-
自身免疫性胃炎(autoimmune gastritis,AIG)是一种由CD4+ T细胞介导的免疫性疾病,以胃底胃体黏膜萎缩以及血清存在壁细胞抗体和内因子抗体为特点,后期可引起维生素B12缺乏和恶性贫血。近年来AIG的发病率呈逐年升高趋势,我国的1项回顾性研究表明AIG每年的检出率为0.9%[1],中欧的1项横断面研究发现1 123例接受胃活检的患者中, 2.3%被诊断为AIG[2],这可能与人们对本病的认识和自身抗体检测水平提高有关。但AIG的病因和发病机制至今未明,可能与遗传易感性、幽门螺杆菌(Helicobactor pylori,Hp)感染及免疫紊乱相关,文章对近年来AIG发病机制的新进展进行简要综述。
-
1 遗传易感性
-
AIG可能是具有一定遗传易感性的个体在感染、环境等多种因素的作用下,机体免疫功能失调而导致的疾病。目前关于AIG的遗传易感性的研究主要集中在基因多态性研究上,基因多态性是指两种或两种以上的基因型同时存在于某一人群中。遗传易感性与人类6号染色体上的主要组织相容性复合体(major histocompatibility complex,MHC)基因有关,人类MHC基因可表达3种MHC⁃Ⅱ蛋白:人类白细胞抗原(human leukocyte antigen,HLA)⁃ DR、 HLA⁃DQ和HLA⁃DP。在HLA⁃DQ和HLA⁃DP的α链中存在一定程度的多态性,可与MHC结合协助抗原提呈细胞提呈自身抗原并被CD4+ T细胞识别[3]。AIG可能与HLA⁃DQB1* 03、HLA⁃DRB1* 04等相关,芬兰的1项研究发现,AIG患者携带HLA ⁃ DRB1* 04 (58%)和HLA⁃DQB1* 03(83%)的频率明显高于一般人群(分别为28%和51%),但没有1例携带HLA⁃B8、 HLA ⁃DRB1* 03等常见的自身免疫标志物,因此, HLA⁃DRB1* 04和HLA⁃DQB1* 03可能是AIG的易感基因,且AIG的遗传特征或许不同于许多经典的自身免疫疾病[4],但是意大利的1项研究却显示AIG患者的HLA ⁃ DRB1* 03(28.1%)和HLA ⁃ DRB1* 04 (25.8%)的患病率均高于对照组近2倍(15.9%和14.4%)[5],此外,英国1项研究发现,抗质子泵腺苷三磷酸酶(H+ ⁃K+ ⁃ATPase)自身抗体与DR3⁃DQ2、 DRB1* 0404(男性)和DR3⁃DQ2/DR4⁃DQ8(女性)相关[6]。可见,HLA分子尤其是HLA⁃DR基因位点的多态性在AIG遗传背景中起主要作用。以上各项研究结果间有差异,原因可能为研究样本人群来源于不同地域和种族,以及样本量不同等,随着研究的深入,这些基因的作用会逐渐被阐明,为AIG发病机制的研究提供更多证据。
-
2 免疫分子机制
-
2.1 自身抗体诱导AIG的发生
-
AIG的显著特征是位于壁细胞上的H+ ⁃K+ ⁃ATP酶作为自身抗原被CD4+ T细胞识别,血清中产生壁细胞抗体和内因子抗体,胃底及胃体出现病理性炎症损伤及黏膜萎缩。已有研究表明外源蛋白与自身抗原之间可通过分子模拟机制产生免疫交叉反应,最终生成病理性抗体参与AIG的发病[7],自身抗体通过抗体依赖细胞介导的细胞毒性作用改变靶细胞功能从而损伤胃黏膜,胃黏膜受损后产生初始化生应答,壁细胞受损后,黏液细胞合成分泌的解痉多肽产生化生,即解痉多肽表达化生(spasmolytic polypeptide expressing metaplasia,SPEM)。TxA23小鼠是一种特异性AIG的小鼠模型,可模拟人类萎缩性胃炎中壁细胞抗体以及壁细胞萎缩等[8],在TxA23小鼠中胃蛋白酶3(gastrokine3,GKN3)高水平表达,而GKN3mRNA是小鼠胃体SPEM的特异性标志物,表明壁细胞缺失后SPEM可诱导化生,参与免疫应答[9]。研究发现,B细胞缺乏的新生小鼠在胸腺切除后对AIG具有抵抗力,但在注射自身抗体后,可诱导小鼠发生AIG,这进一步表明,被CD4+ T细胞破坏的壁细胞可能提供自身抗原,被抗原提呈细胞识别,诱导T细胞和记忆细胞的产生来增强免疫反应[10]。
-
2.2 辅助性T细胞1 型(helper T cell1,Th1)/2 型 (helper T cell2,Th2)细胞失衡
-
众所周知,大量免疫细胞相互作用共同维持体内免疫系统的稳定,AIG患者体内的免疫平衡遭到破坏,免疫调节网络被打乱,CD4+ T细胞分为Th1、 Th2和调节性T细胞(regulatory T cell,Treg)等。成熟的Th1细胞分泌干扰素(interferon,IFN)⁃γ、白介素(interleukin,IL)⁃2等细胞因子介导细胞免疫,起到免疫监视的作用。研究使用TxA23模型小鼠观察IFN⁃γ受体在胃上皮细胞中的表达,发现IFN⁃γ缺陷的TxA23小鼠细胞仅表现为轻度萎缩和化生,证明IFN⁃γ是壁细胞萎缩和化生的关键促进剂,还可直接诱导胃上皮细胞凋亡[8]。成熟的Th2细胞通过分泌IL⁃4、IL⁃10等细胞因子,激活B细胞产生免疫球蛋白E等抗体介导体液免疫,抵御病原微生物感染,起到抗炎作用。Th1和Th2两类细胞的动态平衡维持细胞和体液免疫呈稳定状态[11-12]。二者失衡时,促炎的Th1导致组织破坏,促进AIG的发生(图1)。
-
2.3 Fas/Fas配体(Fas ligand,FasL)表达水平的上调
-
Th1可通过两条不同的途径直接诱导靶细胞死亡,释放细胞毒介质如颗粒酶B/穿孔素,以及Fas/FasL[13]。FasL也被称为“死亡受体”,是一种I型跨膜蛋白,其胞浆区域含有一个死亡结构域向细胞传递自杀信号,Fas和FasL结合,诱导细胞凋亡。在免疫反应中,抗原刺激使得效应T细胞被激活,产生各种炎症因子,之后Fas被激活诱导T细胞凋亡从而抑制过强的免疫,维持正常免疫平衡[14]。当Fas/FasL水平上调时,这一平衡便被打破。巨噬细胞可上调可溶性FasL的表达,导致CD4+ T细胞的增殖,壁细胞进一步被破坏,很大程度上促进了AIG的发展[14],同时,IFN⁃γ和IL⁃17也可上调不同类型细胞的Fas表达水平,并抑制Fas介导的凋亡[12] (图1)。
-
2.4 Th17/Treg细胞失衡
-
Th17和Treg细胞均由幼稚的CD4+ T细胞分化而来,两者功能相反,Th17细胞促进自身免疫,而Treg细胞抑制自身免疫[15]。在早期阶段,转化生长因子⁃β同时诱导Th17和Treg细胞,Th17细胞产生IL⁃17、IL⁃6和IL⁃23等促炎细胞因子,将中性粒细胞招募到感染部位,介导细胞外细菌和真菌的免疫反应[16-17]。Treg细胞,亦称CD4+ CD25+ T细胞,是由胸腺产生的功能成熟的CD4+ T细胞亚群,分为天然性Treg细胞(natural Treg,nTreg)和诱导性Treg细胞(induced Treg,iTreg),nTreg既可通过抑制免疫性受体与靶细胞直接接触阻碍T细胞的分化,也可通过分泌抑制性细胞因子维持机体免疫稳定,而iTreg仅靠后者调节免疫[18-19],Treg数量及功能的失衡是AIG患者免疫紊乱的关键因素,当Treg细胞数量下降,而Th17细胞及其相关细胞因子如IL⁃17升高,两者之间失去动态平衡会导致CD4+ T细胞依赖的AIG,介导胃黏膜损伤[11]。Harakal等[11] 研究发现使用白喉毒素清除小鼠的Treg细胞,成年小鼠可出现AIG,3~4周时,胃炎严重程度明显增加,出现壁细胞缺失,5~6周时,82%的Treg细胞耗尽,在小鼠体内检测到胃H+ ⁃K+ ⁃ATP酶自身抗体,Treg细胞完全耗尽后,严重的AIG至少持续了16周,证实了Treg细胞耗竭可导致严重的CD4 + T细胞依赖性AIG。
-
2.5 细胞因子的调节作用
-
细胞因子是慢性炎症过程中免疫和上皮细胞功能的重要调节因子,近年来研究发现,一些细胞因子不仅在维持Th17和Treg细胞平衡中起到了重要作用,如IL⁃10和IL⁃6等[20],而且能直接作用于胃壁细胞,如IL⁃17A可直接诱导壁细胞凋亡[21]。IL⁃6由多种细胞分泌并引起反应。它不仅通过影响中性粒细胞、巨噬细胞和树突状细胞的产生、募集、分泌和转化来调节免疫,而且能够激活NF⁃κB,促进FasL与Fas结合,介导上皮细胞凋亡,触发信号转导并且下调Treg的表达[22-23],IL⁃6可作为信号分子激活NF⁃κB信号通路导致胃腺体萎缩,进而导致胃酸分泌减少[24]。Foxp3是Treg细胞的主要调节因子, IL⁃2影响Foxp3的DNA结合能力,从而影响Treg功能[25]。研究发现,自身免疫性疾病表现为Treg功能不全,IL⁃2可用在自身免疫性疾病患者体内扩增Treg细胞,低剂量的IL⁃2治疗耐受性良好[26-28]。IL⁃27由巨噬细胞和树突状细胞分泌,TxA23小鼠模型使用单细胞RNA测序显示,IL⁃27几乎只作用于胃浸润的CD4+ T细胞,IL⁃27基因缺陷的小鼠出现更严重的萎缩性胃炎,补充IL⁃27可逆转萎缩和化生,促进细胞再生[29]。
-
3 Hp感染
-
日本最近的一份研究报告发现,在43例AIG患者中,40例有治疗Hp 2次以上失败史。对胃黏膜标本进行培养试验,35例接受培养检测的AIG患者中,有33例被鉴定出尿素酶阳性细菌,13C尿素呼气试验阳性并且至少根除Hp失败2次的患者中,约1/5患有AIG。AIG患者常常被误诊为难以根除Hp的患者,可能是因为胃酸水平受到强烈抑制,允许除Hp外来自肠道和口腔的细菌在胃内定植,比如肺炎克雷伯杆菌和α⁃链球菌,从而导致呼气试验的假阳性[30]。2019年的1项多中心的回顾性研究也提出这一结论,约15%的患者因13C尿素呼气试验假阳性而反复错误治疗Hp[31]。
-
然而大量研究发现,Hp或许确实促进了AIG的发生。Hp相当于“扳机点”,通过一种分子拟态触发自身免疫机制,这涉及H+ ⁃K+ ⁃ATP酶的表位,进而触发AIG[7,32]。分子拟态是感染体为适应宿主,避开其免疫应答机制而采取的一种常用机制。Hp与宿主细胞具有同源序列成分,免疫细胞长期暴露于该成分下,诱发自身抗体形成,介导免疫反应,推动组织破坏和发展成病理性炎症[3 3]。Hp感染可能会诱导CD4+ T细胞的增殖,触发细胞凋亡[34]。1项研究发现,AIG患者体内存在可识别H+ ⁃K+ ⁃ATP酶和9种Hp蛋白的交叉反应表位[35]。根除Hp感染也许可以阻止或逆转AIG的早期阶段[36]。
-
同时,Toll样受体(Toll⁃like receptor,TLR)对Hp的识别也至关重要,TLR是一种模式识别受体,不仅识别病原体相关分子模式(pathogen⁃associated mo⁃ lecular pattern,PAMP),也识别从坏死细胞中释放的内源性危险相关分子模式(damage⁃associated molec⁃ ular pattern,DAMP),并在巨噬细胞和树突状细胞中产生炎性细胞因子及趋化因子,一旦检测到PAMP或DAMP,TLR会触发信号级联反应,产生促炎细胞因子激活先天免疫[37-38]。70%的Hp菌株拥有特异性的CAG致病岛(cytotoxin⁃associated gene pathoge⁃ nicity island,CAG⁃PAI),该致病岛所编码的Ⅳ型分泌系统(type Ⅳ secretion system,T4SS),即CAG T4SS可激活TLR9,并能诱导其产生下游靶点,与宿主细胞结合[39]。同时,CAG可以作为TLR5激活剂来调节对Hp的免疫应答,TLR5受体特异性结合Hp鞭毛蛋白,其特有的D0结构域与TLR5的C⁃末端区域相互作用,并在下游信号通路中激活NF⁃κB,引起免疫应答,导致壁细胞受损,促进AIG的发生[40],壁细胞的损伤同时也有利于Hp的定植[41],我国的1项研究也证实了TLR5基因多态性与Hp感染有关[42]。
-
4 维生素D(vitamin D,VitD)缺乏
-
众所周知,AIG可导致维生素B12的缺乏,然而近年来研究发现,在AIG人群中最常见的是VitD的缺乏。VitD缺乏是因是果并不清楚。VitD可调节先天免疫,激活单核细胞和巨噬细胞,并增强其趋化和吞噬能力,也可调节获得性免疫,直接调节B和T淋巴细胞的功能,抑制B细胞增殖、浆细胞分化和免疫球蛋白分泌,以及诱导B细胞凋亡,抑制树突状细胞的分化和成熟,激发免疫耐受机制[43],VitD缺乏会损害巨噬细胞的成熟能力以及抑制其抗菌能力,此外,VitD可下调CD4 + T细胞分化为Th1和Th17亚群的多种信号和代谢途径,其保护作用涉及表观遗传机制如DNA甲基化,这可能为细胞记忆提供分子基础,介导长期效应,补充VitD最显著的效果是CD4 + T细胞的增殖减少[4 4]。
-
VitD在肾脏内被转化为1,25(OH)2D3,与VitD受体(vitamin D receptor,VDR)结合,VDR多态性与自身免疫性疾病的发病率增加有关,1,25(OH)2D3 与VDR相互作用,抑制树突状细胞分化和成熟,增强耐受性,减少促炎细胞因子如IL ⁃6的产生,增加抗炎细胞因子如IL ⁃10的产生,使Th1/Th2平衡向Th2反应倾斜,抑制促炎的Th17细胞同时增强Treg细胞的功能,还可直接作用于T淋巴细胞,抑制IL ⁃2、IFN ⁃γ、IL ⁃17和IL ⁃21等促炎细胞因子的产生[4 5-4 6],促进从促炎免疫状态向耐受性免疫状态的转变[4 6-4 8]。VDR可上调和活化单核细胞和巨噬细胞的TLR,1,25(OH)2D3可抑制TLR对PAMP免疫应答的过度表达[4 7,4 9]。1项独立研究发现,VDR基因甲基化和VDR多态性改变了VDR介导的单核细胞TLR1/2信号转导[5 0],Massironi等[51] 最近的1项前瞻性研究发现与健康对照组相比,87例AIG患者的1,25(OH)2D3水平显著降低,此外,他们还发现胃炎的严重程度与1,25(OH)2D3 水平呈负相关。1项对122例诊断为AIG患者进行11年的随访研究发现,62%的患者存在VitD缺乏,严重缺乏 (低于10ng/mL)占14%[43]。但这些研究存在一定局限性,如研究干扰因素众多,样本量较少,以及缺乏特异性模型等,并不能证明VitD水平和AIG之间的直接联系。
-
5 小结和展望
-
综上所述,AIG可能为多因素、多基因致病,遗传易感性的发现,免疫调节机制的改变,Hp感染及VitD缺乏机制为阐明AIG的发病机制带来新的曙光。针对Fas/FasL通路的靶向性治疗,操纵TLR信号,开发针对细胞因子的新疗法有望抑制炎症性疾病,根除HP及积极补充VitD都能抑制AIG的发生发展。然而,未来依然存在诸多亟待解决的问题: ①免疫紊乱的具体调节机制;②对AIG发病过程的动态观察,明确各因素间有无因果联系;③对各独立因素进行对照实验,以明确各因素在发病中的作用比例。总之,AIG的发病机制尚未完全阐明,今后仍需进一步研究探索,为降低其发病率、促进诊断及治疗提供新的思路。
-
图1 自身免疫性胃炎的发病机制
-
Fig.1 Pathogenesis of autoimmune gastritis
-
参考文献
-
[1] ZHANG H,JIN Z,CUI R,et al.Autoimmune metaplastic atrophic gastritis in Chinese:a study of 320 patients at a large tertiary medical center[J].Scand J Gastroenterol,2017,52(2):150-156
-
[2] WOLF E M,PLIESCHNEGGER W,GEPPERT M,et al.Changing prevalence patterns in endoscopic and histologi⁃ cal diagnosis of gastritis?Data from a cross⁃sectional Cen⁃ tral European multicentre study[J].Dig Liver Dis,2014,46(5):412-418
-
[3] UNANUE E R,TURK V,NEEFJES J.Variations in MHC class Ⅱ antigen processing and presentation in health and disease[J].Annu Rev Immunol,2016,34:265-297
-
[4] OKSANEN A M,HAIMILA K E,RAUTELIN H I,et al.Immunogenetic characteristics of patients with autoim⁃ mune gastritis[J].World J Gastroenterol,2010,16(3):354-358
-
[5] LAHNER E,SPOLETINI M,BUZZETTI R,et al.HLA ⁃ DRB1*03 and DRB1*04 are associated with atrophic gas⁃ tritis in an Italian population[J].Dig Liver Dis,2010,42(12):854-859
-
[6] KOZHAKHMETOVA A,WYATT R C,CAYGILL C,et al.Aquarter of patients with type 1 diabetes have co⁃existing non ⁃islet autoimmunity:the findings of a UK population ⁃ based family study[J].Clin Exp Immunol,2018,192(3):251-258
-
[7] LAHNER E,CONTI L,CICONE F,et al.Thyro ⁃ entero ⁃ gastric autoimmunity:pathophysiology and implications for patient management[J].Best Pract Res Clin Endocri⁃ nol Metab,2020,34(1):101373
-
[8] OSAKI L H,BOCKERSTETT K A,WONG C F,et al.In⁃ terferon ⁃ γ directly induces gastric epithelial cell death and is required for progression to metaplasia[J].J Pathol,2019,247(4):513-523
-
[9] BOCKERSTETT K A,LEWIS S A,NOTO C N,et al.Sin⁃ gle ⁃cell transcriptional analyses identify lineage ⁃ specific epithelial responses to inflammation and metaplastic de⁃ velopment in the gastric corpus[J].Gastroenterology,2020,159(6):2116⁃2129
-
[10] SAITO T,SUENAGA S,FUJII M,et al.Induction of auto⁃ immune gastritis by neonatal thymectomy requires autoan⁃ tibodies and is prevented by anti ⁃ FcγR antibodies[J].Cell Immunol,2016,300:1-8
-
[11] HARAKAL J,RIVAL C,QIAO H,et al.Regulatory T cells control Th2 ⁃ dominant murine autoimmune gastritis [J].J Immunol,2016,197(1):27-41
-
[12] JIMBO H,NAGAI H,FUJIWARA S,et al.Fas⁃FasL inter⁃ action in cytotoxic T cell⁃mediated vitiligo:the role of le⁃ sional expression of tumor necrosis factor⁃α and interferon ⁃γ in Fas⁃mediated melanocyte apoptosis[J].Exp Derma⁃ tol,2020,29(1):61-70
-
[13] GOLSTEIN P,GRIFFITHS G M.An early history of T cell ⁃ mediated cytotoxicity[J].Nat Rev Immunol,2018,18(8):527-535
-
[14] YAMADA A,ARAKAKI R,SAITO M,et al.Dual role of Fas/FasL⁃mediated signal in peripheral immune tolerance [J].Front Immunol,2017,8:403
-
[15] CHENG H,GUAN X,CHEN D,et al.The Th17/Treg cell balance:agut microbiota⁃modulated story[J].Microorgan⁃ isms,2019,7(12):583
-
[16] LEE G R.The balance of Th17 versus treg cells in autoim⁃ munity[J].Int J Mol Sci,2018,19(3):730
-
[17] KNOCHELMANN H M,DWYER C J,BAILEY S R,et al.When worlds collide:Th17 and Treg cells in cancer and autoimmunity[J].Cell Mol Immunol,2018,15(5):458-469
-
[18] DOMINGUEZ ⁃VILLAR M,HAFLER D A.Regulatory T cells in autoimmune disease[J].Nat Immunol,2018,19(7):665-673
-
[19] OHKURA N,SAKAGUCHI S.Transcriptional and epigen⁃ etic basis of Treg cell development and function:its genet⁃ ic anomalies or variations in autoimmune diseases[J].Cell Res,2020,30(6):465-474
-
[20] OFT M.Immune regulation and cytotoxic T cell activation of IL⁃10 agonists ⁃ preclinical and clinical experience[J].Semin Immunol,2019,44:101325
-
[21] BOCKERSTETT K A,OSAKI L H,PETERSEN C P,et al.Interleukin ⁃17A promotes parietal cell atrophy by induc⁃ ing apoptosis[J].Cell Mol Gastroenterol Hepatol,2018,5(4):678-690
-
[22] TAN S,XU M,KE B,et al.IL⁃6⁃driven FasL promotes NF ⁃κBp65/PUMA⁃mediated apoptosis in portal hypertensive gastropathy[J].Cell Death Dis,2019,10(10):748
-
[23] RAFFIN C,VO L T,BLUESTONE J A.Treg cell ⁃ based therapies:challenges and perspectives[J].Nat Rev Immu⁃ nol,2020,20(3):158-172
-
[24] 夏鑫,靳建亮,左国平,等.Bmi⁃1通过下调NF⁃κB信号通路防治小鼠萎缩性胃炎[J].南京医科大学学报(自然科学版),2018,38(9):1208-1211
-
[25] GÖSCHL L,SCHEINECKER C,BONELLI M.Treg cells in autoimmunity:from identification to Treg ⁃based thera⁃pies[J].Semin Immunopathol,2019,41(3):301-314
-
[26] ROSENZWAJG M,LORENZON R,CACOUB P,et al.Im⁃ munological and clinical effects of low⁃dose interleukin⁃2 across 11 autoimmune diseases in a single,open clinical trial[J].Ann Rheum Dis,2019,78(2):209-217
-
[27] ABBAS A K,TROTTA E,SIMEONOV D R,et al.Revisit⁃ ing IL⁃2:biology and therapeutic prospects[J].Sci Immu⁃ nol,2018,3(25):1482
-
[28] SCHEINECKER C,GÖSCHL L,BONELLI M.Treg cells in health and autoimmune diseases:new insights from sin⁃ gle cell analysis[J].J Autoimmun,2020,110:102376
-
[29] BOCKERSTETT K A,PETERSEN C P,NOTO C N,et al.Interleukin 27 protects from gastric atrophy and Meta⁃ plasiaduring chronic autoimmune gastritis[J].Cell Mol Gastroenterol Hepatol,2020,10(3):561-579
-
[30] FURUTA T,BABA S,YAMADE M,et al.High incidence of autoimmune gastritis in patients misdiagnosed with two or more failures of H.pylori eradication[J].Aliment Phar⁃ macol Ther,2018,48(3):370-377
-
[31] TERAO S,SUZUKI S,YAITA H,et al.Multicenter study of autoimmune gastritis in Japan:clinical and endoscopic characteristics[J].Dig Endosc,2020,32(3):364-372
-
[32] CAVALCOLI F,ZILLI A,CONTE D,et al.Micronutrient deficiencies in patients with chronic atrophic autoimmune gastritis:a review[J].World J Gastroenterol,2017,23(4):563-572
-
[33] CHMIELA M,GONCIARZ W.Molecular mimicry in Heli⁃ cobacter pylori infections[J].World J Gastroenterol,2017,23(22):3964-3977
-
[34] CELLINI M,SANTAGUIDA M G,VIRILI C,et al.Hashi⁃ moto’s thyroiditis and autoimmune gastritis[J].Front Enocrinol(Lausanne),2017,8:92
-
[35] TOH B H,CHAN J,KYAW T,et al.Cutting edge issues in autoimmune gastritis[J].Clin Rev Allergy Immunol,2012,42(3):269-278
-
[36] DE RE V,REPETTO O,DE ZORZI M,et al.Polymor⁃ phism in Toll⁃like receptors and Helicobacter pylori motility in autoimmune atrophic gastritis and gastric cancer[J].Cancers(Basel),2019,11(5):648
-
[37] HAMERMAN J A,POTTLE J,NI M,et al.Negative regu⁃ lation of TLR signaling in myeloid cells:implications for autoimmune diseases[J].Immunol Rev,2016,269(1):212-227
-
[38] SATOH T,AKIRA S.Toll⁃like receptor signaling and its inducible proteins[J].Microbiol Spectr,2016,4(6):4-6
-
[39] VARGA M G,SHAFFER C L,SIERRA J C,et al.Patho⁃ genic Helicobacter pylori strains translocate DNA and ac⁃ tivate TLR9 via the cancer ⁃associated cag type Ⅳ secre⁃ tion system[J].Oncogene,2016,35(48):6262-6269
-
[40] WANG Y,ZHANG S,LI H,et al.Small⁃molecule modula⁃ tors of Toll ⁃like receptors[J].Acc Chem Res,2020,53(5):1046-1055
-
[41] PATRA M C,CHOI S.Recent progress in the develop⁃ ment of Toll ⁃ like receptor(TLR)antagonists[J].Expert Opin Ther Pat,2016,26(6):719-730
-
[42] 高芳,卫星如,马立聪,等.TLR5基因多态性与幽门螺旋杆菌感染的关联性[J].南京医科大学学报(自然科学版),2019,39(9):1350-1352
-
[43] ZILLI A,CAVALCOLI F,CIAFARDINI C,et al.Deficien⁃ cy of micronutrients in patients affected by chronic atro⁃ phic autoimmune gastritis:a single ⁃ institution observa⁃ tional study[J].Dig Liver Dis,2019,51(4):505-509
-
[44] ZEITELHOFER M,ADZEMOVIC M Z,GOMEZ⁃CABRE⁃ RO D,et al.Functional genomics analysis of vitamin D ef⁃ fects on CD4+ T cells in vivo in experimental autoimmune encephalomyelitis[J].PNAS,2017,114(9):E1678-E1687
-
[45] BIZZARO G,ANTICO A,FORTUNATO A,et al.Vitamin D and autoimmune diseases:Is vitamin D receptor(VDR)polymorphism the culprit?[J].Isr Med Assoc J,2017,19(7):438-443
-
[46] ILLESCAS ⁃ MONTES R,MELGUIZO ⁃ RODRíGUEZ L,RUIZ C,et al.Vitamin D and autoimmune diseases[J].Life Sci,2019,233:116744
-
[47] HARRISON S R,LI D,JEFFERY L E,et al.Vitamin D,autoimmune disease and rheumatoid arthritis[J].Calcif Tissue Int,2020,106(1):58-75
-
[48] MURDACA G,TONACCI A,NEGRINI S,et al.Emerging role of vitamin D in autoimmune diseases:an update on evidence and therapeutic implications[J].Autoimmun Rev,2019,18(9):102350
-
[49] WESSELS I,RINK L.Micronutrients in autoimmune dis⁃ eases:possible therapeutic benefits of zinc and vitamin D [J].J Nutr Biochem,2020,77:108240
-
[50] MEYER V,SACCONE D S,TUGIZIMANA F,et al.Meth⁃ ylation of the vitamin D receptor(VDR)gene,together with genetic variation,race,and environment influence the signaling efficacy of the Toll ⁃like receptor 2/1⁃VDR pathway[J].Front Immunol,2017,8:1048
-
[51] MASSIRONI S,CAVALCOLI F,ZILLI A,et al.Rele⁃ vance of vitamin D deficiency in patients with chronic au⁃ toimmune atrophic gastritis:a prospective study[J].BMC Gastroenterol,2018,18(1):172
-
摘要
自身免疫性胃炎(autoimmune gastritis,AIG)是一组由异常自身免疫反应所介导的疾病,其发病机制复杂,目前尚未完全阐明。近年来对其发病机制有一些新认识,文章将对于该疾病的遗传易感性、免疫机制、幽门螺杆菌(Helicobactor pylori, Hp)感染等方面的研究进展进行简要归纳和阐述。AIG可能为多因素、多基因致病,遗传易感性的发现,免疫调节机制的改变,Hp感染及维生素D缺乏机制为阐明AIG的发病机制带来新的曙光。针对Fas/FasL通路的靶向性治疗,操纵Toll样受体信号,开发针对细胞因子的新疗法有望抑制炎症性疾病,根除HP及积极补充维生素D都能抑制AIG的发生发展。
Abstract
Autoimmune gastritis,induced by abnormal autoimmune reaction,has a complicated pathogenesis and unclarified etiologies. Recently,some new progresses have been made on the pathogenesis of autoimmune gastritis. This article briefly summarizes and describes the new advances of the pathogenesis observed in genetic susceptibility,immunemechanism,and Helicobacter pylori(Hp) infection. Autoimmune gastritis may be caused by multiple factors and genes. The discovery of genetic susceptibility, the change of immune regulation mechanism,HP infection and the lack of vitamin D bring new dawn to clarify the pathogenesis of autoimmune gastritis. Targeted therapy for Fas/FasL pathway,manipulation of Toll ⁃ like receptor signal and development of new therapies for cytokines are expected to inhibit inflammatory diseases. Eradication of HP and active supplementation of vitamin D can inhibit the occurrence and development of autoimmune gastritis.