en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

冯德宏,E⁃mail:fengdhwuxiph@163.com

中图分类号:R681

文献标识码:A

文章编号:1007-4368(2021)03-460-05

DOI:10.7655/NYDXBNS20210326

参考文献 1
KIM B J,KOH J M.Coupling factors involved in preserv⁃ ing bone balance[J].Cell Mol Life Sci,2019,76(7):1243-1253
参考文献 2
杨芷雯,顾嘉雯,袁礼婵,等.Trio对破骨细胞的调控作用[J].南京医科大学学报(自然科学版),2020,40(9):1297-1301
参考文献 3
APPELMAN⁃DIJKSTRA N M,PAPAPOULOS S E.Clini⁃ cal advantages and disadvantages of anabolic bone thera⁃ pies targeting the WNT pathway[J].Nat Rev Endocrinol,2018,14(10):605-623
参考文献 4
NUSSE R,CLEVERS H.Wnt/beta⁃catenin signaling,dis⁃ ease,and emerging therapeutic modalities[J].Cell,2017,169(6):985-999
参考文献 5
XIONG L,JUNG J U,WU H,et al.Lrp4 in osteoblasts suppresses bone formation and promotes osteoclastogene⁃ sis and bone resorption[J].Proc Natl Acad Sci USA,2015,112(11):3487-3492
参考文献 6
VISWESWARAN M,POHL S,ARFUSO F,et al.Multi ⁃ lineage differentiation of mesenchymal stem cells ⁃ To Wnt,or not Wnt[J].Int J Biochem Cell Biol,2015,68:139-147
参考文献 7
JOENG K S,SCHUMACHER C A,ZYLSTRA⁃DIEGEL C R,et al.Lrp5 and Lrp6 redundantly control skeletal deve⁃ lopment in the mouse embryo[J].Dev Biol,2011,359(2):222-229
参考文献 8
MBALAVIELE G,SHEIKH S,STAINS J P,et al.Beta ⁃ catenin and BMP⁃2 synergize to promote osteoblast differen⁃ tiation and new bone formation[J].J Cell Biochem,2005,94(2):403-418
参考文献 9
ZHANG R,OYAJOBI B O,HARRIS S E,et al.Wnt/beta⁃ catenin signaling activates bone morphogenetic protein 2 expression in osteoblasts[J].Bone,2013,52(1):145-156
参考文献 10
TYAGI A M,YU M,DARBY T M,et al.The microbial metabolite butyrate stimulates bone formation via T regu⁃ latory cell ⁃ mediated regulation of WNT10B expression [J].Immunity,2018,49(6):1116-1131
参考文献 11
KOOK S H,HEO J S,LEE J C.Crucial roles of canonical Runx2⁃dependent pathway on Wnt1⁃induced osteoblastic differentiation of human periodontal ligament fibroblasts [J].Mol Cell Biochem,2015,402(1/2):213-223
参考文献 12
CHEN T,LI J,CORDOVA L A,et al.A WNT protein thera⁃ peutic improves the bone ⁃ forming capacity of autografts from aged animals[J].Sci Rep,2018,8(1):119
参考文献 13
EIJKEN M,MEIJER I M,WESTBROEK I,et al.Wnt sig⁃ naling acts and is regulated in a human osteoblast differen⁃ tiation dependent manner[J].J Cell Biochem,2008,104(2):568-579
参考文献 14
SCHONITZER V,WIRTZ R,ULRICH V,et al.Sox2 is a potent inhibitor of osteogenic and adipogenic differentia⁃ tion in human mesenchymal stem cells[J].Cell Repro⁃ gram,2014,16(5):355-365
参考文献 15
MURUGANANDAN S,GOVINDARAJAN R,MCMUL⁃ LEN N M,et al.Chemokine ⁃ like receptor 1 is a novel Wnt target gene that regulates mesenchymal stem cell dif⁃ ferentiation[J].Stem Cells,2017,35(3):711-724
参考文献 16
JI L,LU B,ZAMPONI R,et al.USP7 inhibits Wnt/beta⁃ catenin signaling through promoting stabilization of Axin [J].Nat Commun,2019,10(1):4184
参考文献 17
YANG B,LI S,CHEN Z,et al.Amyloid beta peptide pro⁃ motes bone formation by regulating Wnt/beta⁃catenin sig⁃ naling and the OPG/RANKL/RANK system[J].FASEB J,2020,34(3):3583-3593
参考文献 18
AMIN N,BOCCARDI V,TAGHIZADEH M,et al.Probio⁃ tics and bone disorders:the role of RANKL/RANK/OPG pathway[J].Aging Clin Exp Res,2020,32(3):363-371
参考文献 19
ALBERS J,KELLER J,BARANOWSKY A,et al.Canoni⁃ cal Wnt signaling inhibits osteoclastogenesis independent of osteoprotegerin[J].J Cell Biol,2013,200(4):537-549
参考文献 20
AMIRHOSSEINI M,MADSEN R V,ESCOTT K J,et al.GSK⁃3beta inhibition suppresses instability⁃induced osteo⁃ lysis by a dual action on osteoblast and osteoclast differen⁃ tiation[J].J Cell Physiol,2018,233(3):2398-2408
参考文献 21
GORI F,LERNER U,OHLSSON C,et al.A new WNT on the bone:WNT16,cortical bone thickness,porosity and fractures[J].Bonekey Rep,2015,4:669
参考文献 22
SUI X,DENG S,LIU M,et al.Constitutive activation of beta ⁃ catenin in differentiated osteoclasts induces bone loss in mice[J].Cell Physiol Biochem,2018,48(5):2091-2102
参考文献 23
MAEDA K,TAKAHASHI N,KOBAYASHI Y,et al.Roles of Wnt signals in bone resorption during physiological and pathological states[J].J Mol Med(Berl),2013,91(1):15-23
参考文献 24
WANG Z M,LUO J Q,XU L Y,et al.Harnessing low⁃den⁃ sity lipoprotein receptor protein 6(LRP6)genetic varia⁃tion and Wnt signaling for innovative diagnostics in com⁃ plex diseases[J].Pharmacogenomics J,2018,18(3):351-358
参考文献 25
KORVALA J,LOIJA M,MAKITIE O,et al.Rare varia⁃ tions in WNT3A and DKK1 may predispose carriers to primary osteoporosis[J].Eur J Med Genet,2012,55(10):515-519
参考文献 26
DELGADO⁃CALLE J,SATO A Y,BELLIDO T.Role and mechanism of action of sclerostin in bone[J].Bone,2017,96:29-37
参考文献 27
VAN LIEROP A H,APPELMAN⁃DIJKSTRA N M,PAPA⁃ POULOS S E.Sclerostin deficiency in humans[J].Bone,2017,96:51-62
参考文献 28
KOIDE M,KOBAYASHI Y.Regulatory mechanisms of sclerostin expression during bone remodeling[J].J Bone Miner Metab,2019,37(1):9-17
参考文献 29
IYER S,AMBROGINI E,BARTELL S M,et al.FOXOs attenuate bone formation by suppressing Wnt signaling [J].J Clin Invest,2013,123(8):3409-3419
参考文献 30
HUANG P,YAN R,ZHANG X,et al.Activating Wnt/beta ⁃catenin signaling pathway for disease therapy:challenges and opportunities[J].Pharmacol Ther,2019,196:79-90
参考文献 31
XIAO L,FEI Y,HURLEY M M.FGF2 crosstalk with Wnt signaling in mediating the anabolic action of PTH on bone formation[J].Bone Rep,2018,9:136-144
参考文献 32
LEDER B Z.Parathyroid hormone and parathyroid hor⁃ mone ⁃ related protein analogs in osteoporosis therapy[J].Curr Osteoporos Rep,2017,15(2):110-119
参考文献 33
SLEEMAN A,ABALOPARATIDE C J.A new pharmaco⁃ logical option for osteoporosis[J].Am J Health Syst Pharm,2019,76(3):130-135
参考文献 34
MACNABB C,PATTON D,HAYES J S.Sclerostin anti⁃ body therapy for the treatment of osteoporosis:clinical prospects and challenges[J].J Osteoporos,2016,2016:6217286
参考文献 35
OMINSKY M S,BOYCE R W,LI X,et al.Effects of sclerostin antibodies in animal models of osteoporosis[J].Bone,2017,96:63-75
参考文献 36
MCCLUNG M R,GRAUER A,BOONEN S,et al.Romo⁃ sozumab in postmenopausal women with low bone miner⁃ al density[J].N Engl J Med,2014,370(5):412-420
参考文献 37
RACHNER T D,HOFBAUER L C,GOBEL A,et al.Novel therapies in osteoporosis:PTH ⁃ related peptide analogs and inhibitors of sclerostin[J].J Mol Endocrinol,2019,62(2):R145-R154
参考文献 38
GLORIEUX F H,DEVOGELAER J P,DURIGOVA M,et al.BPS804 anti⁃sclerostin antibody in adults with moder⁃ ate osteogenesis imperfecta:results of a randomized phase 2a trial[J].J Bone Miner Res,2017,32(7):1496-1504
参考文献 39
SEEFRIED L,BAUMANN J,HEMSLEY S,et al.Efficacy of anti ⁃ sclerostin monoclonal antibody BPS804 in adult patients with hypophosphatasia[J].J Clin Invest,2017,127(6):2148-2158
参考文献 40
ASADIPOOYA K,WEINSTOCK A.Cardiovascular out⁃ comes of romosozumab and protective role of alendronate [J].Arterioscler Thromb Vasc Biol,2019,39(7):1343-1350
参考文献 41
TSOURDI E,RIJNTJES E,KOHRLE J,et al.Hyperthy⁃ roidism and hypothyroidism in male mice and their effects on bone mass,bone turnover,and the Wnt inhibitors sclerostin and dickkopf ⁃ 1[J].Endocrinology,2015,156(10):3517-3527
目录contents

    摘要

    骨代谢动态平衡对维持正常骨组织的功能具有重要作用,该平衡被打破后会出现骨质疏松等骨代谢疾病。骨代谢的机制尚未完全明确,参与骨代谢的信号通路机制复杂。Wnt/β⁃连环蛋白(β⁃catenin)信号通路在骨发育和骨代谢中作用广泛,与间充质干细胞(mesenchymal stem cell,MSC)的成骨分化,成骨细胞和破骨细胞增殖、分化功能密切相关。文章就Wnt/β⁃ catenin信号通路在骨代谢过程中的作用机制及在骨代谢疾病中的研究进展进行总结分析,以期为骨代谢疾病的防治提供新的思路和途径。

    Abstract

    Bone metabolic dynamic balance plays an important role in maintaining normal bone tissue function,and the disruption of this balance can lead to bone metabolic diseases. The mechanism of bone metabolism is still unclear,and the signaling pathway is complex. Canonical Wnt signaling plays multiple roles in bone development and bone metabolism,which is closely related to osteogenic differentiation of mesenchymal stem cells,proliferation and differentiation of osteoblasts and osteoclasts. This review summarizes the mechanism of Wnt/β ⁃ catenin signaling pathway in bone metabolism and its research progress in bone metabolic diseases,in order to explore new ideas and approaches in the prevention and treatment of bone metabolic diseases.

  • 骨代谢是骨重建的动态平衡过程,其中成骨细胞合成骨基质主导骨形成,破骨细胞吸收骨基质主导骨吸收,骨形成与骨吸收的动态平衡对维持正常骨组织的功能、形态至关重要,该平衡被打破就会导致骨质疏松、骨折延迟愈合或不愈合等骨骼相关疾病[1-2]。目前骨代谢的机制尚未完全明确,影响骨代谢的信号通路复杂。Wnt/β⁃连环蛋白(β⁃catenin) 信号通路作为经典Wnt转导途径,与间充质干细胞 (mesenchymal stem cell,MSC)的增殖和成骨分化、成骨细胞和破骨细胞的增殖分化及功能密切相关[3]。 Wnt/β⁃catenin信号通路在骨代谢中的作用机制被不断深入研究,已成为骨代谢疾病发病机制及治疗的新热点,本文就其相关内容作一综述。

  • 1 Wnt/β⁃catenin信号通路的组成及其调控特点

  • Int⁃1是1982年Nusse发现的一种致癌基因,与小鼠的乳腺癌发病有关,随后研究发现Int⁃1与果蝇的无翅基因(Wingless)同源,均可控制胚胎的轴向发育,于是科学界将Wingless与Int1家族基因合并命名为Wnt基因。Wnt蛋白是一类富含半胱氨酸的分泌型糖蛋白家族,到目前为止在哺乳动物染色体中已鉴定出19种Wnt蛋白家族成员,其中Wnt/β⁃ catenin信号通路涉及到的主要有Wnt ⁃1、Wnt3a、 Wnt5a、Wnt10b等。Wnt/β⁃catenin信号转导途径由 β⁃catenin介导,当无Wnt信号时,糖原合酶激酶⁃3β (glycogen synthase kinase⁃3β,GSK⁃3β)、腺瘤性结肠息肉病基因、酪蛋白激酶1、轴蛋白(Axin)组成的降解复合物将胞质内的β⁃catenin磷酸化,随后磷酸化的β⁃catenin经泛素⁃蛋白酶体系统迅速降解,防止在细胞质中积累。Wnt/β⁃catenin通路的激活起始于Wnt蛋白与其膜蛋白受体结合,受体主要为七次跨膜受体卷曲蛋白(frizzled,FZD)和单次跨膜的低密度脂蛋白受体相关蛋白(lipoprotein receptor related protein,LRP)5/6。当Wnt信号激活后,Wnt与FZD、 LRP5/6结合形成复合物,激活LRP5/6的相关蛋白激酶磷酸化,随后磷酸化的胞内散乱蛋白(dishev⁃ elled,Dsh)被招募到细胞膜与FZD结合,Dsh能够募集Axin与Wnt通路的正向调节因子FRAT1使降解复合物解体,阻止β⁃catenin的磷酸化使其在细胞质中蓄积,累积的β⁃catenin易位至细胞核内与T细胞因子(T cell factor,TCF)/淋巴细胞增强因子(lym⁃ phoid enhancer factor,LEF)结合,激活下游参与骨形成的靶基因转录,产生生物学效应[4]。此外细胞内还存在一些如Dickkopf 1(DKK 1)、骨硬化蛋白 (Sclerostin)和分泌型卷曲相关蛋白等Wnt/β⁃catenin通路的拮抗剂,与Wnt/FZD/LRP受体结合抑制Wnt通路[5]

  • 2 Wnt/β⁃catenin信号通路对骨形成的作用

  • 成骨细胞来源于MSC,随着发育依次分化为骨祖细胞、前成骨细胞、成骨细胞,成骨细胞在分化的最终阶段包埋于矿化的骨基质中成为骨细胞。Wnt/β⁃catenin信号是决定MSC向成骨细胞定向分化的关键分子。Wnt6、Wnt10a和Wnt10b通过Wnt/β⁃ catenin途径促进MSC成骨分化并抑制其向脂肪细胞的分化[6]。过表达Wnt10a可提高β⁃catenin的相对表达量,进而抑制3T3⁃L1前脂肪细胞向成熟脂肪细胞分化并诱导其向成骨分化。敲除β⁃catenin或LRP5/6共受体基因,间充质前体细胞将向软骨细胞分化[7]。骨形态发生蛋白(bone morphogenetic pro⁃ tein,BMP)能诱导MSC向成骨细胞分化,研究发现Wnt/β⁃catenin信号通过TCF/LEF反应元件直接诱导成骨细胞BMP⁃2的表达,增强BMP⁃2的转录活性,并且β⁃catenin能够增强MSC对BMP⁃2的反应,诱导其向成骨细胞分化,促进成骨[8-9]。Wnt10b与骨密度(bone mineral density,BMD)密切相关,让幼鼠摄入鼠李糖乳杆菌GG,可诱导其肠道和骨髓中的调节性T细胞扩增,刺激CD8+ T细胞上调并与调节性T细胞相互作用导致Wnt10b分泌增加,激活Wnt/β⁃ catenin通路,刺激小鼠骨形成,提升骨量[10]。Wnt1可通过Wnt/β⁃catenin途径提高成骨相关转录因子Runx2、碱性磷酸酶、Ⅰ型胶原骨桥蛋白和骨钙素的水平来促进成骨作用[11]。Wnt3a是Wnt/β⁃catenin通路的重要组成之一,可以激活经典Wnt和非经典Wnt途径,将骨移植物与Wnt3a蛋白体外孵育,与对照组相比其成骨能力显著增强[12]

  • Wnt/β⁃catenin途径对成骨分化有着复杂的调节机制。在使用糖皮质激素诱导的成骨细胞分化过程中,Wnt信号能够促进成骨细胞早期阶段的分化,但在终末分化成熟阶段其能力受到强烈抑制[13]。转录因子Sox2可通过结合β⁃catenin干扰Wnt信号转导,使MSC保持未分化状态,降低成骨分化潜能[14]。趋化因子样受体l通过调控β⁃catenin的含量、转录活性、亚细胞定位等来调节MSC中的Wnt/β⁃catenin信号转导,以平衡成骨和成脂信号,有助于维持MSC的多能性[15]。Axin是β⁃catenin降解复合物的关键支架蛋白,USP7作为经典Wnt信号途径的负向调控因子,通过稳定和去泛素化Axin防止其降解来抑制Wnt信号[16]

  • 3 Wnt/β⁃catenin信号通路对骨吸收的作用

  • Wnt/β⁃catenin通路主要通过骨保护素(osteo⁃ protegerin,OPG)/核因子kappa β受体活化因子(re⁃ ceptor activator of nuclear factor kappa beta,RANK)/核因子kappa β受体活化因子配体(receptor activa⁃ tor of nuclear factor kappa beta ligand,RANKL)通路间接参与骨吸收的生理和病理过程[17]。OPG/RANK/RANKL通路是调节破骨细胞功能的关键信号通路,RANKL与破骨细胞表面或破骨细胞前体细胞上的RANK结合诱导破骨细胞的分化和激活;而OPG竞争性阻断RANKL与RANK结合,抑制破骨细胞进一步分化成熟[18]。Wnt/β⁃catenin信号能够刺激成骨细胞上调OPG表达,增加OPG/RANKL的比例,抑制破骨细胞分化和活性,从而抑制骨吸收[19]。对骨溶解大鼠模型使用GSK⁃3β抑制剂以激活Wnt/β ⁃catenin通路,研究表明OPG表达增强,破骨细胞数量显著减少,骨量增加[20]。在成骨细胞发育后期,Wnt3b和β⁃catenin的表达增高,RANKL的活性被抑制,破骨细胞的数量和活性均降低。Wnt16能通过Wnt/β⁃catenin通路和Wnt/c⁃JNK通路抑制破骨细胞前体细胞分化并间接作用于成骨细胞,导致成骨细胞分泌OPG增加[21]。β⁃catenin对破骨细胞形成起着关键的双相和剂量依赖性调节作用。Sui等[22] 构建了破骨细胞中β⁃catenin过表达的小鼠模型,通过CT断层扫描和组织形态学分析观察到小鼠生长迟缓和骨量降低,表明破骨细胞中β⁃catenin的激活促进了破骨细胞形成,导致骨质流失。

  • 4 Wnt/β⁃catenin信号通路与骨代谢相关疾病

  • Wnt/β⁃catenin通路异常可导致骨代谢紊乱,引发骨质疏松等骨病。骨质疏松⁃假性神经胶质瘤综合征(osteoporosis⁃pseudoglioma syndrome,OPPG)是一种以骨质疏松、假性神经胶质瘤和失明为特征的遗传性疾病,其病因为Wnt/β⁃catenin通路中LRP5基因的功能缺失性突变,而具有功能获得性LRP5突变体的患者则表现骨量增加[23]。LRP6常染色体错译变异会减弱Wnt转录,提示和早期骨质疏松有关[24]。此外除LRP5基因,DKK1和Wnt3a的基因变异也可能与原发性骨质疏松症的易感性相关[25]

  • Sclerostin来自于骨细胞分泌,其与LRP5/6受体的β螺旋结构域结合,阻止LRP与FZD的结合,抑制Wnt信号,因此通过抑制Sclerostin可增强Wnt/β⁃ catenin信号途径介导的骨代谢调控及骨量增加[26]。编码Sclerostin的SOST基因缺失性突变可引起以BMD增加为特征的硬化性骨化病[27]。泛发性骨皮质增厚症是一种可累及全身骨骼的广泛性皮质增厚硬化疾病,其亦与SOST基因下游进化保守区缺失性突变有关[28]

  • Wnt/β⁃catenin途径失活会抑制成骨细胞的活性,骨吸收增强导致骨量减少。随着年龄的增长,骨质疏松患者骨形成逐渐减少、骨髓脂肪逐渐增加,小鼠模型发现Wnt/β⁃catenin信号的衰减可能会加重上述病理改变[29]。经典Wnt途径在调控骨稳态中的作用也得到了转基因小鼠模型研究的验证,敲除β⁃catenin基因会导致破骨细胞数量显著提升,骨量急剧减少,而β⁃catenin的组成性激活则引起骨量的显著增加[30]

  • 5 Wnt/β⁃catenin信号通路靶向药物治疗骨代谢疾病进展

  • Wnt/β⁃catenin通路在骨代谢中的作用机制为治疗骨质疏松等骨代谢疾病提供了治疗靶点和研究方向。甲状旁腺激素(parathyroid hormone,PTH)是临床上已受认可的骨形成促进剂,PTH能够抑制骨细胞产生Sclerostin,增强Wnt/β⁃catenin信号,显著提高骨量[31]。特立帕肽,即小剂量重组PTH,已被证明可有效提高绝经后骨质疏松症、男性骨质疏松症及糖皮质激素引起的骨质疏松症患者脊柱和髋部的BMD,同时降低骨折风险[32]。Abaloparatide是新研制的甲状旁腺激素相关蛋白类似物,三期临床试验表明对于绝经后骨质疏松症,Abaloparatide能获得与特立帕肽相似的临床疗效,且其不良反应轻微,高钙血症发生率更低[33]

  • 抗Sclerostin抗体通过促进成骨细胞分化和OPG产生来促进骨形成,抑制骨吸收[3]。在骨质疏松症动物模型中使用抗Sclerostin抗体,其松质骨、皮质骨的BMD均明显增加[34-35]。Romosozumab是最近被批准用于治疗绝经后骨质疏松症的抗Scleros⁃ tin单克隆抗体,一项针对低BMD的绝经后妇女的随机对照研究表明,Romosozumab组BMD的增幅 (11.3%)明显优于阿仑膦酸盐组(4.1%)、PTH组 (7.1%)[36]。Romosozumab可显著降低骨折风险,3期临床试验表明与安慰剂及阿仑膦酸盐相比,椎体骨折风险分别减少了75%和48%[37]。这些结果表明Romosozumab治疗骨质疏松的疗效相比其他药物更佳。此外完全人源化的抗硬化蛋白抗体BPS804用于治疗低磷酸盐血症和成骨不全症的临床试验也在进行中[38-39]。然而由于Wnt信号通路的心脏保护作用,理论上抗Sclerostin抗体的使用有诱发心血管事件的风险,其潜在的不良反应还需进一步研究[40]。此外,因DKK1和Sclerostin都通过竞争性结合LRP5/6的β螺旋结构域来抑制Wnt信号转导,抗DKK1抗体是否可以用于骨质疏松治疗也正在研究中[41]

  • 6 小结

  • 综上所述,Wnt/β⁃catenin信号通路诱导MSC向成骨分化,促进了成骨细胞的增殖与分化,直接或间接抑制了破骨细胞的增殖与分化,广泛参与骨发育和骨代谢的生物学过程。Wnt/β⁃catenin通路为治疗骨代谢疾病提供了潜在作用靶点如Sclerostin、DKK1等,其在骨代谢疾病治疗中存在很大潜能。然而骨代谢过程除了受经典Wnt通路的调控作用外,还涉及非经典Wnt通路、BMP/Smads通路、OPG/RANKL/RANK通路、Hedgehog通路和Notch通路等,并且各条信号通路之间还会相互影响、制约和协调, Wnt/β⁃catenin通路与这些通路之间的联系仍未阐明。因此,进一步深入研究Wnt/β⁃catenin通路在骨代谢中的作用机制及与其他通路之间的联系,必将为骨代谢疾病的预防和治疗提供新的思路和策略。

  • 参考文献

    • [1] KIM B J,KOH J M.Coupling factors involved in preserv⁃ ing bone balance[J].Cell Mol Life Sci,2019,76(7):1243-1253

    • [2] 杨芷雯,顾嘉雯,袁礼婵,等.Trio对破骨细胞的调控作用[J].南京医科大学学报(自然科学版),2020,40(9):1297-1301

    • [3] APPELMAN⁃DIJKSTRA N M,PAPAPOULOS S E.Clini⁃ cal advantages and disadvantages of anabolic bone thera⁃ pies targeting the WNT pathway[J].Nat Rev Endocrinol,2018,14(10):605-623

    • [4] NUSSE R,CLEVERS H.Wnt/beta⁃catenin signaling,dis⁃ ease,and emerging therapeutic modalities[J].Cell,2017,169(6):985-999

    • [5] XIONG L,JUNG J U,WU H,et al.Lrp4 in osteoblasts suppresses bone formation and promotes osteoclastogene⁃ sis and bone resorption[J].Proc Natl Acad Sci USA,2015,112(11):3487-3492

    • [6] VISWESWARAN M,POHL S,ARFUSO F,et al.Multi ⁃ lineage differentiation of mesenchymal stem cells ⁃ To Wnt,or not Wnt[J].Int J Biochem Cell Biol,2015,68:139-147

    • [7] JOENG K S,SCHUMACHER C A,ZYLSTRA⁃DIEGEL C R,et al.Lrp5 and Lrp6 redundantly control skeletal deve⁃ lopment in the mouse embryo[J].Dev Biol,2011,359(2):222-229

    • [8] MBALAVIELE G,SHEIKH S,STAINS J P,et al.Beta ⁃ catenin and BMP⁃2 synergize to promote osteoblast differen⁃ tiation and new bone formation[J].J Cell Biochem,2005,94(2):403-418

    • [9] ZHANG R,OYAJOBI B O,HARRIS S E,et al.Wnt/beta⁃ catenin signaling activates bone morphogenetic protein 2 expression in osteoblasts[J].Bone,2013,52(1):145-156

    • [10] TYAGI A M,YU M,DARBY T M,et al.The microbial metabolite butyrate stimulates bone formation via T regu⁃ latory cell ⁃ mediated regulation of WNT10B expression [J].Immunity,2018,49(6):1116-1131

    • [11] KOOK S H,HEO J S,LEE J C.Crucial roles of canonical Runx2⁃dependent pathway on Wnt1⁃induced osteoblastic differentiation of human periodontal ligament fibroblasts [J].Mol Cell Biochem,2015,402(1/2):213-223

    • [12] CHEN T,LI J,CORDOVA L A,et al.A WNT protein thera⁃ peutic improves the bone ⁃ forming capacity of autografts from aged animals[J].Sci Rep,2018,8(1):119

    • [13] EIJKEN M,MEIJER I M,WESTBROEK I,et al.Wnt sig⁃ naling acts and is regulated in a human osteoblast differen⁃ tiation dependent manner[J].J Cell Biochem,2008,104(2):568-579

    • [14] SCHONITZER V,WIRTZ R,ULRICH V,et al.Sox2 is a potent inhibitor of osteogenic and adipogenic differentia⁃ tion in human mesenchymal stem cells[J].Cell Repro⁃ gram,2014,16(5):355-365

    • [15] MURUGANANDAN S,GOVINDARAJAN R,MCMUL⁃ LEN N M,et al.Chemokine ⁃ like receptor 1 is a novel Wnt target gene that regulates mesenchymal stem cell dif⁃ ferentiation[J].Stem Cells,2017,35(3):711-724

    • [16] JI L,LU B,ZAMPONI R,et al.USP7 inhibits Wnt/beta⁃ catenin signaling through promoting stabilization of Axin [J].Nat Commun,2019,10(1):4184

    • [17] YANG B,LI S,CHEN Z,et al.Amyloid beta peptide pro⁃ motes bone formation by regulating Wnt/beta⁃catenin sig⁃ naling and the OPG/RANKL/RANK system[J].FASEB J,2020,34(3):3583-3593

    • [18] AMIN N,BOCCARDI V,TAGHIZADEH M,et al.Probio⁃ tics and bone disorders:the role of RANKL/RANK/OPG pathway[J].Aging Clin Exp Res,2020,32(3):363-371

    • [19] ALBERS J,KELLER J,BARANOWSKY A,et al.Canoni⁃ cal Wnt signaling inhibits osteoclastogenesis independent of osteoprotegerin[J].J Cell Biol,2013,200(4):537-549

    • [20] AMIRHOSSEINI M,MADSEN R V,ESCOTT K J,et al.GSK⁃3beta inhibition suppresses instability⁃induced osteo⁃ lysis by a dual action on osteoblast and osteoclast differen⁃ tiation[J].J Cell Physiol,2018,233(3):2398-2408

    • [21] GORI F,LERNER U,OHLSSON C,et al.A new WNT on the bone:WNT16,cortical bone thickness,porosity and fractures[J].Bonekey Rep,2015,4:669

    • [22] SUI X,DENG S,LIU M,et al.Constitutive activation of beta ⁃ catenin in differentiated osteoclasts induces bone loss in mice[J].Cell Physiol Biochem,2018,48(5):2091-2102

    • [23] MAEDA K,TAKAHASHI N,KOBAYASHI Y,et al.Roles of Wnt signals in bone resorption during physiological and pathological states[J].J Mol Med(Berl),2013,91(1):15-23

    • [24] WANG Z M,LUO J Q,XU L Y,et al.Harnessing low⁃den⁃ sity lipoprotein receptor protein 6(LRP6)genetic varia⁃tion and Wnt signaling for innovative diagnostics in com⁃ plex diseases[J].Pharmacogenomics J,2018,18(3):351-358

    • [25] KORVALA J,LOIJA M,MAKITIE O,et al.Rare varia⁃ tions in WNT3A and DKK1 may predispose carriers to primary osteoporosis[J].Eur J Med Genet,2012,55(10):515-519

    • [26] DELGADO⁃CALLE J,SATO A Y,BELLIDO T.Role and mechanism of action of sclerostin in bone[J].Bone,2017,96:29-37

    • [27] VAN LIEROP A H,APPELMAN⁃DIJKSTRA N M,PAPA⁃ POULOS S E.Sclerostin deficiency in humans[J].Bone,2017,96:51-62

    • [28] KOIDE M,KOBAYASHI Y.Regulatory mechanisms of sclerostin expression during bone remodeling[J].J Bone Miner Metab,2019,37(1):9-17

    • [29] IYER S,AMBROGINI E,BARTELL S M,et al.FOXOs attenuate bone formation by suppressing Wnt signaling [J].J Clin Invest,2013,123(8):3409-3419

    • [30] HUANG P,YAN R,ZHANG X,et al.Activating Wnt/beta ⁃catenin signaling pathway for disease therapy:challenges and opportunities[J].Pharmacol Ther,2019,196:79-90

    • [31] XIAO L,FEI Y,HURLEY M M.FGF2 crosstalk with Wnt signaling in mediating the anabolic action of PTH on bone formation[J].Bone Rep,2018,9:136-144

    • [32] LEDER B Z.Parathyroid hormone and parathyroid hor⁃ mone ⁃ related protein analogs in osteoporosis therapy[J].Curr Osteoporos Rep,2017,15(2):110-119

    • [33] SLEEMAN A,ABALOPARATIDE C J.A new pharmaco⁃ logical option for osteoporosis[J].Am J Health Syst Pharm,2019,76(3):130-135

    • [34] MACNABB C,PATTON D,HAYES J S.Sclerostin anti⁃ body therapy for the treatment of osteoporosis:clinical prospects and challenges[J].J Osteoporos,2016,2016:6217286

    • [35] OMINSKY M S,BOYCE R W,LI X,et al.Effects of sclerostin antibodies in animal models of osteoporosis[J].Bone,2017,96:63-75

    • [36] MCCLUNG M R,GRAUER A,BOONEN S,et al.Romo⁃ sozumab in postmenopausal women with low bone miner⁃ al density[J].N Engl J Med,2014,370(5):412-420

    • [37] RACHNER T D,HOFBAUER L C,GOBEL A,et al.Novel therapies in osteoporosis:PTH ⁃ related peptide analogs and inhibitors of sclerostin[J].J Mol Endocrinol,2019,62(2):R145-R154

    • [38] GLORIEUX F H,DEVOGELAER J P,DURIGOVA M,et al.BPS804 anti⁃sclerostin antibody in adults with moder⁃ ate osteogenesis imperfecta:results of a randomized phase 2a trial[J].J Bone Miner Res,2017,32(7):1496-1504

    • [39] SEEFRIED L,BAUMANN J,HEMSLEY S,et al.Efficacy of anti ⁃ sclerostin monoclonal antibody BPS804 in adult patients with hypophosphatasia[J].J Clin Invest,2017,127(6):2148-2158

    • [40] ASADIPOOYA K,WEINSTOCK A.Cardiovascular out⁃ comes of romosozumab and protective role of alendronate [J].Arterioscler Thromb Vasc Biol,2019,39(7):1343-1350

    • [41] TSOURDI E,RIJNTJES E,KOHRLE J,et al.Hyperthy⁃ roidism and hypothyroidism in male mice and their effects on bone mass,bone turnover,and the Wnt inhibitors sclerostin and dickkopf ⁃ 1[J].Endocrinology,2015,156(10):3517-3527

  • 参考文献

    • [1] KIM B J,KOH J M.Coupling factors involved in preserv⁃ ing bone balance[J].Cell Mol Life Sci,2019,76(7):1243-1253

    • [2] 杨芷雯,顾嘉雯,袁礼婵,等.Trio对破骨细胞的调控作用[J].南京医科大学学报(自然科学版),2020,40(9):1297-1301

    • [3] APPELMAN⁃DIJKSTRA N M,PAPAPOULOS S E.Clini⁃ cal advantages and disadvantages of anabolic bone thera⁃ pies targeting the WNT pathway[J].Nat Rev Endocrinol,2018,14(10):605-623

    • [4] NUSSE R,CLEVERS H.Wnt/beta⁃catenin signaling,dis⁃ ease,and emerging therapeutic modalities[J].Cell,2017,169(6):985-999

    • [5] XIONG L,JUNG J U,WU H,et al.Lrp4 in osteoblasts suppresses bone formation and promotes osteoclastogene⁃ sis and bone resorption[J].Proc Natl Acad Sci USA,2015,112(11):3487-3492

    • [6] VISWESWARAN M,POHL S,ARFUSO F,et al.Multi ⁃ lineage differentiation of mesenchymal stem cells ⁃ To Wnt,or not Wnt[J].Int J Biochem Cell Biol,2015,68:139-147

    • [7] JOENG K S,SCHUMACHER C A,ZYLSTRA⁃DIEGEL C R,et al.Lrp5 and Lrp6 redundantly control skeletal deve⁃ lopment in the mouse embryo[J].Dev Biol,2011,359(2):222-229

    • [8] MBALAVIELE G,SHEIKH S,STAINS J P,et al.Beta ⁃ catenin and BMP⁃2 synergize to promote osteoblast differen⁃ tiation and new bone formation[J].J Cell Biochem,2005,94(2):403-418

    • [9] ZHANG R,OYAJOBI B O,HARRIS S E,et al.Wnt/beta⁃ catenin signaling activates bone morphogenetic protein 2 expression in osteoblasts[J].Bone,2013,52(1):145-156

    • [10] TYAGI A M,YU M,DARBY T M,et al.The microbial metabolite butyrate stimulates bone formation via T regu⁃ latory cell ⁃ mediated regulation of WNT10B expression [J].Immunity,2018,49(6):1116-1131

    • [11] KOOK S H,HEO J S,LEE J C.Crucial roles of canonical Runx2⁃dependent pathway on Wnt1⁃induced osteoblastic differentiation of human periodontal ligament fibroblasts [J].Mol Cell Biochem,2015,402(1/2):213-223

    • [12] CHEN T,LI J,CORDOVA L A,et al.A WNT protein thera⁃ peutic improves the bone ⁃ forming capacity of autografts from aged animals[J].Sci Rep,2018,8(1):119

    • [13] EIJKEN M,MEIJER I M,WESTBROEK I,et al.Wnt sig⁃ naling acts and is regulated in a human osteoblast differen⁃ tiation dependent manner[J].J Cell Biochem,2008,104(2):568-579

    • [14] SCHONITZER V,WIRTZ R,ULRICH V,et al.Sox2 is a potent inhibitor of osteogenic and adipogenic differentia⁃ tion in human mesenchymal stem cells[J].Cell Repro⁃ gram,2014,16(5):355-365

    • [15] MURUGANANDAN S,GOVINDARAJAN R,MCMUL⁃ LEN N M,et al.Chemokine ⁃ like receptor 1 is a novel Wnt target gene that regulates mesenchymal stem cell dif⁃ ferentiation[J].Stem Cells,2017,35(3):711-724

    • [16] JI L,LU B,ZAMPONI R,et al.USP7 inhibits Wnt/beta⁃ catenin signaling through promoting stabilization of Axin [J].Nat Commun,2019,10(1):4184

    • [17] YANG B,LI S,CHEN Z,et al.Amyloid beta peptide pro⁃ motes bone formation by regulating Wnt/beta⁃catenin sig⁃ naling and the OPG/RANKL/RANK system[J].FASEB J,2020,34(3):3583-3593

    • [18] AMIN N,BOCCARDI V,TAGHIZADEH M,et al.Probio⁃ tics and bone disorders:the role of RANKL/RANK/OPG pathway[J].Aging Clin Exp Res,2020,32(3):363-371

    • [19] ALBERS J,KELLER J,BARANOWSKY A,et al.Canoni⁃ cal Wnt signaling inhibits osteoclastogenesis independent of osteoprotegerin[J].J Cell Biol,2013,200(4):537-549

    • [20] AMIRHOSSEINI M,MADSEN R V,ESCOTT K J,et al.GSK⁃3beta inhibition suppresses instability⁃induced osteo⁃ lysis by a dual action on osteoblast and osteoclast differen⁃ tiation[J].J Cell Physiol,2018,233(3):2398-2408

    • [21] GORI F,LERNER U,OHLSSON C,et al.A new WNT on the bone:WNT16,cortical bone thickness,porosity and fractures[J].Bonekey Rep,2015,4:669

    • [22] SUI X,DENG S,LIU M,et al.Constitutive activation of beta ⁃ catenin in differentiated osteoclasts induces bone loss in mice[J].Cell Physiol Biochem,2018,48(5):2091-2102

    • [23] MAEDA K,TAKAHASHI N,KOBAYASHI Y,et al.Roles of Wnt signals in bone resorption during physiological and pathological states[J].J Mol Med(Berl),2013,91(1):15-23

    • [24] WANG Z M,LUO J Q,XU L Y,et al.Harnessing low⁃den⁃ sity lipoprotein receptor protein 6(LRP6)genetic varia⁃tion and Wnt signaling for innovative diagnostics in com⁃ plex diseases[J].Pharmacogenomics J,2018,18(3):351-358

    • [25] KORVALA J,LOIJA M,MAKITIE O,et al.Rare varia⁃ tions in WNT3A and DKK1 may predispose carriers to primary osteoporosis[J].Eur J Med Genet,2012,55(10):515-519

    • [26] DELGADO⁃CALLE J,SATO A Y,BELLIDO T.Role and mechanism of action of sclerostin in bone[J].Bone,2017,96:29-37

    • [27] VAN LIEROP A H,APPELMAN⁃DIJKSTRA N M,PAPA⁃ POULOS S E.Sclerostin deficiency in humans[J].Bone,2017,96:51-62

    • [28] KOIDE M,KOBAYASHI Y.Regulatory mechanisms of sclerostin expression during bone remodeling[J].J Bone Miner Metab,2019,37(1):9-17

    • [29] IYER S,AMBROGINI E,BARTELL S M,et al.FOXOs attenuate bone formation by suppressing Wnt signaling [J].J Clin Invest,2013,123(8):3409-3419

    • [30] HUANG P,YAN R,ZHANG X,et al.Activating Wnt/beta ⁃catenin signaling pathway for disease therapy:challenges and opportunities[J].Pharmacol Ther,2019,196:79-90

    • [31] XIAO L,FEI Y,HURLEY M M.FGF2 crosstalk with Wnt signaling in mediating the anabolic action of PTH on bone formation[J].Bone Rep,2018,9:136-144

    • [32] LEDER B Z.Parathyroid hormone and parathyroid hor⁃ mone ⁃ related protein analogs in osteoporosis therapy[J].Curr Osteoporos Rep,2017,15(2):110-119

    • [33] SLEEMAN A,ABALOPARATIDE C J.A new pharmaco⁃ logical option for osteoporosis[J].Am J Health Syst Pharm,2019,76(3):130-135

    • [34] MACNABB C,PATTON D,HAYES J S.Sclerostin anti⁃ body therapy for the treatment of osteoporosis:clinical prospects and challenges[J].J Osteoporos,2016,2016:6217286

    • [35] OMINSKY M S,BOYCE R W,LI X,et al.Effects of sclerostin antibodies in animal models of osteoporosis[J].Bone,2017,96:63-75

    • [36] MCCLUNG M R,GRAUER A,BOONEN S,et al.Romo⁃ sozumab in postmenopausal women with low bone miner⁃ al density[J].N Engl J Med,2014,370(5):412-420

    • [37] RACHNER T D,HOFBAUER L C,GOBEL A,et al.Novel therapies in osteoporosis:PTH ⁃ related peptide analogs and inhibitors of sclerostin[J].J Mol Endocrinol,2019,62(2):R145-R154

    • [38] GLORIEUX F H,DEVOGELAER J P,DURIGOVA M,et al.BPS804 anti⁃sclerostin antibody in adults with moder⁃ ate osteogenesis imperfecta:results of a randomized phase 2a trial[J].J Bone Miner Res,2017,32(7):1496-1504

    • [39] SEEFRIED L,BAUMANN J,HEMSLEY S,et al.Efficacy of anti ⁃ sclerostin monoclonal antibody BPS804 in adult patients with hypophosphatasia[J].J Clin Invest,2017,127(6):2148-2158

    • [40] ASADIPOOYA K,WEINSTOCK A.Cardiovascular out⁃ comes of romosozumab and protective role of alendronate [J].Arterioscler Thromb Vasc Biol,2019,39(7):1343-1350

    • [41] TSOURDI E,RIJNTJES E,KOHRLE J,et al.Hyperthy⁃ roidism and hypothyroidism in male mice and their effects on bone mass,bone turnover,and the Wnt inhibitors sclerostin and dickkopf ⁃ 1[J].Endocrinology,2015,156(10):3517-3527

  • 通知关闭
    郑重声明