-
CRISPR⁃Cas系统是细菌、古细菌对抗病毒进化出来的免疫机制,2012年,首次将CRISPR⁃Cas9系统成功应用于大肠杆菌基因组编辑[1],随后这一系统被广泛应用到哺乳动物和人类细胞中[2],从此基因编辑进入了新时代。目前已知的绝大部分疾病是由碱基突变导致的,为了构建疾病模型或者修复致病突变,基于CRISPR⁃Cas9系统的碱基编辑器应运而生,可以实现A·T到G·C和C·G到T·A的突变,最近出现的先导编辑器(Prime editors)可实现12种单碱基的任意替换、短片段的删除和插入[3]。虽然CRISPR⁃Cas9技术日趋完善,但将其广泛应用于临床基因治疗还存在一定的风险,其在特异性、安全性和在体转导方面仍有待提升。
-
1 CRISPR⁃Cas9系统的特异性
-
野生型SpCas9存在严重的脱靶效应[4],为了降低这一系统的脱靶活性,多个研究团队对其进行了优化。利用Cas9切口酶和双sgRNA[5],或者利用失活Cas9融合Fok1和双sgRNA都可以显著降低脱靶[6]。对sgRNA的改造也可用来增加特异性,比如截短sgRNA(Truncated sgRNA)[7] 和发卡sgRNA(haripin⁃ sgRNA)[8] 等。基于Cas9蛋白结构进行优化可以在降低脱靶效应同时保持较高的编辑活性。Slay⁃ maker等[9]通过丙氨酸扫描技术,开发了eSpCas9(1.1),这种Cas9变体降低了Cas9与非互补链DNA的亲和力。利用类似的原理,Kleinstiver等[10] 开发了高保真突变体SpCas9⁃HF1。Chen等[11] 利用eSpCas9(1.1)和SpCas9⁃HF1在与非靶向序列结合时会转换成非活跃状态的机制对野生型Cas9进行氨基酸突变,获得了兼具高切割活性和低脱靶活性的HypaCas9。Casini等[12] 在酵母上对Rec3结构域突变的SpCas9文库进行筛选,鉴定出了四重突变体evoCas9,尽管这一突变体特异性很高,但也极大地降低了编辑活性。Lee等[13] 利用大肠杆菌筛选出Sniper⁃Cas9,在降低脱靶活性的同时,也能保持与野生型SpCas9相当的编辑活性。
-
相对于野生型SpCas9的编辑活性,绝大部分Cas9高保真突变体的基因编辑活性均下降,虽然Sniper⁃Cas9保持了和野生型Cas9相当的基因编辑活性,但是特异性比其他突变体低[14]。因此,开发高活性和高特异性的突变体Cas9势在必行。
-
2 基因编辑技术的安全性
-
基因编辑技术的深入研究和广泛应用暴露了其出乎意料的安全性问题,如Cas9介导DNA双链断裂(double⁃strand breakage,DSB)会导致DNA大片段缺失和染色体易位[15],Cas9的表达会激活P53通路[16],Cas9在临床应用中存在潜在的抗原抗体反应等[17]。碱基编辑器、先导编辑器、Cas9活性的精准调控等在一定程度上可以解决安全性问题。
-
2.1 碱基编辑器
-
DSB的产生对细胞来说是非常严重的事件,基于Cas9开发的碱基编辑器既避免了DSB的产生,又实现了高效编辑。目前已开发出两类碱基编辑器:胞嘧啶碱基编辑器(cytosine base editor,CBE)[18] 和腺嘌呤碱基编辑器(adenine base editor,ABE)[19]。 CBE使用胞嘧啶脱氨酶催化胞嘧啶(C)脱氨基产生尿嘧啶(U),在DNA修复和复制过程中,U被聚合酶识别为胸腺嘧啶(T),诱导C到T的突变;ABE使用细菌中人工进化而来的腺苷脱氨酶(TadA)催化腺嘌呤(A)转换成肌苷(I),在复制和修复的过程中DNA聚合酶将I识别为G,引入A到G的突变。
-
最初的CBE版本BE3具有序列偏好性和较高的脱靶活性,在目标位点会出现一定比例的错误突变(C突变成A或G)。BE4在BE3基础上将尿嘧啶糖基化酶抑制蛋白(uracil glycosylase inhibitor protein,UGI)增加到两个,提高了编辑效率,降低了脱靶活性[20]。Thuronyi等[21] 利用噬菌体辅助进化技术开发的evoAPOBEC1⁃BE4max,可以提高CBE在GC序列上的编辑效率。当目标位点附近存在多个C时会出现旁观者脱靶现象,设计编辑窗口更窄[22-23] 或序列依赖[24] 的脱氨酶可以有效降低这种旁观者脱靶活性。虽然碱基编辑器不会产生DSB,但碱基切除修复发生时仍会有插入/缺失副产物,BE4融合一种噬菌体来源的断裂末端保护蛋白Mu Gam可以有效减少CBE介导的插入/缺失[20]。通过优化脱氨酶TadA与nCas9切口酶(D10A)之间的连接序列,可以得到编辑效率更高的ABEmax[25]。Richter等[26] 通过噬菌体辅助进化进一步优化了TadA,得到的ABE8e版本极大地提高了A·T到G·C的编辑效率,但也造成了较为严重的脱靶效应。
-
由于碱基编辑器使用的脱氨酶会与单链DNA和RNA结合,尤其是CBE,会在单链DNA和RNA上产生高频率的脱靶[27-28]。为了减少碱基编辑器的脱靶,Zhou等[29] 通过破坏脱氨酶与RNA的结合能力开发了3个CBE变异体和1个ABE变异体,极大地提高了碱基编辑器的保真性。
-
2.2 先导编辑器
-
Auzalone等[3] 开发的先导编辑器,可以精准实现12种点突变和小片段的插入/删除。先导编辑器包括nCas9切口酶(H840A)和逆转录酶结构域,以及3′端携带目标突变的逆转录模板和负责起始转录的引物结合位点(primer binding site,PBS)的pegRNA。在pegRNA引导下,nCas9切割并释放非互补链,释放的非互补链与pegRNA 3′端PBS序列互补配对后,逆转录酶以pegRNA 3′端携带的模板进行逆转录,新合成的DNA通过DNA修复机制实现点突变或小片段的插入/删除。与传统同源重组方法相比,先导编辑器具有更高的编辑效率和更好的靶向灵活性。
-
2.3 CRISPR/Cas9活性的精确调控
-
2.3.1 抗CRISPR蛋白
-
随着天然拮抗剂anti ⁃CRISPR(Acr)蛋白的发现,科学家开始选择这些蛋白用于控制Cas9蛋白的活性[30]。Acr蛋白干扰CRISPR⁃Cas9系统的方式主要是与sgRNA竞争性结合Cas9蛋白,或者直接抑制Cas9核酸酶活性。已阐明Ⅱ型Acr蛋白与Cas9的直接相互作用[31-32],限制了其与DNA结合,或阻止了HNH核酸酶结构域的激活[33]。由于Acr蛋白具有严格的开关控制作用,因此可以实现对Cas核酸酶的精准调控,例如在CRISPR系统发挥作用之后转入AcrⅡA4可有效减少脱靶编辑[34]。
-
2.3.2 光调控
-
通过光激活的方式也可以对Cas9活性进行精确调控。光调控是非入侵性的,可以实现对Cas9核酸酶活性的可逆控制。Hemphill等[35] 使用光锁定赖氨酸,设计出了一种光控Cas9,通过在细胞中添加进化产生的吡咯酰tRNA(PylT)/tRNA合成酶(PCKRS)[36],可以使光锁定赖氨酸特异性地掺入Cas9中。这种光控的Cas9核酸酶在365nm光照射120s后,其活性可以恢复到野生型水平。Nihongaki等[37] 报道了一种光激活Cas9(paCas9),利用一种光诱导二聚化蛋白[38],将Cas9的两个片段分别连接磁性蛋白的正负极,在蓝光照射下,异源二聚体相互配对,重组的pa⁃ Cas9与野生型Cas9活性没有显著差异。
-
此外,Zhang等[39] 报道了一种通过光控crRNA来调控CRISPR⁃Cas9活性的方法,这一策略将维生素E与5′ 不耐光连接子偶联合成了一种新的crRNA,维生素E修饰会抑制Cas9⁃crRNA/tracrRNA与DNA的结合,在365nm紫外光照射下,维生素E和不耐光接头被去除,恢复CRISPR⁃Cas9系统的功能。
-
2.3.3 小分子抑制剂
-
Choudhary实验室开发了一种高通量筛选平台[40],鉴定出一种小分子SpCas9抑制剂BRD0539,对这种抑制剂进行优化后可以将SpCas9的活性降低78%。BRD0593调控Cas9的活性是可逆的,并且对蛋白酶有抵抗力,可在人血浆中稳定存在,其对CRISPR⁃Cas9进行精准地时空调控,具有广阔的应用前景。
-
2.4 P53效应与免疫原性
-
CRISPR⁃Cas9的细胞毒性在不同细胞系中有所不同,这种毒性与细胞中P53蛋白介导的细胞凋亡通路相关。在对人细胞系转染Cas9后,携带野生型TP53基因的细胞系表现出更高的细胞周期停滞水平[41]。Enache等[16] 发现,在人类癌细胞系中引入Cas9会导致p53通路的上调,诱导细胞凋亡。Ihry等[42] 在对人类多能干细胞进行编辑时,Cas9诱导的双链断裂会让大多数细胞死亡,这种细胞毒性主要依赖于TP53激活,所以大大降低了携带野生型TP53细胞的基因编辑效率,也就意味着如果使用经过筛选的编辑细胞用于细胞治疗,这些细胞TP53突变或者低表达,可能会导致癌症的发生。因此在利用基因编辑细胞进行治疗时,监测TP53的状态尤为重要。除了引起P53效应,Charlesworth等[43] 对人类血清进行免疫印迹检测时发现,34例捐赠者中至少一半人的血清中含有SaCas9和SpCas9抗体,因此Cas9的免疫原性也增加了临床使用的风险。另外,体外合成的gRNA也会引发免疫反应[44],对gRNA进行修饰可以增加稳定性,抑制免疫反应[45]。
-
虽然在Cas9的安全性方面已经做了诸多改进,但一些未知及潜在的安全性问题仍是Cas9编辑技术走向临床应用的障碍,因此开发易调控Cas9突变体、抑制TP53激活的Cas9突变体、低免疫原性Cas9突变体等可以为基因治疗提供更安全、更有效的工具。
-
3 基因编辑器的在体转导
-
高效的基因编辑取决于将编辑器有效地传递到体内细胞和组织中,在体转导对基因编辑来说是一个很大的挑战。目前大多数研究使用腺相关病毒 (Adeno associated virus,AAV)和慢病毒进行在体转导基因编辑,存在以下问题:①病毒载体的容量有限; ②持续性的表达会造成脱靶效应;③递送载体本身会引发独特的免疫反应;④潜在的致癌性。
-
AAV载体可以携带约4.4kb的外源DNA,具有多种血清型,对不同组织具有不同的亲和性[46-47]。使用分子量更小的SaCas9或将SpCas9/碱基编辑器分成两部分,再通过内含子蛋白剪接系统重组克服了运载能力的限制[48-49]。当然,从自然界中或者通过蛋白工程,寻找或者开发更小版本的Cas蛋白是解决AAV运载限制更好的选择[50]。AAV的另一个缺点是对天然血清型存在先天性体液免疫反应,这很大程度上限制了其应用[51],通过对AAV的衣壳进行改造可以减轻这一影响[52]。
-
慢病毒载体可以容纳长达10kb的外源DNA[53],并将其半随机整合到基因组中。慢病毒可以与不同包膜蛋白进行组装,以靶向不同的细胞类型[54]。与AAV不同的是,慢病毒携带的基因会整合到细胞基因组中,由此产生的核酸酶长期表达对细胞不利。整合酶缺陷慢病毒载体具有瞬时表达和更弱的整合能力,可以解决这一问题[55]。最近,有研究开发了一种类病毒载体,可以直接包装Cas9mRNA,使其不会整合到靶细胞的基因组中,可以在小鼠组织中转导和瞬时表达核酸酶[56]。
-
由于病毒载体存在一些难以避免的缺陷,目前也开发了一些非病毒传递载体[57]。基因编辑器的非病毒载体传递效率低于病毒载体,但是它提供了瞬时核酸酶活性的优势。更重要的是,非病毒载体,如脂质纳米颗粒、电穿孔技术等可以重复多次给药[58],这也为基因疾病治疗提供了更多的可能。
-
虽然研究者对基因编辑工具的在体转导方式进行了优化,但在转导效率、安全性、靶向性、致癌性等方面还存在诸多问题,亟待开发安全、高效的在体转导工具和小版本的Cas蛋白,以尽快打通基因编辑技术走向临床治疗的“最后一公里”。
-
4 总结与展望
-
从CRISPR⁃Cas9系统的发现到现在发展出了多种精准且多功能的基因编辑工具,在不到8年的时间里,基因编辑技术的发展为新一代人类基因疗法奠定了基础。尽管基因编辑工具仍存在脱靶和安全风险,但其强大的功能和广泛的适用性,仍然是精准医疗的发展方向。随着基因编辑工具的不断发展,以及在体转导方式的改进,将极大地促进基因编辑技术走向临床应用。目前,尽管利用CRISPR系统进行基因治疗已经有很大突破,但将这一方法广泛运用到临床治疗中还有一段距离,仍面临着诸多挑战。相信不远的未来会开发出更加安全高效的编辑工具和在体转导体系,用于临床疾病的治疗。
-
参考文献
-
[1] JINEK M,CHYLINSKI K,FONFARA I,et al.A programmable dual ⁃RNA ⁃guided DNA endonuclease in adaptive bacterial immunity[J].Science,2012,337(6096):816-821
-
[2] CONG L,RAN F A,COX D,et al.Multiplex genome engineering using CRISPR/Cas systems[J].Science,2013,339(6121):819-823
-
[3] ANZALONE A V,RANDOLPH P B,DAVIS J R,et al.Search⁃and⁃replace genome editing without double⁃strand breaks or donor DNA[J].Nature,2019,576(7785):149-157
-
[4] ANZALONE A V,KOBLAN L W,LIU D R.Genome editing with CRISPR ⁃ Cas nucleases,base editors,transposases and prime editors[J].Nat Biotechnol,2020,38(7):824-844
-
[5] RAN F A,HSU P D,LIN C Y,et al.Double nicking by RNA ⁃guided CRISPR Cas9 for enhanced genome editing specificity[J].Cell,2013,154(6):1380-1389
-
[6] GUILINGER J P,THOMPSON D B,LIU D R.Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification[J].Nat Biotechnol,2014,32(6):577-582
-
[7] FU Y,SANDER J D,REYON D,et al.Improving CRISPR ⁃Cas nuclease specificity using truncated guide RNAs[J].Nat Biotechnol,2014,32(3):279-284
-
[8] KOCAK D D,JOSEPHS E A,BHANDARKAR V,et al.Increasing the specificity of CRISPR systems with engineered RNA secondary structures[J].Nat Biotechnol,2019,37(6):657-666
-
[9] SLAYMAKER I M,GAO L,ZETSCHE B,et al.Rationally engineered Cas9 nucleases with improved specificity[J].Science,2016,351(6268):84-88
-
[10] KLEINSTIVER B P,PATTANAYAK V,PREW M S,et al.High⁃fidelity CRISPR⁃Cas9 nucleases with no detectable genome⁃wide off⁃target effects[J].Nature,2016,529(7587):490-495
-
[11] CHEN J S,DAGDAS Y S,KLEINSTIVER B P,et al.En⁃ hanced proofreading governs CRISPR ⁃Cas9 targeting accuracy[J].Nature,2017,550(7676):407-410
-
[12] CASINI A,OLIVIERI M,PETRIS G,et al.A highly specific SpCas9 variant is identified by in vivo screening in yeast[J].Nat Biotechnol,2018,36(3):265-271
-
[13] LEE J K,JEONG E,LEE J,et al.Directed evolution of CRISPR ⁃ Cas9 to increase its specificity[J].Nat Commun,2018,9(1):3048
-
[14] SCHMID⁃BURGK J L,GAO L,LI D,et al.Highly parallel profiling of Cas9 variant specificity[J].Mol Cell,2020,78(4):794-800.e8
-
[15] JIANG F G,DOUDNA J A.CRISPR⁃cas9 structures and mechanisms[J].Annu Rev Biophys,2017,46:505-529
-
[16] ENACHE O M,RENDO V,ABDUSAMAD M,et al.Cas9 activates the p53 pathway and selects for p53⁃inactivating mutations[J].Nat Genet,2020,52(7):662-668
-
[17] CHEW W L.Immunity to CRISPR Cas9 and Cas12a thera⁃ peutics[J].Wiley Interdiscip Rev Syst Biol Med,2018,10(1).DOI:10.1002/wsbm.1408
-
[18] KOMOR A C,KIM Y B,PACKER M S,et al.Programmable editing of a target base in genomic DNA without double ⁃ stranded DNA cleavage[J].Nature,2016,533(7603):420-424
-
[19] GAUDELLI N M,KOMOR A C,REES H A,et al.Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J].Nature,2017,551(7681):464-471
-
[20] KOMOR A C,ZHAO K T,PACKER M S,et al.Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G ⁃to ⁃T:a base editors with higher efficiency and product purity[J].Sci Adv,2017,3(8):eaao4774
-
[21] THURONYI B W,KOBLAN L W,LEVY J M,et al.Continuous evolution of base editors with expanded target compatibility and improved activity[J].Nat Biotechnol,2019,37(9):1070-1079
-
[22] KIM Y B,KOMOR A C,LEVY J M,et al.Increasing the genome⁃targeting scope and precision of base editing with engineered Cas9⁃cytidine deaminase fusions[J].Nat Biotechnol,2017,35(4):371-376
-
[23] LIU Z,CHEN S,SHAN H,et al.Efficient base editing with high precision in rabbits using YFE ⁃ BE4max[J].Cell Death Dis,2020,11(1):36
-
[24] GRÜNEWALD J,ZHOU R,IYER S,et al.CRISPR DNA base editors with reduced RNA off⁃target and self⁃editing activities[J].Nat Biotechnol,2019,37(9):1041-1048
-
[25] KOBLAN L W,DOMAN J L,WILSON C,et al.Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction[J].Nat Biotechnol,2018,36(9):843-846
-
[26] RICHTER M F,ZHAO K T,ETON E,et al.Phage⁃assisted evolution of an adenine base editor with improved Cas domain compatibility and activity[J].Nat Biotechnol,2020,38(7):883-891
-
[27] JIN S,ZONG Y,GAO Q,et al.Cytosine,but not adenine,base editors induce genome ⁃wide off ⁃target mutations in rice[J].Science,2019,364(6437):292-295
-
[28] ZUO E,ZUO E,SUN Y,et al.Cytosine base editor generates substantial off ⁃ target single ⁃ nucleotide variants in mouse embryos[J].Science,2019,364(6437):289-292
-
[29] ZHOU C,SUN Y,YAN R,et al.Off⁃target RNA mutation induced by DNA base editing and its elimination by mutagenesis[J].Nature,2019,571(7764):275-278
-
[30] MARINO N D,PINILLA ⁃REDONDO R,CSÖRGŐ B,et al.Anti ⁃ CRISPR protein applications:natural brakes for CRISPR ⁃ Cas technologies[J].Nat Methods,2020,17(5):471-479
-
[31] DONG,GUO M,WANG S,et al.Structural basis of CRISPR ⁃ SpyCas9 inhibition by an anti ⁃CRISPR protein[J].Nature,2017,546(7658):436-439
-
[32] JIANG F,LIU J J,OSUNA B A,et al.Temperature⁃ responsive competitive inhibition of CRISPR ⁃ Cas9[J].Mol Cell,2019,73(3):601-610.e5
-
[33] HARRINGTON L B,DOXZEN K W,MA E,et al.A broad ⁃spectrum inhibitor of CRISPR ⁃cas9[J].Cell,2017,170(6):1224-1233.e15
-
[34] SHIN J,JIANG F,LIU J J,et al.Disabling Cas9 by an anti ⁃CRISPR DNA mimic[J].Sci Adv,2017,3(7):e1701620
-
[35] HEMPHILL J,BORCHARDT E K,BROWN K,et al.Optical control of CRISPR/Cas9 gene editing[J].J Am Chem Soc,2015,137(17):5642-5645
-
[36] GAUTIER A,NGUYEN D P,LUSIC H,et al.Genetically encoded photocontrol of protein localization in mammalian cells[J].J Am Chem Soc,2010,132(12):4086-4088
-
[37] NIHONGAKI Y,KAWANO F,NAKAJIMA T,et al.Photoactivatable CRISPR ⁃Cas9 for optogenetic genome editing[J].Nat Biotechnol,2015,33(7):755-760
-
[38] KAWANO F,SUZUKI H,FURUYA A,et al.Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins[J].Nat Commun,2015,6:6256
-
[39] ZHANG Y,LING X,SU X,et al.Optical control of a CRISPR/Cas9 system for gene editing by using photolabile crRNA[J].Angew Chem Int Ed Engl,2020,59(47):20895-20899
-
[40] MAJI B,GANGOPADHYAY S A,LEE M,et al.A high ⁃ throughput platform to identify small ⁃molecule inhibitors of CRISPR⁃Cas9[J].Cell,2019,177(4):1067-1079
-
[41] GEISINGER J M,STEARNS T.CRISPR/Cas9 treatment causes extended TP53⁃dependent cell cycle arrest in human cells[J].Nucleic Acids Res,2020,48(16):9067-9081
-
[42] IHRY R J,WORRINGER K A,SALICK M R,et al.p53 inhibits CRISPR ⁃Cas9 engineering in human pluripotent stem cells[J].Nat Med,2018,24(7):939-946
-
[43] CHARLESWORTH C T,DESHPANDE P S,DEVER D P,et al.Identification of preexisting adaptive immunity to Cas9 proteins in humans[J].Nat Med,2019,25(2):249-254
-
[44] KIM S,KOO T,JEE H G,et al.CRISPR RNAs trigger innate immune responses in human cells[J].Genome Res,2018,28(3):367-373
-
[45] HENDEL A,BAK R O,CLARK J T,et al.Chemically modified guide RNAs enhance CRISPR⁃Cas genome editing in human primary cells[J].Nat Biotechnol,2015,33(9):985-989
-
[46] MAGUIRE A M,SIMONELLI F,PIERCE E A,et al.Safety and efficacy of gene transfer for Leber’s congenital amaurosis[J].N Engl J Med,2008,358(21):2240-2248
-
[47] MENDELL J R,AL ⁃ ZAIDY S,SHELL R,et al.Single ⁃ dose gene ⁃ replacement therapy for spinal muscular atrophy[J].N Engl J Med,2017,377(18):1713-1722
-
[48] CHEW W L,TABEBORDBAR M,CHENG J K,et al.A multifunctional AAV⁃CRISPR⁃Cas9 and its host response [J].Nat Methods,2016,13(10):868-874
-
[49] WU Z,YANG H,COLOSI P.Effect of genome size on AAV vector packaging[J].Mol Ther,2010,18(1):80-86
-
[50] KIM E,KOO T,PARK S W,et al.In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni[J].Nat Commun,2017,8:14500
-
[51] VERDERA H C,KURANDA K,MINGOZZI F.AAV vector immunogenicity in humans:a long journey to successful gene transfer[J].Mol Ther,2020,28(3):723-746
-
[52] MAHESHRI N,KOERBER J T,KASPAR B K,et al.Directed evolution of adeno ⁃ associated virus yields enhanced gene delivery vectors[J].Nat Biotechnol,2006,24(2):198-204
-
[53] KUMAR M,KELLER B,MAKALOU N,et al.Systematic determination of the packaging limit of lentiviral vectors [J].Hum Gene Ther,2001,12(15):1893-1905
-
[54] JOGLEKAR A V,SANDOVAL S.Pseudotyped lentiviral vectors:one vector,many guises[J].Hum Gene Ther Methods,2017,28(6):291-301
-
[55] ORTINSKI P I,O’DONOVAN B,DONG X,et al.Integrase⁃deficient lentiviral vector as an all⁃in⁃one platform for highly efficient CRISPR/Cas9 ⁃ mediated gene editing [J].Mol Ther Methods Clin Dev,2017,5:153-164
-
[56] LING S,YANG S,HU X,et al.Lentiviral delivery of co ⁃ packaged Cas9 mRNA and a VEGFA ⁃ targeting guide RNA prevents wet age ⁃ related macular degeneration in mice[J].Nat Biomed Eng,2021,5(2):144-156
-
[57] LI L,HU S,CHEN X.Non ⁃ viral delivery systems for CRISPR/Cas9 ⁃ based genome editing:challenges and opportunities[J].Biomaterials,2018,171:207-218
-
[58] ALTON E W F W,ARMSTRONG D K,ASHBY D,et al.Repeated nebulisation of non⁃viral CFTR gene therapy in patients with cystic fibrosis:a randomised,double⁃blind,placebo ⁃ controlled,phase 2b trial[J].Lancet Respir Med,2015,3(9):684-691
-
摘要
CRISPR⁃Cas9技术的发展极大地推动了基因编辑技术的进步,基于该技术开发的碱基编辑器和先导编辑器赋予了 CRISPR⁃Cas9系统更加强大的基因编辑能力,加速了CRISPR⁃Cas9技术应用于临床基因治疗。虽然目前对该系统做了诸多优化和改进,但在特异性、安全性以及在体转导等方面仍存在改进和优化的空间。本文针对这三方面的研究进展进行简要介绍和展望。
Abstract
The development of CRISPR⁃Cas9 technology has greatly promoted the progress of gene editing. Base editors and Prime editors developed based on this technology confer CRISPR ⁃ Cas9 system more powerful gene editing capabilities,and accelerate its application in clinical gene therapy. Although the CRISPR ⁃ Cas9 system has been optimized much,it still needs to be improved in terms of specificity,safety and delivery in vivo. This review briefly introduces and looks forward to the research progress regarding the above three concerns.
关键词
CRISPR⁃Cas9 ; 基因编辑 ; 碱基编辑器 ; 特异性 ; 安全性
Keywords
CRISPR⁃Cas9 ; gene editing ; base editor ; specificity ; safety