Maneechote等[51] 最近的研究表明,调节线粒体动力学能够减轻糖尿病前期大鼠心脏 I/R 损伤。正常生理条件下,受损的线粒体可以通过自噬途径被特异清除以维持心血管的稳态[52]。
-
图2 脂肪源性细胞外囊泡在糖尿病心脏缺血⁃再灌注损伤中的调控作用
-
Figure2 Adipose⁃derived extracellular vesicles regulation in diabetic heart ischemia⁃reperfusion injury
-
在糖尿病或肥胖状态下,线粒体自噬缺陷会引起无功能线粒体的积累,哺乳动物细胞为维持代谢会向周围环境释放形态和功能紊乱的线粒体,这是一种线粒体质量控制机制[53]。有研究表明,溶酶体功能缺失的心肌细胞会释放更多含有线粒体的EV,当细胞无法通过线粒体自噬成功回收受损线粒体时,会将这些线粒体碎片向外抛射[54]。最近的一项研究表明,线粒体氧化应激能够促进斑马鱼视网膜中受损的线粒体输出,并将其传递至缪勒氏细胞进行降解[55]。
-
脂肪细胞也可以AdEV形式排出受损的线粒体并通过其他细胞进行清除,Borcherding与Brestoff[56] 将这一过程称为“线粒体自噬许可”。有研究表明,巨噬细胞能够调控棕色脂肪细胞和白色脂肪细胞释放的 EV 所介导的线粒体转运,以此来实现线粒体质量控制。
-
Rosina等[57] 证明了应激状态下的棕色脂肪细胞通过 EV 排出受损的线粒体成分,组织驻留的巨噬细胞对EV进行吞噬以确保产热。体内巨噬细胞耗竭会导致BAT中细胞外线粒体囊泡的异常积累,进而导致棕色脂肪细胞产热减少,揭示了BAT驻留巨噬细胞在AdEV介导线粒体质量控制稳态中的调控作用[58]。
-
Zhu 等[59] 研究发现,在高脂饮食诱导的肥胖小鼠中,线粒体代谢功能障碍与白色脂肪应激关系密切,应激的脂肪细胞会释放含有线粒体蛋白的 AdEV[60]。而肥胖状态下,长链脂肪酸能抑制巨噬细胞对游离线粒体的吞噬功能,使脂肪细胞到巨噬细胞的线粒体转运受损,导致线粒体氧化损伤碎片随 EV进入血液循环[47]。然而,造成上述线粒体转运失调的机制尚不清楚。最近研究发现,白色脂肪细胞将游离线粒体转运到巨噬细胞是通过硫酸乙酰肝素 (heparan sulfate,HS)介导的。通过有条件地敲除外泌体糖基转移酶 1(exostosin glycosyltransferase1, Ext1),一种HS生物合成的相关蛋白基因,巨噬细胞表面HS水平降低,WAT中的巨噬细胞对游离线粒体的吞噬会减少,并加剧高脂饮食在小鼠体内诱发的代谢紊乱[61]。
-
2.4.3 线粒体移植的潜在保护作用
-
在缺血性心肌病患者中,心脏组织表现出线粒体结构异常和ATP生成减少,这些变化会导致心功能障碍。目前,针对糖尿病心衰的标准药物治疗大体上是无效的,这些治疗方案旨在通过降低心脏的负荷(即能量需求)来纠正这种不平衡。因此,迫切需要开发一种直接针对细胞内能量供应的新疗法。线粒体移植在人类临床试验以及动物研究中治疗心脏 I/R 损伤方面很有用,移植外源性线粒体通过减少ROS的产生、脂质氧化和炎症反应来降低心脏的毒性作用[62]。
-
最近研究表明,EV 能够将有呼吸功能的完整线粒体安全高效地转移至受体细胞内以提供保护效果[63]。Ikeda 等[64] 的研究发现,人诱导多能干细胞衍生的心肌细胞能够分泌含有功能性线粒体的 EV。心肌内注射这些EV可促进线粒体转移到受损心肌细胞中,改善心肌梗死小鼠的心功能。
-
对于糖尿病心肌 I/R 损伤而言,线粒体移植所能提供的心脏保护仍是一个值得深入探究的领域。有研究表明线粒体移植可显著促进糖尿病心肌I/R后心肌功能恢复,然而,使用糖尿病受损线粒体进行移植,心脏保护作用可能会受到限制[63]。虽然线粒体移植是减轻糖尿病心肌I/R损伤最有希望的治疗之一,但目前仍处于起步阶段,许多问题尚未得到充分解决。
-
3 脂肪干细胞来源的EV在糖尿病心脏I/R损伤中的保护作用
-
成熟的棕色、米色和白色脂肪细胞均能分泌 EV,ADSC也不例外。ADSC产生的EV能够进入心脏中,并对心脏起到保护作用。De Almeida Oliveira 等[65] 的研究揭示了ADSC来源的EV中miR⁃196a⁃5p 和 miR ⁃425⁃5 在心脏修复中的多细胞调控作用。 Sanz⁃Ros 等[66] 用幼龄小鼠 ADSC 来源的 EV 处理老年小鼠,改善了老年小鼠的氧化应激与炎症。与传统的干细胞治疗相比,EV更稳定,可为多种疾病提供替代疗法。
-
ADSC来源的EV激活多种心脏保护因子。Mori 等[67] 研究发现,在缺氧条件下共培养的人类 ADSC 与大鼠心肌细胞之间可以观察到线粒体的体外转移。移植人类ADSC后的大鼠心肌梗死模型,在3 d 后显示出明显的线粒体转移现象,并且心脏功能得到显著改善。众多研究也表明,ADSC来源的EV中含有的miRNA对心脏I/R损伤具有保护作用,能减轻急性心肌梗死引起的心肌损伤[68-69]。
-
Deng 等[70] 发现,ADSC 来源的 EV 能够激活鞘氨醇⁃1⁃磷酸/鞘氨醇激酶 1/鞘氨醇⁃1⁃磷酸受体 1(sphingosine ⁃ 1⁃ phosphate/sphingosine kinase1/sphin⁃ gosine⁃1⁃phosphate receptor1,S1P/SK1/S1PR1)信号通路并促进巨噬细胞向 M2 型极化,从而改善心肌梗死后的心脏损伤。环状 RNA(circularRNA, circRNA)在急性心肌梗死后EV介导的心肌保护作用中也起着重要作用。Zhou 等[71] 研究表明,ADSC 衍生的EV中有大量circ_0001747,circ_0001747可通过靶向 miR⁃199b⁃3p/髓细胞白血病基因⁃1(myeloid cell leukemia1,MCL1)轴而减轻缺氧/再氧诱导的心肌细胞损伤。另外,Nakamura 等[72] 的研究表明,在小鼠压力过载的心衰模型中,静脉注射间质干细胞的心脏保护特性主要取决于小鼠循环中的脂联素。脂联素通过与T⁃钙黏蛋白结合刺激间充质干细胞产生和分泌EV,这一环节是心脏保护的关键。
-
4 结论与展望
-
AdEV在糖尿病心脏与脂肪组织之间的相互作用中发挥关键的作用,尤其是在调控糖尿病心脏I/R 损伤方面。值得注意的是,AdEV 能够促进线粒体转运,并且巨噬细胞也参与了这一过程。细胞间线粒体转运及其调控有望成为糖尿病心脏I/R损伤的有效治疗策略,而线粒体移植和脂肪干细胞来源的 EV疗法均展现出巨大的治疗前景。
-
然而,目前 AdEV 的提取与纯化仍面临巨大挑战,并且能够特异性减少AdEV 释放的基因工具仍然稀缺。此外,追踪AdEV 介导的线粒体转运也是一个技术难题。线粒体转运的分子机制尚未完全阐明,组织常驻巨噬细胞和溶酶体在这一过程中扮演着怎样的角色?这些问题仍值得探究。未来的研究应重点关注急性期和慢性期糖尿病小鼠I/R模型之间的差异,并更多聚焦于糖尿病慢性期的实验模型。考虑到心外膜脂肪组织等特殊脂肪库结构的复杂性和生物学作用的差异性,未来的研究应深入探讨AdEV 对这些特殊脂肪库的影响。综上,关于AdEV介导的氧化损伤线粒体碎片的转运与糖尿病心脏缺血预处理保护效应的研究具有重要的科学价值和应用前景。
-
参考文献
-
[1] ROONEY M R,FANG M,OGURTSOVA K,et al.Global⁃prevalence of prediabetes[J].Diabetes Care,2023,46(7):1388-1394
-
[2] NG A C T,DELGADO V,BORLAUG B A,et al.Diabesity:the combined burden of obesity and diabetes on heart disease and the role of imaging[J].Nat Rev Cardiol,2021,18(4):291-304
-
[3] FANG M,ECHOUFFO-TCHEUGUI J B,SELVIN E.Prevalence and management of obesity in U.S.adults with type 1 diabetes[J].Ann Intern Med,2023,176(9):eL230228
-
[4] LAZAR I,CLEMENT E,DAUVILLIER S,et al.Adipocyte exosomes promote melanoma aggressiveness through fatty acid oxidation:a novel mechanism linking obesity and cancer[J].Cancer Res,2016,76(14):4051-4057
-
[5] THOMOU T,MORI M A,DREYFUSS J M,et al.Adipose⁃derived circulating miRNAs regulate gene expression in other tissues[J].Nature,2017,542(7642):450-455
-
[6] FLAHERTY S E 3RD,GRIJALVA A,XU X Y,et al.A lipase ⁃independent pathway of lipid release and immune modulation by adipocytes[J].Science,2019,363(6430):989-993
-
[7] WADEY R M,CONNOLLY K D,MATHEW D,et al.Inflammatory adipocyte-derived extracellular vesicles promote leukocyte attachment to vascular endothelial cells[J].Atherosclerosis,2019,283:19-27
-
[8] YAN C H,TIAN X X,LI J Y,et al.A high⁃fat diet attenuates AMPK α1 in adipocytes to induce exosome shedding and nonalcoholic fatty liver development in vivo[J].Diabetes,2021,70(2):577-588
-
[9] LI F,LI H X,JIN X X,et al.Adipose⁃specific knockdown of Sirt1 results in obesity and insulin resistance by promoting exosomes release[J].Cell Cycle,2019,18(17):2067-2082
-
[10] CREWE C,BRESTOFF J R.Burning fat to fuel EVs[J].Diabetes,2023,72(11):1521-1523
-
[11] LIU Y,TAN J,OU S Y,et al.Adipose⁃derived exosomes deliver miR⁃23a/b to regulate tumor growth in hepatocellular cancer by targeting the VHL/HIF axis[J].J Physiol Biochem,2019,75(3):391-401
-
[12] KRANENDONK M E,VISSEREN F L,VAN BALKOM B W,et al.Human adipocyte extracellular vesicles in reciprocal signaling between adipocytes and macrophages[J].Obesity,2014,22(5):1296-1308
-
[13] JUNG Y J,KIM H K,CHO Y,et al.Cell reprogramming using extracellular vesicles from differentiating stem cells into white/beige adipocytes[J].Sci Adv,2020,6(13):eaay6721
-
[14] CREWE C,JOFFIN N,RUTKOWSKI J M,et al.Anendo⁃thelial⁃to⁃adipocyte extracellular vesicle axis governed by metabolic state[J].Cell,2018,175(3):695-708
-
[15] WANG F,CHEN F F,SHANG Y Y,et al.Insulin resistance adipocyte⁃derived exosomes aggravate atherosclerosis by increasing Vasa vasorum angiogenesis in diabetic ApoE-/- mice[J].Int J Cardiol,2018,265:181-187
-
[16] ZHANG Y Q,MEI H L,CHANG X A,et al.Adipocyte-derived microvesicles from obese mice induce M1 macrophage phenotype through secreted miR ⁃ 155[J].J Mol Cell Biol,2016,8(6):505-517
-
[17] XU X Y,GRIJALVA A,SKOWRONSKI A,et al.Obesity activates a program of lysosomal⁃dependent lipid metabolism in adipose tissue macrophages independently of classic activation[J].Cell Metab,2013,18(6):816-830
-
[18] YU Q,WANG D X,WEN X T,et al.Adipose⁃derived exo-somes protect the pulmonary endothelial barrier in ventilator-induced lung injury by inhibiting the TRPV4/Ca2+ signaling pathway[J].Am J Physiol Lung Cell Mol Physiol,2020,318(4):L723-L741
-
[19] ZHAO Y,ZHAO M F,JIANG S,et al.Liver governs adipose remodelling via extracellular vesicles in response to lipid overload[J].Nat Commun,2020,11(1):719
-
[20] KOECK E S,IORDANSKAIA T,SEVILLA S,et al.Adipocyte exosomes induce transforming growth factor beta pathway dysregulation in hepatocytes:a novel paradigm for obesity⁃related liver disease[J].J Surg Res,2014,192(2):268-275
-
[21] GAO J,LI X Y,WANG Y,et al.Adipocyte⁃derived extracellular vesicles modulate appetite and weight through mTOR signalling in the hypothalamus[J].Acta Physiol,2020,228(2):e13339
-
[22] KRANENDONK M E,VISSEREN F L,VAN HER⁃WAARDEN J A,et al.Effect of extracellular vesicles of human adipose tissue on insulin signaling in liver and muscle cells[J].Obesity,2014,22(10):2216-2223
-
[23] MAN W R,SONG X L,XIONG Z Y,et al.Exosomes derived from pericardial adipose tissues attenuate cardiac remodeling following myocardial infarction by adipsin-regulated iron homeostasis[J].Front Cardiovasc Med,2022,9:1003282
-
[24] SHAIHOV⁃TEPER O,RAM E,BALLAN N,et al.Extra⁃cellularvesicles from epicardial fat facilitate atrial fibrillation[J].Circulation,2021,143(25):2475-2493
-
[25] BABES E E,BUSTEA C,BEHL T,et al.Acute coronary syndromes in diabetic patients,outcome,revascularization,and antithrombotic therapy[J].Biomedecine Phar⁃macother,2022,148:112772
-
[26] ELTZSCHIG H K,ECKLET.Ischemia and reperfusion-from mechanism to translation[J].Nat Med,2011,17(11):1391-1401
-
[27] HEKIMIAN G,KHANDOUDI N,FEUVRAY D,et al.Abnormal cardiac rhythm in diabetic rats[J].Life Sci,1985,37(6):547-551
-
[28] FORRAT R,SEBBAG L,WIERNSPERGER N,et al.Acute myocardial infarction in dogs with experimental diabetes[J].Cardiovasc Res,1993,27(11):1908-1912
-
[29] ANNAPURNA A,CHALLA S R,PRAKASH G J,et al.Therapeutic potential of sulindac against ischemia⁃reper-fusion⁃induced myocardial infarction in diabetic and nondiabetic rats[J].Exp Clin Cardiol,2008,13(2):66-70
-
[30] ZHAO H,CHEN X Y,HU G Y,et al.Smallextracellular vesicles from brown adipose tissue mediate exercise car⁃dioprotection[J].Circ Res,2022,130(10):1490-1506
-
[31] WEN Z Y,LI J F,FU Y L,et al.Hypertrophicadipocyte⁃derived exosomal miR⁃802⁃5p contributes to insulin resistance in cardiac myocytes through targeting HSP60[J].Obesity,2020,28(10):1932-1940
-
[32] LIN H,CHEN X N,PAN J N,et al.Secretion of miRNA⁃ 326 ⁃ 3p by senescent adipose exacerbates myocardial metabolism in diabetic mice[J].J Transl Med,2022,20(1):278
-
[33] LI F Q,ZHANG K K,XU T,et al.Exosomal microRNA⁃ 29a mediates cardiac dysfunction and mitochondrial inactivity in obesity-related cardiomyopathy[J].Endocrine,2019,63(3):480-488
-
[34] NIE H,PAN Y,ZHOU Y W.Exosomal microRNA ⁃ 194 causes cardiac injury and mitochondrial dysfunction in obese mice[J].Biochem Biophys Res Commun,2018,503(4):3174-3179
-
[35] GAN L,XIE D N,LIU J,et al.Smallextracellular microvesicles mediated pathological communications between dysfunctional adipocytes and cardiomyocytes as a novel mechanism exacerbating ischemia/reperfusion injury in diabetic mice[J].Circulation,2020,141(12):968-983
-
[36] REN C L,CHEN H,XIE Y Q.Letter by Ren,et al.regarding article,“smallextracellular microvesiclesmediated pathological communications between dysfunctional adipocytes and cardiomyocytes as a novel mechanism exacerbating ischemia/reperfusion injury in diabetic mice”[J].Circulation,2020,142(7):e97-e98
-
[37] LI Y X,DING F Z,SHEN Z Y.Letter by Li,et al regarding article,“smallextracellular microvesiclesmediated pathological communications between dysfunctional adipocytes and cardiomyocytes as a novel mechanism exacerbating ischemia/reperfusion injury in diabetic mice”[J].Circulation,2020,142(7):e95-e96
-
[38] PAN Y,HUI X Y,HOO R L C,et al.Adipocyte⁃secreted exosomal microRNA⁃34a inhibits M2 macrophage polarization to promote obesity⁃induced adipose inflammation[J].J Clin Invest,2019,129(2):834-849
-
[39] BECHER T,PALANISAMY S,KRAMER D J,et al.Brown adipose tissue is associated with cardiometabolic health[J].Nat Med,2021,27(1):58-65
-
[40] ZHOU X Y,LI Z L,QI M H,et al.Brown adipose tissue⁃derived exosomes mitigate the metabolic syndrome in high fat diet mice[J].Theranostics,2020,10(18):8197-8210
-
[41] SHIBATA R,OUCHI N,ITO M,et al.Adiponectin⁃mediated modulation of hypertrophic signals in the heart[J].Nat Med,2004,10(12):1384-1389
-
[42] ANTONOPOULOS A S,MARGARITIS M,VERHEULE S,et al.Mutualregulation of epicardial adipose tissue and myocardial redox state by PPAR ⁃ γ/adiponectin signalling[J].Circ Res,2016,118(5):842-855
-
[43] PINCKARD K M,SHETTIGAR V K,WRIGHT K R,et al.Anovel endocrine role for the BAT-released lipokine 12,13 ⁃ dihome to mediate cardiac function[J].Circulation,2021,143(2):145-159
-
[44] CREWE C,FUNCKE J B,LI S J,et al.Extracellular vesicle⁃based interorgan transport of mitochondria from energetically stressed adipocytes[J].Cell Metab,2021,33(9):1853-1868
-
[45] SIES H.Findings in redox biology:from H2O2 to oxidative stress[J].J Biol Chem,2020,295(39):13458-13473
-
[46] TIASH S,BRESTOFF J R,CREWE C.A guide to studying mitochondria transfer[J].Nat Cell Biol,2023,25(11):1551-1553
-
[47] BORCHERDING N,JIA W T,GIWA R,et al.Dietary lipids inhibit mitochondria transfer to macrophages to divert adipocyte ⁃derived mitochondria into the blood[J].Cell Metab,2022,34(10):1499-1513
-
[48] HAYAKAWA K,ESPOSITO E,WANG X H,et al.Transfer of mitochondria from astrocytes to neurons after stroke[J].Nature,2016,535(7613):551-555
-
[49] CHANG X,LI Y K,CAI C,et al.Mitochondrial quality control mechanisms as molecular targets in diabetic heart[J].Metabolism,2022,137:155313
-
[50] NG M Y W,WAI T,SIMONSEN A.Quality control of the mitochondrion[J].Dev Cell,2021,56(7):881-905
-
[51] MANEECHOTE C,PALEE S,KERDPHOO S,et al.Modulating mitochondrial dynamics attenuates cardiac ischemia⁃reperfusion injury in prediabetic rats[J].Acta Phar⁃macol Sin,2022,43(1):26-38
-
[52] PALIKARAS K,LIONAKI E,TAVERNARAKIS N.Mechanisms of mitophagy in cellular homeostasis,physiology and pathology[J].Nat Cell Biol,2018,20(9):1013-1022
-
[53] JOFFIN N,PASCHOAL V A,GLINIAK C M,et al.Mitochondrial metabolism is a key regulator of the fibro-inflammatory and adipogenic stromal subpopulations in white adipose tissue[J].Cell Stem Cell,2021,28(4):702-717
-
[54] LIANG W J,SAGAR S,RAVINDRAN R,et al.Mitochondria are secreted in extracellular vesicles when lysosomal function is impaired[J].Nat Commun,2023,14(1):5031
-
[55] HUTTO R A,RUTTER K M,GIARMARCO M M,et al.Cone photoreceptors transfer damaged mitochondria to Müller glia[J].Cell Rep,2023,42(2):112115
-
[56] BORCHERDING N,BRESTOFF J R.The power and potential of mitochondria transfer[J].Nature,2023,623(7986):283-291
-
[57] ROSINA M,CECI V,TURCHI R,et al.Ejection of damaged mitochondria and their removal by macrophages ensure efficient thermogenesis in brown adipose tissue[J].Cell Metab,2022,34(4):533-548
-
[58] AQUILANO K,ZHOU B Y,BRESTOFF J R,et al.Multifaceted mitochondrial quality control in brown adipose tissue[J].Trends Cell Biol,2023,33(6):517-529
-
[59] ZHU Q Z,AN Y A,SCHERER P E.Mitochondrial regulation and white adipose tissue homeostasis[J].Trends Cell Biol,2022,32(4):351-364
-
[60] CREWE C,FUNCKE J B,LI S J,et al.Extracellular vesicle⁃based interorgan transport of mitochondria from energetically stressed adipocytes[J].Cell Metab,2021,33(9):1853-1868
-
[61] BRESTOFF J R,WILEN C B,MOLEY J R,et al.Intercellu⁃larmitochondria transfer to macrophages regulates white adipose tissue homeostasis and is impaired in obesity[J].Cell Metab,2021,33(2):270-282
-
[62] ZHOU M L,YU Y F,LUO X X,et al.Myocardialischemia⁃reperfusion injury:therapeutics from a mitochondria⁃centric perspective[J].Cardiology,2021,146(6):781-792
-
[63] DOULAMIS I P,NOMOTO R S,TZANI A,et al.Tran⁃scriptomic and proteomic pathways of diabetic and nondiabetic mitochondrial transplantation[J].Sci Rep,2022,12(1):22101
-
[64] IKEDA G,SANTOSO M R,TADA Y,et al.Mitochondria⁃rich extracellular vesicles from autologous stem cell-derived cardiomyocytes restore energetics of ischemic myocardium[J].J Am Coll Cardiol,2021,77(8):1073-1088
-
[65] DE ALMEIDA OLIVEIRA N C,NERI E A,SILVA C M,et al.Multicellular regulation of miR ⁃196a ⁃5p and miR ⁃ 425⁃5 from adipose stem cell⁃derived exosomes and cardiac repair[J].Clin Sci,2022,136(17):1281-1301
-
[66] SANZ ⁃ROS J,ROMERO ⁃GARCÍA N,MAS ⁃BARGUES C,et al.Small extracellular vesicles from young adipose⁃derived stem cells prevent frailty,improve health span,and decrease epigenetic age in old mice[J].Sci Adv,2022,8(42):eabq2226
-
[67] MORI D,MIYAGAWA S,KAWAMURA T,et al.Mitochondrialtransfer induced by adipose-derived mesenchymal stem cell transplantation improves cardiac function in rat models of ischemic cardiomyopathy[J].Cell Transplant,2023,32:9636897221148457
-
[68] SONG R,DASGUPTA C,MULDER C,et al.MicroRNA⁃ 210 controls mitochondrial metabolism and protects heart function in myocardial infarction[J].Circulation,2022,145(15):1140-1153
-
[69] LAI T C,LEE T L,CHANG Y C,et al.MicroRNA⁃221/222 mediates ADSC⁃exosome⁃induced cardioprotectionagainst ischemia/reperfusion by targeting PUMA and ETS ⁃ 1[J].Front Cell Dev Biol,2020,8:569150
-
[70] DENG S Q,ZHOU X J,GE Z R,et al.Exosomes from adipose⁃derived mesenchymal stem cells ameliorate cardiac damage after myocardial infarction by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 polarization[J].Int J Biochem Cell Biol,2019,114:105564
-
[71] ZHOU D H,DAI Z L,REN M D,et al.Adipose ⁃derived stem cells-derived exosomes with high amounts of circ_ 0001747 alleviate hypoxia/reoxygenation⁃induced injury in myocardial cells by targeting miR ⁃199b ⁃3p/MCL1 axis[J].Int Heart J,2022,63(2):356-366
-
[72] NAKAMURA Y,KITA S,TANAKA Y,et al.Adiponectin⁃stimulates exosome release to enhance mesenchymal stem⁃cell⁃driven therapy of heart failure in mice[J].Mol Ther,2020,28(10):2203-2219
-
摘要
缺血性心脏病是糖尿病患者的主要致死原因。尽管血管重建和溶栓治疗能够恢复心肌血流,但糖尿病患者的心功能恢复通常较差、病死率也较高。在这种背景下,心肌缺血-再灌注(ischemia/reperfusion,I/R)损伤成为治疗的主要挑战。研究表明,在糖尿病或肥胖状态下,脂肪细胞会分泌含有RNA、蛋白质、脂肪细胞因子以及线粒体等多种生物分子的细胞外囊泡 (extracellular vesicle,EV),此类EV 对维持全身代谢稳态极为重要。脂肪细胞来源的EV 能与糖尿病心脏进行交流,调控心脏I/R损伤。文章就近年来脂肪细胞来源的EV对糖尿病心脏I/R损伤的调控作用以及潜在机制的相关研究作一综述。
Abstract
Ischemic heart disease stands as the primary cause of mortality among diabetic patients. Despite advancements in vascular reconstruction and thrombolytic therapy that restore myocardial blood flow,these patients often experience poor cardiac function recovery and a higher mortality rate. This makes myocardial ischemia/reperfusion(I/R)injury a significant therapeutic challenge. Researches indicate that,under diabetic or obese conditions,adipocytes release extracellular vesicles(EVs)containing a variety of biomolecules,including RNA,proteins,adipocytokines,and mitochondria. These EVs play a pivotal role in maintaining systemic metabolic homeostasis. Importantly,adipocyte-derived EVs facilitate communication with diabetic hearts and play a regulatory role in myocardial I/R injury. This review summarizes recent studies on the modulatory effects of adipocyte -derived EVs on diabetic myocardial I/R injury,highlighting potential underlying mechanisms.