-
传统观点认为只有适应性免疫才能建立免疫记忆,但近几年发现固有免疫也具备这种特征。在缺乏适应性免疫的生物体中,先天免疫系统可增强对再感染的抵抗力,这种现象被称为“训练免疫 (trained immunity,TI)”或“先天免疫记忆”[1-2]。TI是由外源性或内源性损伤引起的先天免疫细胞的长期功能性重编程,并导致在细胞恢复到非激活状态后,对非特异性刺激的次级反应发生增强或减弱的改变,进而产生环境、时间调节的反应。重要的是, TI代表了先天免疫细胞而不是特定的转录或功能程序的长期适应的概念[3],它基于两个主要支柱,细胞的表观遗传重新编程和新陈代谢重新编程,通过表观遗传重编程来调控基因表达和细胞生理上的持续变化[4],不涉及突变和重组等永久性遗传变化,而这些变化对定义TI的性质和影响至关重要[5]。最近研究表明,不同免疫信号诱导的细胞代谢重组是确定TI表观遗传学变化的关键一步,如糖酵解、三羧酸循环中的谷氨酰胺补充和富马酸盐的积累以及甲羟戊酸途径等在其中起着至关重要的作用[6]。本文主要介绍TI的训练激活物、训练相关细胞、代谢和表观遗传重组的机制以及在疾病中的重要作用。
-
1 训练激活物
-
以往研究证明能够促进TI的因素包括致病信号(真菌、细菌、病毒)以及非致病信号,如胰岛素、细胞因子、脂肪因子或激素。
-
1.1 脂多糖(lipopolysaccharide,LPS)
-
革兰氏阴性细菌外膜中发现的LPS,在生物学中执行各种功能。长时间暴露于LPS等的免疫细胞,可诱导一种先天免疫记忆,并随后钝化对不相关病原体的反应,即LPS耐受,后者通过LPS持续刺激骨髓源性巨噬细胞(bone marrow ⁃derived macro⁃ phage,BMDM)实现。巨噬细胞的这种功能性重编程 (耐受),是由于LPS诱导大多数基因被转录沉默[7],当耐受的巨噬细胞被LPS再刺激后,转录沉默的同时不能对耐受基因启动子上的组蛋白进行标记[8]。但是,TI相关的造血过程增加又表现出LPS再刺激后的有益一面,比如其保护小鼠免受化疗诱导的骨髓抑制[9]。部分数据表明,经LPS训练诱导造血干细胞的变化,可显著改善对继发性细菌(如铜绿假单胞菌感染)的反应[10]。
-
1.2 几丁质
-
酿酒酵母天然存在于哺乳动物的皮肤和肠道中,同白色念珠菌一样,在宿主定殖的真菌物种中具有普遍的保护特性[11],并且可能影响宿主的免疫。几丁质,是真菌细胞壁的主要成分,Jiang等[12] 证实了其可以训练先天免疫,经过训练的单核细胞第2次接触病原体时肿瘤坏死因子(tumor necrosis factor,TNF)⁃α和白介素(interleukin,IL)⁃6的产生增加。同时,组蛋白甲基转移酶抑制剂可削弱几丁质对单核细胞的TI,这表明组蛋白甲基化水平的表观遗传变化在几丁质TI的重编程中起着重要作用。
-
1.3 β⁃葡聚糖
-
β⁃葡聚糖(一种真菌衍生的TI典型激动剂)预处理小鼠可导致肿瘤生长减弱,与其诱导TI介导粒细胞生成和中性粒细胞的表观遗传重编程导致抗肿瘤表型改变有关,并且该过程需要I型干扰素(interferon,IFN)信号,而与宿主的获得性免疫无关。将中性粒细胞从β⁃葡聚糖训练的小鼠过继转移到幼稚荷瘤受体,则是以一种活性氧依赖的方式抑制后者的肿瘤生长[13]。亦有报道β⁃葡聚糖可通过抑制免疫反应基因1的表达从而减弱人类内毒素血症模型诱导的耐受性,这突出了β⁃葡聚糖诱导TI逆转免疫耐受的潜力[14]。
-
1.4 卡介苗(bacille calmette⁃guerin,BCG)
-
作为世界上应用最多的疫苗[15],卡介苗能保护儿童免受不相关的感染,特别是呼吸道感染和新生儿败血症。研究表明BCG接种可能是一种有效的预防新型冠状病毒(severe acute respiratory syndrome coronavirus 2,SARS⁃CoV⁃2)感染的措施,它可作为开发针对SARS⁃CoV⁃2的特异性疫苗的桥梁,从而控制大流行趋势[16-17]。此外,BCG接种在造血干细胞水平上引起的转录变化可以“传递”给多能祖细胞和骨髓源性巨噬细胞,从而增强对结核分枝杆菌感染的保护能力。该过程主要通过Ⅱ型IFN或IL⁃1反应对骨髓中的造血干细胞进行重新编程,从而提供针对结核杆菌的保护性TI。但有文章发现,与BCG不同,结核分枝杆菌通过IFN⁃I反应对造血干细胞进行再编程,结果显示造血干细胞转录谱的改变持续了至少1年,这表明结核分枝杆菌对造血干细胞TI产生持久的影响[18]。
-
1.5 乙型肝炎病毒(hepatitis B virus,HBV)
-
HBV是慢性感染者导致肝脏炎症和癌症的主要原因,也能够引发一种TI状态。由于新生儿免疫系统不成熟,HBV从受感染的母亲传染给新生儿,通过诱导免疫耐受状态促进HBV持续存在[19]。与之相反,胎儿在子宫内暴露于HBV会触发TI,不仅促进先天免疫细胞成熟和1型辅助性T细胞(T helper 1cell,Th1)发育,还增强了脐带血免疫细胞体外对细菌感染的反应能力。这些TI效应与细胞微环境有关,以低IL⁃10、高IL⁃12p40和IFN⁃α2为特征。相关数据亦揭示了相似的TI状态[20]。
-
1.6 各类代谢产物
-
胰岛素抵抗的巨噬细胞基础哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)复合物1活性增加从而具有M2样表型,可降低LPS反应,同时又表现出糖酵解增加和关键糖酵解酶的表达增加[21]。因此,引起巨噬细胞对病原体的反应减弱和代谢改变的胰岛素抵抗本质上是一种TI。此外,临床证据强调了胰岛素抵抗患者中巨噬细胞对病原体或代谢产物反应的改变,这与细胞培养和动物模型研究一致[22]。Du等[23] 发现低氧预处理的人间充质干细胞可分泌胰岛素样生长因子(insulin like growth factor,IGF)⁃2,训练正在成熟的小鼠巨噬细胞向M2样表型,从而抑制自身免疫性炎症。从嗜铬细胞瘤/副神经节瘤患者分离的单核细胞,长期暴露于高儿茶酚胺水平可能对其功能、转录和表观遗传学具有很大影响[24]。再刺激后醛固酮通过盐皮质激素受体,可增加单核细胞来源的巨噬细胞中促炎因子、活性氧的产生。脂肪酸合成是诱导TI的关键途径,对该途径的药理抑制可削弱醛固酮诱导的TI[25]。持续性高胆固醇血症诱导单核细胞具有TI表型,造成个体患心血管疾病的风险增加,即便他汀类药物也不能逆转这种促炎症表型[26]。
-
1.7 各类受体激活剂
-
研究表明,先天免疫细胞通过激活模式识别受体(pattern recognition receptor,PRR)识别病原体相关分子模式后,其功能重编程可在随后的微生物接触时产生增强的非特异性抗菌反应[27-28]。肝脏X受体(liver X receptor,LXR)是胆固醇和脂肪酸稳态的关键调节因子,LXR激动剂的激活伴随着TI的特征,如激活炎症基因启动子上的组蛋白标记和代谢重编程,从而增加乳酸产生和降低耗氧率[29]。 CL429是一种嵌合Toll样受体(toll ⁃like receptors, TLR)⁃ 2/核苷酸寡聚化结构域(nucleotide binding oligomerization domain,NOD)⁃2激动剂,可模拟乳杆菌的调节作用,并减轻由先天免疫记忆引起的钩端螺旋体病的急性期反应[30]。波形蛋白是C型凝集素受体(Dectin⁃1)的内源性激活配体,有助于动脉粥样硬化中的脂质氧化和胆固醇积累。TLR4是激活天然免疫和细胞因子释放的关键受体,它是依赖高迁移率族蛋白B1(high mobility group box 1protein, HMGB1)激活巨噬细胞TNF释放所必需的。在同种异体移植排斥反应中,波形蛋白和HMGB1通过Dectin⁃1和TLR4激活的局部巨噬细胞可以驱动TI相关细胞因子的产生[31]。此外,虽然TLR10介导先天免疫与炎症抑制,但相关研究却显示其在BCG与 β葡聚糖训练中影响甚微[32]。
-
2 训练细胞
-
TI可发生于固有免疫细胞,如单核细胞/巨噬细胞、中性粒细胞、自然杀伤细胞(natural killer cell, NK)等和非免疫细胞,如成纤维细胞、内皮细胞等[33]。
-
2.1 吞噬细胞
-
专业吞噬细胞包括中性粒细胞、单核/巨噬细胞,通过PRR对入侵微生物进行识别和应答。已在包括单核[24]/巨噬细胞[34]、中性粒细胞[13] 的几种细胞群中研究先天免疫记忆特性,而初步观察表明,类似的特性也存在于其他类型细胞中,如先天淋巴样细胞(innate lymphoid cell,ILC)或多形核白细胞等。
-
2.2 NK细胞
-
已发表的数据表明NK细胞免疫记忆是复杂的。首先,与T、B细胞相似,NK细胞在遇到半抗原或病毒等刺激后可形成免疫记忆,从而产生抗原特异性记忆NK细胞[35]。其次,NK细胞可记忆炎性细胞因子环境,而这些环境会影响非抗原特异性NK细胞效应器的长期功能[36-37]。此外,最近研究表明NK细胞的记忆也受表观遗传变化的调控[38]。因此,NK细胞可表现为抗原依赖(在某些情况下抗原特异性)记忆,以及TI中所见的表观遗传重编程。
-
2.3 ILC
-
最近研究表明,ILC能够对再感染产生有效的记忆[39],而第二组天然淋巴样细胞(ILC2)是定义最明确的ILC,其虽不直接识别过敏原,但能被细胞因子(如IL⁃33)所激活[40],进而产生IL⁃5和IL⁃13。在过敏反应的背景下[41],ILC2以非特异性方式对过敏原产生免疫记忆,表现出与记忆T细胞相似的特征。因此,有研究者建议修改免疫记忆的定义,即记忆先前被激活的能力,并在重新激活时做出更有效的反应,而不考虑抗原的特异性。
-
2.4 非经典免疫细胞
-
TI不仅存在于先天免疫细胞,也存在于非经典免疫细胞中。目前研究最多的是造血干细胞维持免疫细胞的终身产生[10,42-43]。亦有报道骨髓间充质干细胞介导的免疫调节包括先天免疫系统和适应性免疫系统[44]。此外,上皮细胞[33,45] 及上皮干细胞[46] 的TI均有报道。
-
3 TI的机制
-
TI主要基于细胞的表观遗传和代谢重编程。相关研究探讨TI诱导背后的表观遗传学机制,以及不同细胞代谢物和代谢网络在TI诱导、调节和维持中的作用[5]。但要破译TI诱导背后的表观遗传机制,还需要先了解特定代谢物和代谢网络在该过程中的作用(图1)。
-
3.1 代谢重组机制
-
TI的诱导和维持涉及多种代谢途径,包括有氧糖酵解、谷氨酰胺分解、胆固醇代谢和脂肪酸合成[5,47],例如在人类巨噬细胞炎症驱动下,Dectin⁃1、蛋白激酶B(Akt)、mTOR和缺氧诱导因子(hypoxia inducible factor,HIF)⁃1α介导细胞从氧化磷酸化到有氧糖酵解的代谢转换(沃伯格效应)[2,48]。糖酵解的增加和三羧酸循环中间代谢物的积累,如富马酸盐和谷氨酸盐,形成β⁃葡聚糖诱导TI的代谢基础[3]。但当未成熟巨噬细胞经IGF⁃2训练后表现M2极化时,会发生氧化磷酸化偏向性进而产生抗炎作用[23]。除了葡萄糖代谢,胆固醇合成途径中几种关键酶的表达增加亦是诱导TI的先决条件[49],例如甲羟戊酸的积累上调了IGF⁃1R⁃mTOR途径和糖酵解的代谢转换[50]。除了熟知的代谢途径外,Ji等[51] 揭示了细胞内L⁃精氨酸⁃肌酸代谢对IFN⁃γ、IL⁃4介导的巨噬细胞活化中的重要影响。
-
图1 训练免疫的机制[6]
-
Fig.1 The mechanism of trained immunity[6]
-
3.2 表观遗传重编程机制
-
不同的代谢途径作为持续的能量来源和构建模块,为细胞表观遗传的主动重塑提供燃料,但也为改变染色质和基因组相应区域的结构提供必要的底物。表观遗传变化表现为组蛋白的化学修饰 (甲基化和乙酰化),导致染色质可及性增强,并使抗菌反应中的重要基因更易转录和改善细胞功能[52]。先天免疫细胞暴露于刺激(包括β⁃葡聚糖、BCG和白色念珠菌)下,显示了表观遗传标记的全基因组变化,包括组蛋白第3亚基4号赖氨酸的单甲基化 (histone H3 lysine 4 monomethylation,H3K4me1)、组蛋白第3亚基4号赖氨酸的三甲基化(histone H3 lysine 4 trimethylation,H3K4me3)和组蛋白第3亚基27号赖氨酸的乙酰化(histone H3 lysine 27 acetylation,H3K27ac)[3,5]。例如Set7通过在增强子的一个子集上写入一个持久的H3K4me1信号从而调节TI [5,53];H3K27ac在参与巨噬细胞M1激活的关键调节因子如Mir155的启动子和增强子中显著减少[54],而在一些基因(如Mecp2)中增强,已知其抑制巨噬细胞的炎症[23]。虽然这些只是部分反映了巨噬细胞极化与组织微环境相关的表型复杂性,在该组织微环境中,许多促炎和促稳态信号可能同时存在[55]。此外,研究发现一些长链非编码RNA在TI基因启动子上建立表观遗传标记的机制[56-57]。幼稚、效应和记忆性NK细胞具有不同的染色质可及性状态,由ATAC ⁃seq和H3K4me3染色质免疫沉淀和测序确定,这揭示了鼠巨细胞病毒感染后记忆性NK细胞阶段的“平衡”调节程序[39,58-59]。
-
4 TI在相关疾病中的进展
-
了解TI的特性将有助于更好地理解宿主防御机制和免疫介导疾病的发病机制,这一新兴科学领域的概念和机理进展将为疫苗接种以及疾病预防和治疗的临床应用开辟新的途径[3]。
-
4.1 炎症疾病
-
与100多年前“细菌感染时代”不同,如今,西方生活方式等引起的无菌性炎症反应诱导TI是慢性炎症疾病发展的基础[60]。在家族性高胆固醇血症患者中,单核细胞产生细胞因子的能力明显增强,其启动子上H3K4me3富集,即使降胆固醇他汀治疗3个月后仍存在[26]。严重冠状动脉粥样硬化患者的循环单核细胞在细胞因子产生能力、糖酵解代谢和组蛋白甲基化水平的表观遗传重编程方面亦表现训练免疫表型[33]。另一种由单核细胞来源诱导TI的临床无菌性炎症是器官移植,Braza等[31] 用特异性抑制髓样细胞mTOR的高密度脂蛋白纳米生物制剂进行短期治疗,能够防止有氧糖酵解和TI基础上的表观遗传修饰,从而提高了同种异体移植物的存活率。
-
4.2 神经系统疾病
-
在阿尔茨海默病小鼠模型中,外周炎性持续刺激可导致小胶质细胞的长期训练,并加剧了脑β⁃淀粉样变性[61],这是由于小胶质细胞的功能变化伴随着HIF1A基因位点的活化表观遗传变化。在另一种与全身炎症及痴呆相关的大脑小血管疾病的患者中[62],外周血来源的单核细胞显示出TI特征,例如在体外刺激后IL⁃6、IL⁃8的产生增加,这也与疾病的严重程度和进展有关[63]。综上表明慢性而非急性炎症状态,与TI以及其诱导神经炎症和神经退行性变有关。
-
4.3 新型冠状病毒肺炎
-
新型冠状病毒肺炎是一种新型呼吸道感染,可并发严重肺炎和急性呼吸窘迫综合征[64]。研究发现BCG能够增强先天免疫反应,有助于新型冠状病毒肺炎疫苗的研发[65]。事实上,目前正在荷兰、澳大利亚和希腊评估BCG接种人群的试验效果,美国、英国、法国等也计划进行其他试验。虽然免疫衰老可能会导致老年人接种后效果减弱,但最近一项研究表明,老年群体中很大程度上保留先天免疫功能,而适应性免疫反应(特别是IFN γ/IL⁃22的产生)缺乏。因此,通过全微生物疫苗诱导TI可能是降低SARS⁃CoV⁃2易感性和严重性的重要工具[16],但不建议在对照临床试验之外使用BCG治疗新型冠状病毒肺炎[66]。
-
5 结论及展望
-
本文阐述了TI的训练激活物、训练细胞、代谢和表观遗传重编程机制,以及在不同疾病方面的最新进展,但仍有许多问题和重要的研究方向需要继续探索,介导TI的分子机制需要更深入详细的研究。未来一个重要领域是利用TI诱导机制设计新一代疗法和疫苗,将经典适应性免疫记忆的诱导和TI相结合。此外,未来最关键的研究方向之一是探索TI对疾病的影响:一方面,TI如何促进免疫介导疾病的发病机制;另一方面,如何将TI作为治疗目标,利用TI在健康和疾病中发挥作用。
-
参考文献
-
[1] PALMIERI B,VADALA’M,PALMIERI L.Immune memory:an evolutionary perspective[J].Hum Vaccines Im⁃ munother,2021,17(6):1604-1606
-
[2] MULDER W J M,OCHANDO J,JOOSTEN L A B,et al.Therapeutic targeting of trained immunity[J].Nat Rev Drug Discov,2019,18(7):553-566
-
[3] NETEA M G,DOMÍNGUEZ ⁃ANDRÉS J,BARREIRO L B,et al.Defining trained immunity and its role in health and disease[J].Nat Rev Immunol,2020,20(6):375-388
-
[4] NETEA M G,JOOSTEN L A B.Trained immunity and local innate immune memory in the lung[J].Cell,2018,175(6):1463-1465
-
[5] FANUCCHI S,DOMÍNGUEZ⁃ANDRÉS J,JOOSTEN L A B,et al.The intersection of epigenetics and metabolism in trained immunity[J].Immunity,2021,54(1):32-43
-
[6] RIKSEN N P,NETEA M G.Immunometabolic control of trained immunity[J].Mol Aspects Med,2021,77:100897
-
[7] SEELEY J J,BAKER R G,MOHAMED G,et al.Induction of innate immune memory via microRNA targeting of chromatin remodelling factors[J].Nature,2018,559(7712):114-119
-
[8] NOVAKOVIC B,HABIBI E,WANG S Y,et al.Β⁃glucan reverses the epigenetic state of LPS⁃induced immunological tolerance[J].Cell,2016,167(5):1354-1368
-
[9] MITROULIS I,RUPPOVA K,WANG B,et al.Modulation of myelopoiesis progenitors is an integral component of trained immunity[J].Cell,2018,172(1/2):147-161.e12
-
[10] DE LAVAL B,MAURIZIO J,KANDALLA P K,et al.C/EBPβ ⁃ dependent epigenetic memory induces trained immunity in hematopoietic stem cells[J].Cell Stem Cell,2020,26(5):657-674
-
[11] SUN Y,ZUO T,CHEUNG C P,et al.Population⁃level con⁃ figurations of gut mycobiome across 6 ethnicities in urban and rural China[J].Gastroenterology,2021,160(1):272-286
-
[12] JIANG T T,SHAO T Y,ANG W X G,et al.Commensal fungi recapitulate the protective benefits of intestinal bacteria[J].Cell Host Microbe,2017,22(6):809-816
-
[13] KALAFATI L,KOURTZELIS I,SCHULTE ⁃ SCHREP⁃ PING J,et al.Innate immune training of granulopoiesis promotes anti ⁃ tumor activity[J].Cell,2020,183(3):771-785
-
[14] DOMÍNGUEZ ⁃ANDRÉS J,NOVAKOVIC B,LI Y,et al.The itaconate pathway is a central regulatory node linking innate immune tolerance and trained immunity[J].Cell Metab,2019,29(1):211-220
-
[15] ROY P,VEKEMANS J,CLARK A,et al.Potential effect of age of BCG vaccination on global paediatric tuberculosis mortality:a modelling study[J].Lancet Glob Health,2019,7(12):1655-1663
-
[16] NETEA M G,GIAMARELLOS ⁃ BOURBOULIS E J,DOMÍNGUEZ⁃ANDRÉS J,et al.Trained immunity:a tool for reducing susceptibility to and the severity of SARS ⁃ CoV⁃2 infection[J].Cell,2020,181(5):969-977
-
[17] O’NEILL L A J,NETEA M G.BCG⁃induced trained immunity:can it offer protection against COVID ⁃ 19?[J].Nat Rev Immunol,2020,20(6):335-337
-
[18] YORK A M.Tuberculosis stifles trained immunity[J].Nat Rev Microbiol,2021,19(1):2
-
[19] HONG M,BERTOLETTI A.Tolerance and immunity to pathogens in early life:insights from HBV infection[J].Semin Immunopathol,2017,39(6):643-652
-
[20] YANG Y,ZHAO X,WANG Z,et al.Nuclear sensor inter⁃ feron⁃inducible protein 16 inhibits the function of hepatitis B virus covalently closed circular DNA by integrating innate immune activation and epigenetic suppression[J].Hepatology,2020,71(4):1154-1169
-
[21] IERONYMAKI E,THEODORAKIS E M,LYRONI K,et al.Insulin resistance in macrophages alters their metabolism and promotes an M2⁃like phenotype[J].J Immunol,2019,202(6):1786-1797
-
[22] IERONYMAKI E,DASKALAKI M G,LYRONI K,et al.Insulin signaling and insulin resistance facilitate trained immunity in macrophages through metabolic and epigenetic changes[J].Front Immunol,2019,10:1330
-
[23] DU L,LIN L,LI Q,et al.IGF ⁃ 2 preprograms maturing macrophages to acquire oxidative phosphorylation⁃dependent anti ⁃inflammatory properties[J].Cell Metab,2019,29(6):1363-1375
-
[24] VAN DER HEIJDEN C D C C,GROH L,KEATING S T,et al.Catecholamines induce trained immunity in mono⁃ cytes in vitro and in vivo[J].Circ Res,2020,127(2):269-283
-
[25] VAN DER HEIJDEN C D C C,KEATING S T,GROH L,et al.Aldosterone induces trained immunity:the role of fatty acid synthesis[J].Cardiovasc Res,2020,116(2):317-328
-
[26] BEKKERING S,STIEKEMA L C A,BERNELOT MOENS S,et al.Treatment with statins does not revert trained immunity in patients with familial hypercholesterolemia[J].Cell Metab,2019,30(1):1-2
-
[27] DIVANGAHI M,AABY P,KHADER S A,et al.Trained immunity,tolerance,priming and differentiation:distinct immunological processes[J].Nat Immunol,2021,22(1):2-6
-
[28] SÁNCHEZ ⁃ RAMÓN S,CONEJERO L,NETEA M G,et al.Trained immunity⁃based vaccines:a new paradigm for the development of broad⁃spectrum anti⁃infectious formu⁃ lations[J].Front Immunol,2018,9:2936
-
[29] SOHRABI Y,SONNTAG G V H,BRAUN L C,et al.LXR activation induces a proinflammatory trained innate immunity⁃phenotype in human monocytes[J].Front Immunol,2020,11:353
-
[30] SANTECCHIA I,VERNEL ⁃ PAUILLAC F,RASID O,et al.Innate immune memory through TLR2 and NOD2 contributes to the control of Leptospira interrogans infection [J].PLoS Pathog,2019,15(5):1007811
-
[31] BRAZA M S,VAN LEENT M M T,LAMEIJER M,et al.Inhibiting inflammation with myeloid cell⁃specific nanobio⁃ logics promotes organ transplant acceptance[J].Immunity,2018,49(5):819-828
-
[32] MOURITS V P,ARTS R J W,NOVAKOVIC B,et al.The role of Toll ⁃like receptor 10 in modulation of trained immunity[J].Immunology,2020,159(3):289-297
-
[33] DRUMMER C,SAAOUD F,SHAO Y,et al.Trained im⁃ munity and reactivity of macrophages and endothelial cells [J].Arterioscler Thromb Vasc Biol,2021,41(3):1032-1046
-
[34] GAO R Y,WANG M,LIU Q,et al.Hypoxia⁃inducible factor ⁃ 2α reprograms liver macrophages to protect against acute liver injury through the production of interleukin ⁃6 [J].Hepatology,2020,71(6):2105-2117
-
[35] SHEPPARD S,SUN J.Virus ⁃ specific NK cell memory [J].J Exp Med,2021,218(4):e20201731.DOI:10.1084/jem.20201731
-
[36] GANG M,MARIN N D,WONG P,et al.CAR ⁃modified memory⁃like NK cells exhibit potent responses to NK⁃resistant lymphomas[J].Blood,2020,136(20):2308-2318
-
[37] CERWENKA A,LANIER L L.Natural killer cell memory in infection,inflammation and cancer[J].Nat Rev Immunol,2016,16(2):112-123
-
[38] BEAULIEU A M.Transcriptional and epigenetic regulation of memory NK cell responses[J].Immunol Rev,2021,300(1):125-133
-
[39] PLACEK K,SCHULTZE J L,NETEA M G.Immune memory characteristics of innate lymphoid cells[J].Curr Opin Infect Dis,2019,32(3):196-203
-
[40] MORAL J A,LEUNG J,ROJAS L A,et al.ILC2s amplify PD⁃1 blockade by activating tissue⁃specific cancer immunity[J].Nature,2020,579(7797):130-135
-
[41] KRABBENDAM L,BAL S M,SPITS H,et al.New in⁃sights into the function,development,and plasticity of type 2 innate lymphoid cells[J].Immunol Rev,2018,286(1):74-85
-
[42] KHAN N,DOWNEY J,SANZ J,et al.M.tuberculosis reprograms hematopoietic stem cells to limit myelopoiesis and impair trained immunity[J].Cell,2020,183(3):752-770
-
[43] BIRD L.Trained immunity by HSCs[J].Nat Rev Immunol,2020,20(5):276-277
-
[44] LIN T,PAJARINEN J,KOHNO Y,et al.Trained murine mesenchymal stem cells have anti⁃inflammatory effect on macrophages,but defective regulation on T⁃cell proliferation[J].FASEB J,2019,33(3):4203-4211
-
[45] LI X,FANG P,SUN Y,et al.Anti⁃inflammatory cytokines IL ⁃35 and IL ⁃10 block atherogenic lysophosphatidylcho⁃ line ⁃ induced,mitochondrial ROS ⁃ mediated innate im⁃ mune activation,but spare innate immune memory signature in endothelial cells[J].Redox Biol,2020,28:101373
-
[46] NAIK S,LARSEN S B,GOMEZ N C,et al.Inflammatory memory sensitizes skin epithelial stem cells to tissue damage[J].Nature,2017,550(7677):475-480
-
[47] JIA M,QIN D,ZHAO C,et al.Redox homeostasis maintained by GPX4 facilitates STING activation[J].Nat Immunol,2020,21(7):727-735
-
[48] LIU Y T,LIANG S,DING R,et al.BCG⁃induced trained immunity in macrophage:reprograming of glucose metabolism[J].Int Rev Immunol,2020,39(3):83-96
-
[49] BEKKERING S,ARTS R J W,NOVAKOVIC B,et al.Metabolic induction of trained immunity through the mevalonate pathway[J].Cell,2018,172(1/2):135-146
-
[50] SOHRABI Y,GODFREY R,FINDEISEN H M.Altered cellular metabolism drives trained immunity[J].Trends Endocrinol Metab,2018,29(9):602-605
-
[51] JI L,ZHAO X,ZHANG B,et al.Slc6a8⁃mediated creatine uptake and accumulation reprogram macrophage polarization via regulating cytokine responses[J].Immunity,2019,51(2):272-284
-
[52] TERCAN H,RIKSEN N P,JOOSTEN L A B,et al.Trained immunity:long ⁃ term adaptation in innate immune responses[J].Arterioscler Thromb Vasc Biol,2021,41(1):55-61
-
[53] KEATING S T,GROH L,VAN DER HEIJDEN C D C C,et al.The Set7 lysine methyltransferase regulates plasticity in oxidative phosphorylation necessary for trained immunity induced by β⁃ glucan[J].Cell Rep,2020,31(3):107548
-
[54] HSIN J P,LU Y,LOEB G B,et al.The effect of cellular context on miR⁃155⁃mediated gene regulation in four major immune cell types[J].Nat Immunol,2018,19(10):1137-1145
-
[55] RODRIGUEZ R M,SUAREZ⁃ALVAREZ B,LOPEZ⁃LAR⁃ REA C.Therapeutic epigenetic reprogramming of trained immunity in myeloid cells[J].Trends Immunol,2019,40(1):66-80
-
[56] DOMÍNGUEZ⁃ANDRÉS J,FANUCCHI S,JOOSTEN L A B,et al.Advances in understanding molecular regulation of innate immune memory[J].Curr Opin Cell Biol,2020,63:68-75
-
[57] FANUCCHI S,FOK E T,DALLA E,et al.Immune genes are primed for robust transcription by proximal long noncoding RNAs located in nuclear compartments[J].Nat Genet,2019,51(1):138-150
-
[58] LAU C M,ADAMS N M,GEARY C D,et al.Epigenetic control of innate and adaptive immune memory[J].Nat Immunol,2018,19(9):963-972
-
[59] ADAMS N M,LAU C M,FAN X,et al.Transcription factor IRF8 orchestrates the adaptive natural killer cell response[J].Immunity,2018,48(6):1172-1182
-
[60] CHRIST A,LATZ E.The Western lifestyle has lasting effects on metaflammation[J].Nat Rev Immunol,2019,19(5):267-268
-
[61] WENDELN A C,DEGENHARDT K,KAURANI L,et al.Innate immune memory in the brain shapes neurological disease hallmarks[J].Nature,2018,556(7701):332-338
-
[62] LOW A,MAK E,ROWE J B,et al.Inflammation and cerebral small vessel disease:a systematic review[J].Ageing Res Rev,2019,53:100916
-
[63] NOZ M P,TER TELGTE A,WIEGERTJES K,et al.Trained immunity characteristics are associated with progressive cerebral small vessel disease[J].Stroke,2018,49(12):2910-2917
-
[64] GEORGE P M,WELLS A U,JENKINS R G.Pulmonary fibrosis and COVID ⁃19:the potential role for antifibrotic therapy[J].Lancet Respir Med,2020,8(8):807-815
-
[65] GONZALEZ ⁃ PEREZ M,SANCHEZ ⁃ TARJUELO R,SHOR B,et al.The BCG vaccine for COVID⁃19:first verdict and future directions[J].Front Immunol,2021,12:632478
-
[66] MANTOVANI A,NETEA M G.Trained innate immunity,epigenetics,and covid ⁃19[J].N Engl J Med,2020,383(11):1078-1080
-
摘要
训练免疫(trained immunity,TI)是不依赖T、B细胞的,区别于传统固有免疫特征的一种记忆性固有免疫应答,在机体初次感染后对相同或不同病原体再次感染表现高反应性。训练免疫作为一种新兴的观点,具体机制涉及固有免疫、代谢及表观遗传之间的交互作用。基于此,本文总结了脂多糖(lipopolysaccharide,LPS)、卡介苗(bacille calmette⁃guerin,BCG)、激素等刺激对单核/巨噬细胞、自然杀伤细胞等先天免疫细胞以及非经典免疫细胞的表观遗传和代谢修饰的影响,并探讨了调节训练免疫在炎症、神经系统疾病以及新冠肺炎等方面的作用。
Abstract
Trained immunity(TI),independent of the T and B cells and distinct from the characteristic of traditional innate immune,is a memorial innate immune response. The organism can show increased responsiveness upon subsequent stimulation with the same or a different stimulus,well after the initial challenge. Trained immunity,as a new concept,involves the interaction of innate immune and the metabolic and epigenetic mechanisms. Based on this,this article summarized the effects of stimulation such as lipopolysaccharide(LPS),bacille calmette⁃guerin(BCG),and hormones on epigenetic and metabolic modifications of innate immune cells such as monocytes/macrophages,natural killer cells and non ⁃ classical immune cells,and explored the long ⁃ term vision of modulating training immunity in inflammation,nervous system diseases and COVID⁃19.