-
慢性阻塞性肺疾病(chronic obstractive pulmo⁃ nary disease,COPD)是最常见的呼吸系统疾病之一,因慢性持续性气道炎症、小气道病变、肺气肿及肺弹性减退最终导致不可逆气流受限和通气功能障碍[1]。该病是肺部慢性疾病死亡的主要原因之一,它不仅增加了患者痛苦,而且增加了其经济负担,世界卫生组织(World Health Organization,WHO)推测,至2030年COPD将成为全球死亡率第三的疾病[2-3]。长期以来,烟草烟雾及生物燃料燃烧造成的室内空气污染被认为是COPD发病的主要危险因素,气道内细菌的定植与感染则是COPD急性加重的主要诱发因素[4-6]。
-
近年来随着微生物菌群研究的不断深入,呼吸道及肠道菌群与COPD的关系也成为研究热点。运用经典培养技术检测后发现,健康人群下呼吸道及肺是无菌的,而COPD患者呼吸道则被条件致病菌定植[7]。然而,16S rRNA基因测序表明下呼吸道无论在健康还是患病状态下均存在着大量微生物群落。早期的基因测序研究主要针对肠道菌群,近来研究表明,呼吸道如同肠道一样也存在着大量定植菌,且因呼吸道和肠道是与外界直接相通的空腔脏器,有着共同的胚胎起源,故呼吸道和肠道之间存在“肠⁃肺”轴的内在联系[8-9]。甚至研究显示,在COPD不同表型中,呼吸道菌群存在不同特征,且肠道菌群与COPD发生发展、治疗也存在紧密联系。本文就近年来国内外关于COPD菌群特征的相关研究归纳总结,旨在为COPD的防治提供新思路。
-
1 16S rRNA基因测序技术在人体微生物组学中的应用
-
早在1990年人类基因组计划(human genome project,HGP)通过测序发现,人类基因组含有约2.6万个基因,人类体表(皮肤)及体内(消化道、口鼻、生殖道)拥有庞大的微生物群落,其总数达到人类自身细胞数的10~100倍[10]。作为HGP的延续, 2007年美国国立卫生研究院启动了人体微生物组计划(human microbiome project,HMP),分别对239例健康成人的5个身体部位(口、鼻、肠道、泌尿道及皮肤)样本,进行微生物组基因测序,基本明确了健康人群正常微生物组的组成及分布[11]。而随着研究的不断深入,人们发现,下呼吸道即使在健康状态下也存在着不同的细菌群落[12]。
-
传统细菌学诊断通常依赖于细菌培养,但阳性率低,16S rRNA基因测序则因其高灵敏性逐渐成为微生物的检测和鉴定的重要方法[13]。16S rRNA基因广泛存在于所有微生物中,具有高度保守性及特异性,包含10个恒定区和9个可变区(V1~V9),大规模的16S rRNA基因分析是基于V1~V3或V4~V5可变区进行测序,V1~V3区几乎可鉴定除部分肠杆菌科以外所有的细菌,V4~V5区具有较高的特异性[14]。对相应可变区采用聚合酶链式反应(polymerase chain reaction,PCR)进行扩增,运用Illumina、454焦磷酸测序等高通量技术在短时间内读取大量短核苷酸序列[15-16],使用微生物生态学定量解析(quantitative insight into microbial ecology,OIIME)工具包根据97%的序列相似度进行比对及聚类分析,从而得到一系列操作分类单元(operational taxonomic unit, OTU),并在不同微生物群落门、种、属层面按OTU对物种多样性及丰富度,如α多样性、β多样性进行鉴定与分析[17]。近年来,研究者运用这种快速敏感技术,对人体不同器官及不同疾病状态下微生物群落的特征进行分析,得到一些明确结论,对疾病的诊断起到重要作用。
-
2 呼吸道微生物菌群组成
-
2010年,Hilty等[18] 首次通过对健康人、哮喘患者和COPD患者的口咽、鼻咽及左上肺支气管黏膜刷检样本进行测序,发现健康人支气管树并不是无菌的。后续研究结果显示,健康下呼吸道高丰度菌群在门水平多为厚壁菌门(Firmicutes)、拟杆菌门 (Bacteroidertes)、变形菌门(Proteobacteria)、梭杆菌门(Fusobacteria)及放线菌门(Actinobacteria);而在属水平则多为链球菌(Streptococcus)、葡萄球菌 (Staphylococcus)、韦荣氏菌(Veillonella)、普雷沃氏菌(Prevotella)及嗜血杆菌(Hemophileae)[13,18-21]。这些细菌在健康人群呼吸道内定植与人体共生,发挥着免疫调节作用。呼吸道菌群疾病状态下与健康状态下存在明显差异,有研究通过对囊性肺纤维化 (cystic fibrosis,CF)患者痰液测序后发现:CF患者肺内厌氧菌(Anaerobe)、金黄色葡萄球菌(Staphylococcus aureus),铜绿假单胞菌(Pseudomonas aeruginosa) 菌群较健康者丰度显著增高[22-23]。Strachan[24] 则在1989年提出儿童期感染减少与哮喘的发生明显关联这一观点,从而开创了“卫生假说”这一理论。此后的研究发现,儿童期抗生素使用与哮喘发生呈正相关,表明哮喘的发生与微生物菌群的紊乱相关。研究显示,哮喘患者支气管肺泡灌洗液(bronchoal⁃ veolar lavage fluid,BALF)中变形菌门丰度明显增高,而拟杆菌门的丰度则显著下降[18,25]。
-
3 COPD患者呼吸道菌群的特征
-
3.1 COPD患者呼吸道微生物菌群种类及其多样性
-
通过对COPD患者呼吸道标本测序后发现,变形菌门、拟杆菌门、放线菌门和厚壁菌门等4种高丰度门,链球菌、普雷沃氏菌、莫拉菌(Moraxella)、嗜血杆菌、不动杆菌(Acinetobacter)、梭杆菌(Fusobacterium)和奈瑟菌(Neisseria)等7种高丰度属,占据总序列数的60%[26-27]。Hilty等[18] 将COPD患者的气道微生物多样性与健康对照组对比后发现,COPD患者较对照组气道内变形菌门丰度明显升高,尤其以嗜血杆菌属变化最为显著,而拟杆菌门,特别是其中的普氏菌属,丰度较对照组明显下降。
-
3.2 吸烟对COPD呼吸道内菌群的影响
-
吸烟是COPD气道慢性炎症的主要危险因素,导致了COPD的发生与发展,且戒烟后对气道的炎性损害可持续存在。烟草的暴露致使肺部先天性防御能力受损,上气道潜的在定植菌(potentially pathogenic microorganisms,PPM)通过呼吸的抽吸过程进入下呼吸道,引起气道上皮受损、诱发免疫细胞激活,此过程周而复始形成恶性循环,即“恶性循环假说”理论[28]。Sethi等[29] 通过对稳定期COPD戒烟者(戒烟>1年)、健康戒烟者(既往吸烟目前已戒烟>1年)及健康非吸烟者(既往从未吸烟)的BALF检测后发现:34.6%(9/26)COPD患者,0%(0/20)的健康戒烟者及6.7%(1/15)非吸烟者存在PPM,如流感嗜血杆菌(占比26.9%),COPD组的中性粒细胞量、白介素⁃8(interleukin⁃8,IL⁃8)和金属蛋白酶⁃9 (metalloproteinase ⁃ 9,MMP ⁃ 9)水平显著增加,且COPD组BALF中的内毒素水平明显高于另外两组,仅COPD组可见PPM,该研究结果表明香烟烟雾是导致COPD发病及气道内致病菌群定植的一个独立的危险因素,且戒烟后可持续存在。Wang等[30] 对COPD目前吸烟、COPD已戒烟及健康对照组的吸烟、未吸烟状态下的痰液菌群研究后发现,健康吸烟组较COPD吸烟组患者气道中的变形菌门,嗜血杆菌属丰度明显增高;有趣的是,COPD吸烟组较COPD已戒烟组气道内变形菌门、嗜血杆菌属反而显著下降,从而验证了“吸烟导致COPD气道炎症和菌群紊乱,且戒烟不能逆转该进程”这一观点,符合“恶性循环假说”理论。
-
3.3 COPD急性加重期菌群变化
-
COPD患者呼吸道菌群不仅与正常人群存在差异,而且即使同一患者,其急性加重前后微生物群落也有不同。Wang等[27] 研究发现,在急性加重期呼吸道菌群较稳定期有显著变化,急性加重期菌群多样性降低,变形菌门尤以嗜血杆菌、莫氏菌丰度增加,厚壁菌门中葡萄球菌显著下降。Sun等[31] 在研究了15例COPD患者急性加重D1(加重期)、D7及D14 (缓解期)气道分泌液的菌群后,得出与Wang等[27] 类似的结果,加重期较缓解期莫氏菌丰度增加了5%,嗜血杆菌增加3.0%,链球菌则减少3.8%;Molyneaux等[32] 研究发现,COPD患者感染鼻病毒(rhinovirus) 后其致病流感嗜血杆菌丰度显著增加。这些研究表明,COPD急性加重在很大程度上与微生物多样性降低及变形菌比例的增加有关。
-
由上述可见,COPD患者是无论稳定期还是急性加重期,抑或吸烟,均可见下呼吸道以变形菌门尤其是嗜血杆菌增加为主。因此有理由推测,嗜血杆菌可能系COPD患者呼吸道的“关键物种”,其在扰乱呼吸道微生物生态系统,使之进入失调状态,引发气道促炎反应中发挥关键作用[33]。因此,针对变形菌门嗜血杆菌属进行适当干预可能是COPD防治的一个潜在选择。
-
3.4 药物治疗对COPD呼吸道菌群的影响
-
糖皮质激素及抗生素治疗是COPD急性加重期治疗过程中最常用的药物。相关研究表明,这两类药物的应用可改变COPD患者下呼吸道的菌群。接受糖皮质激素治疗的COPD患者下呼吸道菌群α多样性下降,嗜血杆菌和莫拉菌丰度增加,链球菌属丰度下降,而抗生素的使用则可观察到与上述相反的结果[27]。
-
微生物群落由多种微生物物种组成,各物种间既需要争夺空间和资源,又需要相互协同相互作用,这种现象可用“关键物种”假说来解释:即相对较低的细菌丰度的微小变化,也可能对其微生物群落组成结构产生较大影响,从而改变机体的疾病状态,似有“牵一发而动全身”的现象[34]。
-
4 肠道微生物菌群对COPD的影响及治疗价值
-
HMP表明人类肠道中有1×1014~1×1015个微生物,其细菌种类达1 000多种[11]。在门水平上,高丰度菌门主要为厚壁菌门、拟杆菌门、变形菌门和放线菌门,其中厚壁菌门和拟杆菌门占所有菌门的90%;在属水平上,最常见菌为双歧杆菌(Bifdobacterium),拟杆菌属,乳杆菌(Lactobacillus),肠球菌(Enterococcus),链球菌和柔嫩梭菌(Faecalibacterium),其核心菌门与下呼吸道核心菌门相似[35-36]。
-
根据与宿主的关系肠道菌群可分为共生菌、条件致病菌和病原菌。其中,共生菌能刺激并提高身体的免疫机能,共生菌中的乳杆菌、拟杆菌、双歧杆菌、梭状芽胞杆菌(Clostridium)等可将膳食纤维发酵成短链脂肪酸(short chain fatty acid,SCFA),这些SCFA包括乙酸、丙酸、丁酸、戊酸等有机酸,它们在调节肠道及呼吸道微生物菌群平衡和机体免疫中发挥着重要作用[37-39]。近年来提出的“肠⁃肺”轴理论表明,呼吸道与肠道间存在病理生理的相互作用[40]。有研究表明,COPD患者肠道通透性较健康人群高,而肠道高通透性可引起细菌或其产物移位从而导致相应组织部位的炎症,肠道菌群代谢产物三聚氰胺⁃ N ⁃氧化物(trimethylamine ⁃ N ⁃ oxide,TMAO)与COPD患者的远期病死率增加有关;另有研究显示,肠道益生菌对常见呼吸系统疾病,如支气管哮喘、 COPD、CF及肺癌等有干预和治疗效应[41-43]。且不同人群可因吸烟、饮食、抗生素等多种因素影响着其肠道菌群的组成。
-
4.1 香烟烟雾的影响
-
有文献复习了2000—2016年有关吸烟对肠道微生物菌群影响的相关文献,发现吸烟可导致肠道放线菌门、厚壁菌门中双歧杆菌属和乳球菌属减少,变形菌门和拟杆菌门中梭状芽孢杆菌属、拟杆菌属和普氏杆菌属增加,而戒烟后厚壁菌门和放线菌门数量增加,拟杆菌门和变形杆菌门数量减少,微生物多样性增加[44-45]。动物模型研究证实,暴露于香烟烟雾后,小鼠肠道中SCFA水平显著降低,双歧杆菌、乳杆菌、瘤胃球菌(Ruminococcus)和分段丝状杆菌 (Segmental filamentous bacilli,SFB)数量减少[46-47]。
-
如前所述,吸烟是COPD发病的主要危险因素,吸烟患者下呼吸道菌群发生紊乱,其核心菌门的变化与患者肠道菌群变化方向一致。表明吸烟引起COPD发生风险的增高与香烟烟雾导致肠道菌群紊乱密切相关。由于目前缺乏吸烟对COPD呼吸道及肠道菌群的大规模对照研究,下呼吸道与肠道菌群改变的先后次序尚难确定。
-
4.2 饮食的影响
-
饮食结构在调节和维持机体肠道菌群稳态方面发挥关键作用。食物的类型塑造了肠道菌群的组成及丰度,影响宿主与微生物的相互作用[48]。富含水果、豆类纤维、碳水化合物的高膳食饮食,可增加肠道菌群多样性及普氏菌属的丰度,降低拟杆菌属的丰度,膳食纤维还可被肠道菌群发酵产生SCFA,对肠道及全身的免疫起正性调节作用[37];相反,高脂肪、高蛋白质、高糖的低纤维膳食可降低肠道菌群的多样性,减少厚壁菌门,增加变形菌门及拟杆菌门的丰度[49]。
-
Shaheen等[50] 在研究了2 800余人饮食模式与肺功能关系后发现,长期高膳食纤维饮食(水果、蔬菜、全麦谷物)与1s用力呼气容积/用力肺活量 (forced expiratory volume in one second/forced vital capacity,FEV1/FVC)及1s用力呼气容积占预计值之比(FEV1%pred)呈正相关,对预防肺功能受损和COPD发生发展,尤其对男性吸烟者的肺功能保护有积极意义。Szmidt等[51] 研究表明,≥26.5g/d的高膳食纤维、≥16.3g/d的富含谷类食物及≥7.6g/d水果纤维的摄入可使COPD发生风险减少30%。
-
显然,增加膳食纤维,减少脂肪、糖类的摄入可以改善肠道菌群紊乱,增加有益肠道菌群丰度及SCFA的产生,从而有利于调节远处器官⁃呼吸系统的免疫功能,降低COPD的发生率、减少肺功能受损的机率。
-
4.3 益生菌的影响
-
“益生菌”概念首见于1960年,目前得到广泛应用的包括双歧杆菌和乳酸杆菌。益生菌可耐受胃酸及胆汁,通过在肠道上皮细胞的附着,参与肠道菌群的稳定调控。益生菌起初主要用于治疗抗生素性相关性的肠道菌群紊乱,后来研究者发现它对克罗恩病、溃疡性结肠炎、肠易激惹综合征等肠道疾病中也能发挥明显效应[52]。
-
近年来越来越多的研究表明,益生菌在治疗COPD的急性加重过程中能起到积极作用。文献报道在COPD模型上观察到,鼠李糖乳杆菌(Lactoba⁃ cillusrhamnosus)及双歧杆菌可显著降低中性粒细胞和巨噬细胞向炎性组织迁移,减轻肺组织的病理损伤,从而降低炎症因子的产生及肺组织的结构重塑[53-55]。另有研究发现,口服乳酸杆菌或双歧杆菌能诱导肺组织中抗炎因子mRNA的表达上调,增加血清中CD4+ CD25+ Foxp3+ Treg细胞的总数和百分率[56-57]。
-
5 COPD肺部免疫与肠道菌群的关系
-
COPD的发生与Treg/TH17细胞免疫失衡相关,白介素⁃10(interleukin⁃10,IL⁃10)、转化生长因子⁃β (transforming growth factor⁃β,TGF⁃β)等细胞因子可促进Foxp3表达,诱导CD4+ T细胞向Treg细胞分化,使之成为CD4+ CD25+ Foxp3+ Treg细胞,抑制免疫反应;另一方面,白介素⁃6(interleukin⁃6,IL⁃6)则可完全抑制TGF⁃β诱导的Foxp3+ Treg细胞的生成,诱导CD4+ T细胞向Th17细胞分化及IL⁃17分泌,增加中性粒细胞、巨噬细胞的招募,从而促进气道黏液分泌,引起气道高反应[58-60]。肠道作为人体免疫系统的重要组成部分,参与肠道自身及远处器官免疫功能的调节,而肠相关淋巴组织(gut⁃associated lymphoid tissue,GALT)在维持肺部免疫调节功能方面起着重要作用。GALT分为上皮层和固有层,固有层分泌T细胞,肠道菌群在CD8+ T细胞向CD4+ T细胞转化以及维持健康状态的肠固有层Th17/TregT稳态扮演着重要角色[61-63]。研究发现,香烟烟雾暴露可促进与Th17细胞分化相关的趋化因子表达上调,而肠道益生菌既能下调Th17的免疫反应能力,又能通过SCFA的增加来提高Treg细胞的数量及功能,从而在抑制COPD的炎症反应方面发挥特有效应[39,64-65]。此外,GALT上皮层细胞含有Toll样受体 (toll like receptor,TLR)及核苷酸结合寡结构域蛋白2 (nucleotide binding oligo domain protein 2,NOD2)等模式识别受体(pattern recognition receptoers,PRR), TLR在固有免疫中起着至关重要的作用。业已证实益生菌含有TLR配体,参与固有免疫系统的激活,补充益生菌可增强机体固有免疫能力,从而对呼吸道感染发挥抑制效应[61,66-68]。
-
6 总结
-
综上所述,COPD患者呼吸道及肠道菌群多样性下降,有益菌群减少,致病性变形菌门增多;香烟烟雾暴露影响了肺部免疫,降低呼吸道、肠道菌群多样性及有益菌群丰度,抑制SCFA的产生;减少香烟烟雾暴露可减少COPD发病,改善预后。高膳食纤维饮食及肠道益生菌制剂(如乳杆菌、双歧杆菌) 有利于促进宿主免疫反应提高,在抑制呼吸道感染、减轻COPD炎症方面发挥积极效应。随着分子检测技术的不断成熟和生物信息学手段的日臻完善,有关COPD菌群特征的相关研究将会越来越深入。减少COPD患者下呼吸道“关键物种”病原菌、增加膳食纤维及肠道益生菌的摄入有利于改善呼吸系统免疫功能,这已成为一个新兴的临床研究视角,必将为COPD的治疗带来新的思路。
-
参考文献
-
[1] DEVADOSS D,LONG C,LANGLEY R J,et al.Long non⁃ coding transcriptome in chronic obstructive pulmonary disease[J].Am J Respir Cell Mol Biol,2019,61(6):678-688
-
[2] EHTESHAMI ⁃AFSHAR S,FITZGERALD J M,DOYLE ⁃ WATERS M M,et al.The global economic burden of asthma and chronic obstructive pulmonary disease[J].Int J Tuberc Lung Dis,2016,20(1):11-23
-
[3] SANA A,MEDA N,KAFANDO B,et al.Prevalence of COPD among women and relation with cooking fuel choice in ouagadougou,burkina faso[J].Int J Tuberc Lung Dis,2020,24(9):928-933
-
[4] OLLOQUEQUI J,SILVA O R.Biomass smoke as a risk factor for chronic obstructive pulmonary disease:effects on innate immunity[J].Innate Immun,2016,22(5):373-381
-
[5] PATHAK U,GUPTA N C,SURI J C.Risk of COPD due to indoor air pollution from biomass cooking fuel:a systematic review and meta ⁃ analysis[J].Int J Environ Health Res,2020,30(1):75-88
-
[6] LEUNG J M,TIEW P Y,MAC A M,et al.The role of acute and chronic respiratory colonization and infections in the pathogenesis of COPD[J].Respirology,2017,22(4):634-650
-
[7] KAHN F W,JONES J M.Diagnosing bacterial respiratory infection by bronchoalveolar lavage[J].J Infect Dis,1987,155(5):862-869
-
[8] GARCIA ⁃ CLEMENTE M,DE LA ROSA D,MAIZ L,et al.Impact of pseudomonas aeruginosa infection on patients with chronic inflammatory airway diseases[J].J Clin Med,2020,9(12):3800
-
[9] BUDDEN K F,GELLATLY S L,WOOD D L,et al.Emerging pathogenic links between microbiota and the gut⁃lung axis[J].Nat Rev Microbiol,2017,15(1):55-63
-
[10] GILL S R,POP M,DEBOY R T,et al.Metagenomic analysis of the human distal gut microbiome[J].Science,2006,312(5778):1355-1359
-
[11] TURNBAUGH P J,LEY R E,HAMADY M,et al.The human microbiome project[J].Nature,2007,449(7164):804-810
-
[12] DICKSON R P,ERB ⁃ DOWNWARD J R,FREEMAN C M,et al.Bacterial topography of the healthy human lower respiratory tract[J].mBio,2017,8(1):e02287-16
-
[13] BADOR J,NICOLAS B,CHAPUIS A,et al.16S rRNA PCR on clinical specimens:impact on diagnosis and ther⁃ apeutic management[J].Med Mal Infect,2020,50(1):63-73
-
[14] MENDEZ R,BANERJEE S,BHATTACHARYA S K,et al.Lung inflammation and disease:a perspective on microbial homeostasis and metabolism[J].IUBMB Life,2019,71(2):152-165
-
[15] LEE S W,KUAN C S,WU L S,et al.Metagenome and metatranscriptome profiling of moderate and severe COPD sputum in taiwanese han males[J].PLoS One,2016,11(7):e159066
-
[16] ALLALI I,ARNOLD J W,ROACH J,et al.A comparison of sequencing platforms and bioinformatics pipelines for compositional analysis of the gut microbiome[J].BMC Microbiol,2017,17(1):194
-
[17] WADE W G,PROSDOCIMI E M.Profiling of oral bacteri⁃ al communities[J].J Dent Res,2020,99(6):621-629
-
[18] HILTY M,BURKE C,PEDRO H,et al.Disordered microbial communities in asthmatic airways[J].PLoS One,2010,5(1):e8578
-
[19] LI X,SUN Y,AN Y,et al.Air pollution during the winter period and respiratory tract microbial imbalance in a healthy young population in Northeastern China[J].Environ Pollut,2019,246:972-979
-
[20] LEE S Y,MAC A M,FAM K D,et al.Airway microbiome composition correlates with lung function and arterial stiffness in an age⁃dependent manner[J].PLoS One,2019,14(11):e225636
-
[21] MORRIS A,BECK J M,SCHLOSS P D,et al.Comparison of the respiratory microbiome in healthy nonsmokers and smokers[J].Am J Respir Crit Care Med,2013,187(10):1067-1075
-
[22] SHERRARD L J,BELL S C,TUNNEY M M.The role of anaerobic bacteria in the cystic fibrosis airway[J].Curr Opin Pulm Med,2016,22(6):637-643
-
[23] PIENKOWSKA K,WIEHLMANN L,TUMMLER B.Metagenome ⁃ inferred bacterial replication rates in cystic fibrosis airways[J].J Cyst Fibros,2019,18(5):653-656
-
[24] STRACHAN D P.Hay fever,hygiene,and household size [J].BMJ,1989,299(6710):1259-1260
-
[25] HUFNAGL K,PALI ⁃ SCHOLL I,ROTH ⁃WALTER F,et al.Dysbiosis of the gut and lung microbiome has a role in asthma[J].Semin Immunopathol,2020,42(1):75-93
-
[26] LEITEN E O,NIELSEN R,WIKER H G,et al.The airway microbiota and exacerbations of COPD[J].ERJ Open Res,2020,6(3):168-202
-
[27] WANG Z,BAFADHEL M,HALDAR K,et al.Lung micro⁃ biome dynamics in COPD exacerbations[J].Eur Respir J,2016,47(4):1082-1092
-
[28] TORALDO D M,CONTE L.Influence of the lung microbiota dysbiosis in chronic obstructive pulmonary disease ex⁃ acerbations:the controversial use of corticosteroid and antibiotic treatments and the role of eosinophils as a disease marker[J].J Clin Med Res,2019,11(10):667-675
-
[29] SETHI S,MALONEY J,GROVE L,et al.Airway inflam⁃ mation and bronchial bacterial colonization in chronic obstructive pulmonary disease[J].Am J Respir Crit Care Med,2006,173(9):991-998
-
[30] WANG Z,MASCHERA B,LEA S,et al.Airway host⁃microbiome interactions in chronic obstructive pulmonary disease[J].Respir Res,2019,20(1):113
-
[31] SUN Z,ZHU Q L,SHEN Y,et al.Dynamic changes of gut and lung microorganisms during chronic obstructive pulmonary disease exacerbations[J].Kaohsiung J Med Sci,2020,36(2):107-113
-
[32] MOLYNEAUX P L,MALLIA P,COX M J,et al.Out⁃ growth of the bacterial airway microbiome after rhinovirus exacerbation of chronic obstructive pulmonary disease[J].Am J Respir Crit Care Med,2013,188(10):1224-1231
-
[33] FISHER C K,MEHTA P.Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression[J].PLoS One,2014,9(7):e102451
-
[34] KIM S,JAZWINSKI S M.The gut microbiota and healthy aging:a mini⁃review[J].Gerontology,2018,64(6):513-520
-
[35] 朱许萍,李艳瑜,许岚.肠道菌群与多囊卵巢综合征代谢异常关系研究进展[J].南京医科大学学报(自然科学版),2020,40(12):1885-1889
-
[36] HUANG C,SHI G.Smoking and microbiome in oral,airway,gut and some systemic diseases[J].J Transl Med,2019,17(1):225
-
[37] MORRISON D J,PRESTON T.Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism[J].Gut Microbes,2016,7(3):189-200
-
[38] LLOYD⁃PRICE J,ABU⁃ALI G,HUTTENHOWER C.The healthy human microbiome[J].Genome Med,2016,8(1):51
-
[39] RATAJCZAK W,RYL A,MIZERSKI A,et al.Immuno⁃ modulatory potential of gut microbiome ⁃ derived short ⁃ chain fatty acids(SCFAs)[J].Acta Biochim Pol,2019,66(1):1-12
-
[40] DANG A T,MARSLAND B J.Microbes,metabolites,and the gut ⁃ lung axis[J].Mucosal Immunol,2019,12(4):843-850
-
[41] DENG L,YAN J,XU H,et al.Prediction of exacerbation frequency of AECOPD based on next⁃generation sequencing and its relationship with imbalance of lung and gut microbiota:a protocol of a prospective cohort study[J].BMJ Open,2021,11(9):e47202
-
[42] OTTIGER M,NICKLER M,STEUER C,et al.Gut,micro⁃ biota ⁃ dependent trimethylamine ⁃ N ⁃ oxide is associated with long⁃term all⁃cause mortality in patients with exacer⁃ bated chronic obstructive pulmonary disease[J].Nutri⁃ tion,2018,45:135-141
-
[43] CHUNXI L,HAIYUE L,YANXIA L,et al.The gut micro⁃ biota and respiratory diseases:new evidence[J].J Immunol Res,2020,2020:2340670
-
[44] SAVIN Z,KIVITY S,YONATH H,et al.Smoking and the intestinal microbiome[J].Arch Microbiol,2018,200(5):677-684
-
[45] SUBLETTE M G,CROSS T L,KORCARZ C E,et al.Effects of smoking and smoking cessation on the intestinal microbiota[J].J Clin Med,2020,9(9):2963
-
[46] LIN R,ZHANG Y,CHEN L,et al.The effects of cigarettes and alcohol on intestinal microbiota in healthy men [J].J Microbiol,2020,58(11):926-937
-
[47] ISHAQ H M,SHAHZAD M,WU X,et al.Molecular char⁃ acterization of fecal microbiota of healthy Chinese tobacco smoker subjects in Shaanxi province,Xi’an China[J].J Ayub Med Coll Abbottabad,2017,29(1):3-7
-
[48] ZMORA N,SUEZ J,ELINAV E.You are what you eat:diet,health and the gut microbiota[J].Nat Rev Gastroenterol Hepatol,2019,16(1):35-56
-
[49] MAKKI K,DEEHAN E C,WALTER J,et al.The impact of dietary fiber on gut microbiota in host health and dis⁃ease[J].Cell Host Microbe,2018,23(6):705-715
-
[50] SHAHEEN S O,JAMESON K A,SYDDALL H E,et al.The relationship of dietary patterns with adult lung function and COPD[J].Eur Respir J,2010,36(2):277-284
-
[51] SZMIDT M K,KALUZA J,HARRIS H R,et al.Long⁃term dietary fiber intake and risk of chronic obstructive pulmonary disease:a prospective cohort study of women[J].Eur J Nutr,2020,59(5):1869-1879
-
[52] AMER M,NADEEM M,NAZIR S,et al.Probiotics and their use in inflammatory bowel disease[J].Altern Ther Health Med,2018,24(3):16-23
-
[53] CARVALHO J L,MIRANDA M,FIALHO A K,et al.Oral feeding with probiotic Lactobacillus rhamnosus attenuates cigarette smoke ⁃ induced COPD in C57Bl/6 mice:relevance to inflammatory markers in human bronchial epithelial cells[J].PLoS One,2020,15(4):e225560
-
[54] PHAM M T,YANG A J,KAO M S,et al.Gut probiotic lactobacillus rhamnosus attenuates PDE4B ⁃ mediated inter⁃ leukin⁃6 induced by SARS⁃CoV⁃2 membrane glycoprotein [J].J Nutr Biochem,2021,98:108821
-
[55] MORTAZ E,ADCOCK I M,RICCIARDOLO F L,et al.Anti ⁃inflammatory effects of Lactobacillus rahmnosus and bifidobacterium breve on cigarette smoke activated human macrophages[J].PLoS One,2015,10(8):e136455
-
[56] YODA K,HE F,MIYAZAWA K,et al.Orally adminis⁃ tered heat⁃killed Lactobacillus gasseri TMC0356 alters respiratory immune responses and intestinal microbiota of diet⁃induced obese mice[J].J Appl Microbiol,2012,113(1):155-162
-
[57] 邱新运,赵小静,毛夏琼,等.长双歧杆菌对克罗恩病患者外周血单核细胞 IL ⁃ 10、IL ⁃ 12、TGF ⁃β分泌以及 CD25+Foxp3+Treg细胞分化的影响[J].南京医科大学学报(自然科学版),2020,40(8):1156-1162
-
[58] LANE N,ROBINS R A,CORNE J,et al.Regulation in chronic obstructive pulmonary disease:the role of regulatory T ⁃ cells and Th17 cells[J].Clin Sci(Lond),2010,119(2):75-86
-
[59] BETTELLI E,CARRIER Y,GAO W,et al.Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells[J].Nature,2006,441(7090):235-238
-
[60] 陈菲菲,毛山,史莹,等.花姜酮对小鼠 CD4~ + CD25~+Treg 细胞分化功能的影响及机制[J].南京医科大学学报(自然科学版),2019,39(2):205-209
-
[61] SHI N,LI N,DUAN X,et al.Interaction between the gut microbiome and mucosal immune system[J].Mil Med Res,2017,4:14
-
[62] HE Y,WEN Q,YAO F,et al.Gut⁃lung axis:the microbial contributions and clinical implications[J].Crit Rev Microbiol,2017,43(1):81-95
-
[63] IVANOV I I,FRUTOS R L,MANEL N,et al.Specific microbiota direct the differentiation of IL ⁃ 17⁃ producing T ⁃ helper cells in the mucosa of the small intestine[J].Cell Host Microbe,2008,4(4):337-349
-
[64] BASKARA I,KERBRAT S,DAGOUASSAT M,et al.Cigarette smoking induces human CCR6(+)Th17 lymphocytes senescence and VEGF ⁃ A secretion[J].Sci Rep,2020,10(1):6488
-
[65] MORTAZ E,ADCOCK I M,FOLKERTS G,et al.Probiotics in the management of lung diseases[J].Mediators Inflamm,2013,2013:751068
-
[66] TARTEY S,TAKEUCHI O.Pathogen recognition and Toll ⁃like receptor targeted therapeutics in innate immune cells [J].Int Rev Immunol,2017,36(2):57-73
-
[67] MALDONADO G C,CAZORLA S I,LEMME D J,et al.Beneficial effects of probiotic consumption on the immune system[J].Ann Nutr Metab,2019,74(2):115-124
-
[68] ESLAMI M,BAHAR A,KEIKHA M,et al.Probiotics function and modulation of the immune system in allergic diseases[J].Allergol Immunopathol(Madr),2020,48(6):771-788
-
摘要
慢性阻塞性肺疾病(chronic obstractive pulmonary disease,COPD)是常见的肺部慢性疾病,相关发病机制尚未完全明确。近年来,呼吸道及肠道菌群在COPD的发病及治疗中所发挥的作用引起广泛关注。本文就不同表型COPD患者呼吸道菌群种属分布情况及其丰度、肠道菌群对COPD发病机制的影响等相关文献进行复习,旨在为拓展对COPD发病机制的认识,加深有关肠⁃肺轴对COPD发病影响的了解,探讨COPD的新型防治策略提供思路。
Abstract
Chronic obstructive pulmonary disease(COPD)is a common chronic lung disease,and the related pathogenesis has not been fully clarified. In recent years,the role of respiratory tract and gut microbiota in the pathogenesis and treatment of COPD has been attracted extensive attention worldwide. This article reviews related literatures on the distribution and abundance of respiratory tract microbiota in COPD patients,and the influence of gut microbiota on the pathogenesis of COPD,in order to expand the understanding of the pathogenesis of COPD and the influence of intestinal⁃pulmonary axis on the pathogenesis of COPD,and provide ideas for exploring new prevention and treatment strategies for COPD.
关键词
呼吸道菌群 ; 肠道菌群 ; 慢性阻塞性肺疾病 ; 16S rRNA基因测序
Keywords
respiratory tract microbiota ; gut microbiota ; COPD ; 16S rRNA gene sequencing