-
颅脑外伤(traumatic brain injury,TBI)是全球成年人死亡和残疾的重要原因之一。仅在中国,以人口为基础的TBI死亡率约达到每10万人中有13例[1]。除了外伤造成的直接损伤外,患者在创伤后通常会出现严重和广泛的神经元坏死、脑组织水肿、血脑屏障(blood brain barrier,BBB)破坏、氧化应激加剧和过度活跃的炎症反应。这些不利因素的恶性循环最终导致死亡、残疾和植物人状态[2]。有创伤性颅脑损伤背景的老年人更有可能发生认知障碍、痴呆和神经退行性疾病,这也应该是创伤性脑损伤患者预后差的原因。因此,这也增加了对创伤性颅脑损伤治疗药物的需求,这些药物有望在多方面减轻原发性脑损伤的危害,并消除创伤性脑损伤的继发性病理缺陷。
-
铁代谢在创伤性脑损伤的病理过程中已经逐渐被广大学者所认可。铁是一种重要的微量元素,维护正常的细胞生理学。在产生脱氧核糖核酸(de⁃ oxyribonucleic acid,DNA)和三磷酸腺苷(adenosine triphosphate,ATP)的过程中发挥作用,能够调节三羧酸循环(tricarboxylic acid cycle,TCA)的周期,合成电子传递链中的多种蛋白质,并参与髓磷脂和中枢神经系统中多种神经递质的合成[3-4]。
-
哺乳期大脑缺铁也会引起神经递质合成受损,导致行为功能发育迟缓。细胞内过量的铁同样会严重破坏神经功能,尤其是创伤性脑损伤后的脑功能区。脑组织破坏,血脑屏障塌陷,脑血管通透性增加,局部严重炎症反应共同导致大量铁从血液中涌向脑实质。过量的铁,即二价亚铁离子Fe2+,可分别与过氧化氢或有机过氧化氢反应生成可溶性羟基或脂质烷氧基。这是细胞中由Fe2+ 产生活性氧 (reactive oxygen species,ROS)的主要来源,称为Fenton反应[5],它最终会导致一种新的受调控的细胞死亡,称为铁死亡(ferroptosis),其特征是铁依赖的脂质过氧化过程。神经元膜富含胆固醇和多不饱和脂肪酸(polyunsaturated fatty acid,PUFA),对ROS相关的过氧化高度敏感[6]。此外,神经元以一个自治的方式清除活性氧的能力是有限的,因为超氧化物歧化酶(superoxide dismutase,SOD)和谷胱甘肽过氧化物酶(glutathione peroxidase,GPX)的含量在大脑中相对于其他类型的组织要更低。而且在氧化代谢过程后期,SOD和GPX的含量与整个氧化过程中所需要的量相比相差甚远[7]。以上证据都说明了一个事实,即神经元对过量铁引起的损伤特别敏感。
-
本课题组前期实验研究发现,铁死亡的参与会影响TBI所造成的继发性损伤,从而影响TBI的治疗效果。通过RNA⁃Seq技术,发现了一个在TBI中富集在神经元中的基因,前动力蛋白Prokineticin⁃2 (Prok2),能够促进F ⁃box家族成员F ⁃box only pro⁃ tein 10(Fbxo10)的表达,发挥E3泛素化链接酶的作用,进而靶向长链脂酰辅酶A合成⁃4(long⁃chain⁃fat⁃ ty⁃acid⁃CoA ligase4,Acsl4)的泛素化降解。这一过程会显著降低TBI后的铁死亡进程,从而促进神经修复。同时,最近研究表明,铁含量超载与阿尔茨海默病(Alzheimer’s disease,AD)和帕金森病(Par⁃ kinson’s disease,PD)的发生密切相关。近年报道铁含量过负荷参与继发性脑损伤的病理生理过程[8]。更重要的是,脑内铁沉积是衰老的必然结果[9]。这表明,铁稳态受损与老年TBI患者预后不良之间存在必然的联系。这里,将讨论与脑外伤相关的铁含量异常和铁死亡,拓宽对TBI中铁代谢的认识,探索一种针对TBI后铁死亡的有效治疗新手段。
-
1 铁含量和铁的代谢过程
-
由于铁的亲水性,铁从血液进入脑实质需要通过血脑屏障有效输送。成年动物血脑屏障对铁的摄取是由脑微血管内皮细胞前腔表面的转铁蛋白受体(transferrin receptor,TfR)介导的[3,10]。
-
在pH为酸性的环境下,核内体释放出三价铁 (Fe3+ ),并在核内体中还原为亚铁(Fe2+)。二价金属转运体1(divalent metal⁃ion transporter⁃1,DMT1,也被称为SLC11A2)可以介导铁离子从核内体释放到细胞质的不稳定“铁池”中[3]。血浆铜蓝蛋白是一种糖基磷脂酰肌醇(glycosylphosphatidylinositol,GPI) 连接的膜蛋白,在哺乳动物中枢神经系统中表达,主要在环绕脑微血管的星形胶质细胞中表达[11]。在发现铜蓝蛋白的铁氧化酶活性后,研究表明铜蓝蛋白在铁代谢中的作用是通过与铁转运蛋白结合,从而在细胞水平上帮助铁离子排出[12-13]。
-
转铁蛋白的变化会影响铁的代谢。铁代谢异常,包括铁缺乏和铁超载,都会对全身功能产生负面影响,并导致一些疾病(表1)。铁缺乏会降低大脑中,特别是海马和前额叶区域的细胞色素氧化酶活性[14]。这可能会导致大脑发育障碍,如运动发育和认知记忆[15]。体内高水平的铁可沉积在大脑中,这涉及一些神经退行性疾病,如PD和AD[16-17]。
-
2 铁死亡及其分子机制
-
早在2012年,Stockwell团队就将这种新型调节性细胞死亡(regulated cell death,RCD)定义为铁死亡(ferroptosis),这一定义与其他类型的RCD完全不同(表2)。死亡细胞的细胞核结构完整性得到了保留。核凝聚或染色质边缘化通常出现在细胞凋亡、坏死和自噬中,但在铁死亡中不存在[18]。电镜下,铁死亡导致细胞死亡,线粒体萎缩,线粒体膜密度增加,线粒体嵴消失[19-20]。抑制凋亡、坏死和自噬途径中的关键分子并不能阻止这一过程,而选择的抗氧化剂和铁螯合剂可以显著缓解这种新的RCD[18]。
-
随着人们对铁死亡的关注不断深入,其分子机制也被深入研究。本文列出了一些分子途径,这些途径现已被具体证明与铁死亡有关。
-
2.1 System Xc- —谷胱甘肽(glutathione,GSH)合成 —glutathione peroxidase4(GPX4)经典铁死亡机制
-
System Xc-是Na+ 依赖的半胱氨酸⁃谷氨酸反向转运体,位于细胞膜上。它将细胞内的谷氨酸输出到细胞外空间,同时将胱氨酸输入到细胞质,随后胱氨酸转化为半胱氨酸,合成GSH。GPX4催化GSH与脂质⁃过氧化氢的反应,以防止ROS的产生,支持细胞能够对抗氧化应激。System Xc-独立于ATP,是由高浓度的细胞内谷氨酸盐驱动的。因此,它对细胞外谷氨酸浓度特别敏感。在脑外伤背景下,细胞外谷氨酸水平的升高抑制了System Xc⁃ 运输系统,从而触发了铁死亡[21]。最近研究表明,直接抑制System Xc⁃ 可以通过降低半胱氨酸摄取从而诱导细胞死亡,进而导致谷胱甘肽消耗,并最终损害细胞抵抗氧化应激的能力[20]。
-
脑外伤后谷胱甘肽耗竭在一些实验病例中可见,通常会导致继发性损伤[22-23]。其他一些研究也支持谷胱甘肽减少与铁死亡有关。一类诱导铁死亡的化合物(first ⁃ class ferroptosis ⁃ inducing com⁃ pound,FIN),如多样药理学的抑制剂⁃ 2(diverse pharmacological inhibitor ⁃2,DPI2)和buthionine sulf⁃ oxine(BSO),可以消耗90%的细胞谷胱甘肽,并可诱导细胞铁死亡[24-25]。
-
GPX4是GPX家族的一个成员,比家族中其他亚体更密切地参与铁死亡。GPX4与谷胱甘肽一起将游离过氧化氢(H2O2)或有机过氧化氢(ROOH)还原成水或相应的醇。与此同时,谷胱甘肽被转化为氧化的对应物——谷胱甘肽二硫键(L⁃glutathione oxidized,GSSG)。 BSO诱导的谷胱甘肽消耗使GPX4失活,从而提高脂质中的ROS水平,同时伴随NADPH和溶血磷脂酰胆碱(一种产脂ROS的指标) 的氧化增加。抑制GPX4活性而无任何GSH缺乏也会导致铁死亡。
-
2.2 铁依赖的脂质过氧化机制
-
铁死亡的典型特征是铁依赖的脂质过氧化引起的细胞死亡,这可以通过铁螯合物和脂质抗氧化剂来改善,脂质过氧化的罪魁祸首通常被认为是ROS。ROS可与细胞膜上的PUFA发生反应,诱导脂质过氧化。然而,ROS诱导铁死亡的具体机制尚不清楚。一些促进细胞内和线粒体ROS产生的化合物不能促进铁依赖的细胞死亡,而ROS的大量产生也被认为与其他类型的调节细胞死亡(坏死、凋亡等)有关[20,26]。是否任何类型的致死性脂质过氧化反应都可被归为铁死亡,还是只有特定类型的致死性脂质过氧化反应才可被归为铁死亡,这是一个有待解决的问题。因此,了解参与铁死亡的特定脂质及其前体是非常重要的。
-
2.3 磷酸化酶激酶G2调节铁纳入的机制
-
磷酸化酶激酶(phosphorylase kinase,PHK)G2可以诱导糖原释放葡萄糖⁃1⁃磷酸,在铁死亡中发挥重要作用。PHKG2是PHK的肝脏和睾丸亚型,而PHKG1主要存在于肌肉中。PHKG2突变与糖原储存疾病、肝硬化和人类1型糖尿病相关的并发症相关[27-28]。
-
在细胞中沉默PHKG2可以降低铁的利用率,从而抑制脂质氧化。迄今为止,PHKG2已被初步提出,通过其对铁含量的调节功能可以调节Erastin的敏感性。从本质上讲,铁死亡的调控是通过PHKG2诱导的铁利用率来调控的。然而,PHKG2调控胞质铁水平以影响铁死亡的方式仍有待验证。一种假设是,这可能是由于PHKG2与最近报道的p53的非典型功能之间的联系。p53的抑癌功能包括细胞周期阻滞、凋亡、衰老和新近发现的铁死亡的激活[29-30]。后者由于其抑制胱氨酸⁃阳离子氨基酸转运成员11(recombinant solute carrier family 7,mem⁃ ber 11,SLC7A11)的转录调控,导致细胞半胱氨酸水平降低,谷胱甘肽减少,从而诱导铁死亡。本质上,乙酰化缺陷型p53突变体的失活抑制了SLC7A11的转录,从而促进ROS,导致癌细胞的铁死亡和细胞死亡。此外,谷氨酰胺酶2(glutaminase2,GLS2),一种p53调控的谷氨酰胺酶,参与了谷氨酰胺溶解⁃铁死亡的关系。因此,两种不同的表型特征明确证实了p53在铁死亡中的主要功能。但值得注意的是, Jennis等[29] 发现了一种p53变体,该变体表现出抑制SLC7A11或转激活GLS2的能力受损,无法诱导铁死亡。p53的分子机制调节铁死亡最近在一份报告中[31],证明了亚精胺和精胺N1⁃acetyltransferase1 (SAT1,一个p53的靶基因)提高了ALOX15的表达。此外,在肿瘤样本中发现SAT1水平较低,其敲低可以显著抑制p53诱导的铁死亡。由此得出,SAT1与ROS可以协同促进脂质过氧化,进而导致铁死亡进程。然而,p53的表达被抑制后,其经典的促癌细胞死亡的功能也受到抑制。
-
3 铁死亡在颅脑外伤中的作用
-
创伤性脑损伤包括原发性和继发性损伤。原发性损伤是指由外力引起的头部损伤。可造成皮质或皮质下挫伤和撕裂伤、颅内出血(蛛网膜下腔出血或硬脑膜下血肿)和血脑屏障破裂。弥漫性轴索损伤(diffusion axonal injury,DAI)是TBI的标志性损伤,是一些TBI长期并发症的主要原因,可能是神经炎症和神经退行性变的交互结果[32]。
-
研究报道,TBI后的颅内出血导致铁释放可表现为脑内铁沉积。在创伤性脑损伤患者中,小胶质细胞被激活释放出有毒物质,如促炎细胞因子白介素(interleukin⁃ 6,IL⁃6)和肿瘤坏死因子α(tumor ne⁃ crosis factor⁃α,TNF⁃α),补体蛋白和蛋白酶,导致脑损伤。与此同时,血脑屏障被破坏,使中性粒细胞、巨噬细胞等进一步浸润到脑组织[33]。一方面,它们参与细胞自噬,分泌抗炎因子,增强对受损细胞的清除,减少细胞降解引起的毒性作用。同时,这可以促进细胞修复,恢复神经可塑性[34]。另一方面,它会产生更多的毒性自由基和活性氧,如超氧自由基和一氧化氮,导致患者认知功能障碍、脑水肿等危害。随着ROS的产生,这会导致线粒体呼吸减少、脂质过氧化、蛋白质和酶氧化功能障碍,从而导致神经元损伤[35]。细胞外谷氨酸毒性的增加和谷氨酸N⁃甲基⁃D⁃天冬氨酸(N⁃methyl⁃D⁃aspartic acid receptor,NMDA)和α⁃氨基⁃3⁃羟基⁃5⁃甲基⁃4⁃异恶唑丙酸[36] 受体的过度刺激可影响钙的摄入,导致神经元损伤和细胞死亡。TBI患者皮层和海马的细胞外谷氨酸含量增加,而谷氨酸转运体含量降低。同时可导致线粒体功能障碍,自由基产生过多,激活caspase信号通路,促进细胞凋亡。可以发现线粒体断裂、铁沉积和脂质ROS积累,这些都是铁死亡的特征[37]。
-
4 脑外伤后的脑组织水肿
-
颅脑外伤后的脑水肿是指创伤引起的一系列反应,导致细胞内或细胞外水分过多。它是脑外伤患者的主要并发症之一。同时,由于颅骨致密,导致颅内压(intracranial pressure,ICP)升高,进一步导致了TBI的不良后果。大约50%的TBI患者死于脑水肿及其相关病变[38-39]。及时缓解颅脑损伤后的脑水肿有助于患者的恢复。通常,脑水肿在创伤性脑损伤后2~3d达到高峰。
-
颅脑外伤后的脑水肿主要分为细胞毒性水肿和血管源性水肿。细胞毒性水肿是指细胞内水增加,而脑含水量没有改变,不会导致颅内压增加。细胞毒性水肿发生在所有细胞类型中,尤其是星形胶质细胞,它主要导致脑外伤急性期细胞肿胀[40]。细胞毒性水肿的发生可能与水通道蛋白4(aquapo⁃ rin 4,AQP4)有关,这是一种广泛存在于脑星形胶质细胞中的双向水通道蛋白。降低AQP4表达已被证明可以减少TBI水肿的形成[41]。IL ⁃1β和TNF⁃α以及核因子⁃κB(NF⁃κB)都是细胞促炎因子。TBI诱导其上调,与AQP4表达增加有关[42-43],他们也参与了铁死亡。铁死亡的抑制剂Fer⁃1进一步降低IL⁃1β、 TNF⁃α和血脑屏障破坏的水平,从而减少脑水肿[44]。同时,颅脑外伤会破坏氧化系统和抗氧化系统的平衡,也会导致脑水肿[45]。GPX4是铁死亡的主要上游调控因子,它的减少增加了ROS的产生。GPX4的过表达可减弱TBI动物模型中的脑水肿和血脑屏障破坏[44]。花生四烯酸等PUFA会增加ROS的含量,导致铁死亡。脑内花生四烯酸和PUFA的增加导致水和钠的增加,而钾和ATP依赖的Na+/K+ 泵的减少,导致脑水肿[46]。
-
血管源性水肿是血脑屏障破裂,导致液体外溢和血管内蛋白(如白蛋白)进入脑实质。水向脑实质的流动形成一个通透性梯度。血管源性水肿的最大特征是血脑屏障的创伤性开放,脑组织中水分含量增加导致脑组织肿胀和颅内压增加。铁死亡可能与血管源性水肿有关,Fer⁃1和GPX4过表达均可减少血脑屏障破坏,缓解血管源性水肿[44]。也有一些因素导致血管源性水肿。基质金属蛋白酶 (matrix metalloproteinase,MMP)可以降解多种细胞外基质蛋白,包括组成血脑屏障的紧密连接蛋白。血管内皮生长因子A(vascular endothelial growth fac⁃ tor,VEGF⁃A)有助于血管生成,增加微血管通透性,还具有增加脑内皮细胞通透性的能力。研究发现, MMP⁃2、MMP⁃3、MMP⁃9和VEGF⁃A在TBI后升高,导致血脑屏障急性损伤,导致血管源性水肿[47-48]。
-
5 脑外伤后的认知障碍
-
认知功能障碍主要表现为意识障碍、记忆障碍、注意缺陷和学习加工障碍[49]。创伤后认知障碍会严重影响生活质量。目前还没有明确的理论表明认知功能障碍的原因,但一些研究推测它与铁死亡、轴索损伤(DAI)、神经元缺陷和脑屏障紊乱有关。TBI患者GSH下降以及铁含量沉积,可能与认知障碍有关。在TBI动物模型的脑室中给予Fer⁃1可显著减少铁沉积和神经元变性,并改善认知功能,因此铁死亡可能参与了认知障碍的过程[50]。许多研究表明,头部损伤是AD的一个危险因素[51]。 AD患者最大的特点是认知功能障碍,AD的神经元缺陷,特别是伴随铁死亡增加的海马神经元损伤,这意味着Nrf2/GPX4信号通路的激活,可能也是脑外伤患者认知功能障碍的原因。与此同时,AD的动物模型表明,大脑屏障损伤在AD患者早期发生[52]。因此,脑外伤患者BBB的损伤也可能是认知功能障碍的原因之一。DAI常发生在脑外伤后,其特征是意识丧失和大脑半球、小脑和脑干的广泛轴突损伤。 TBI后,大脑的白质轴突更容易受到损伤,头部创伤对白质轴突产生的剪切力可能导致其断裂,从而中断运输,引起肿胀等病理变化。研究表明,在TBI患者中,脑内轴突畸形在损伤后持续数年,DAI可能诱发长期进行性神经退行性过程。
-
6 脑外伤后癫痫(post⁃traumatic epilepsy,PTE)
-
PTE是指因头部外伤导致的脑外伤后至少1周发作多次的癫痫。PTE的特征是反复发作的癫痫症状,临床表现多样,持续时间从几周到几个月不等。PTE通常是由颞叶或额叶引起的局部相关癫痫。可进一步加重TBI引起的记忆和认知障碍、睡眠障碍、抑郁等症状。因此,及时诊断和治疗PTE是必要的,这有助于提高患者的生活质量。
-
PTE的发生可能与脑外伤引起的BBB损害和颅内出血有关。红细胞和血液成分的渗透造成溶血和血红蛋白分解,导致游离铁和富含铁的化合物如血红素的积累。已有研究表明金属可以刺激癫痫的发作。铁和亚铁离子引发炎症反应,并增强自由基的产生和线粒体碎片化。氧化应激导致脂质过氧化,导致脂质损伤,从而促进癫痫。将FeCl3注射到小鼠体内可以构建癫痫模型。在脑外伤癫痫模型中,参与铁死亡的转录因子Nrf2显著降低,从而促进各种抗氧化、抗炎和神经保护蛋白的表达。 NMDA受体介导的谷氨酸兴奋性毒性、ROS形成和随后的脂质过氧化以及神经元细胞死亡都可能加剧脑缺血。进一步去极化导致更低的癫痫发作阈值,从而诱发癫痫[53]。
-
7 脑外伤后脑积水(posttraumatic hydrocephalus, PTH)
-
脑积水主要发生在脑外伤后3个月内,并不是所有的脑外伤患者都会出现PTH,这与患者的年龄、脑外伤致残程度、意识障碍和反复手术有关。 PTH的病因可能与脑外伤后颅内出血和炎症介质粘连有关,这些炎症介质影响脑脊液(cerebral spi⁃ nal fluid,CSF)的流出和吸收。PTH的发生也可能与大脑中的铁过量有关。一项研究发现,在狗的枕大池注射红细胞会导致铁含量增加,并形成脑积水[54]。另一项研究表明,蛛网膜下腔出血(subarachnoid hem⁃ orrhage,SAH)患者脑脊液中的铁和铁蛋白水平显著升高。
-
脑外伤后并发SAH的患者更有可能发展成PTH,其风险是其他类型脑外伤患者的3倍。铁蛋白的增加可能与蛛网膜下腔较强的炎症反应有关,导致炎症细胞的增加和炎症细胞因子促进铁蛋白的合成。同时,动物模型显示,注射血红蛋白可导致血红素加氧酶活性增加,加速血红素代谢[55],增加红细胞溶解,导致脑内铁过量。铁螯合剂去铁胺 (deferrioxamine,DFO)可上调HO⁃1,从而减轻TBI引起的脑室扩张导致急性脑积水。DFO可以浓度依赖性的方式结合并去除铁蛋白中的铁,并从饱和转铁蛋白中去除大约10%~15%的铁,但没有从血红蛋白中去除铁[56]。脂质过氧化增加可导致血管改变,也可引起脑积水。外伤后癫痫表现为正常压力脑积水(normal pressure hydrocephalus,NPH)。其典型症状为认知功能障碍、尿功能障碍和步态改变。也可表现为肥厚性脑积水伴ICP升高,表现为头痛、恶心、呕吐、视乳头水肿、局灶性神经功能障碍等。由于TBI的症状与PTH的症状更一致,诊断差异很大,大部分患者难以检测,发病率在0.7%~51.4%之间。 PTH的显像有时表现为急性梗阻性脑积水伴脑室系统扩大,特别是在侧脑室前角;侧脑室周围明显的间质水肿带,特别是在额角;脑室的扩大大于脑池;脑回无萎缩,沟无增宽。额角指数是同一轴向CT切片中额角最大宽度与大脑最大宽度的比值。据报道,比率大于0.3表明脑室增大[57]。
-
8 脑外伤后的铁含量测量
-
由于磁共振(magnetic resonance imaging,MRI) 技术的发展,每年都有更多的新方法被引入。其中一些已经存在了几十年,但由于其功能尚未完全被发现,且通常需要特殊的操作和计算。因此,仍然被认为是先进的技术。
-
由于铁含量超载在TBI病理中起作用,磁场相关MR成像对非血红素铁的存在敏感[58-59],一些MR成像技术可以更好地检测和评估铁沉积与TBI患者之间的相关性。
-
通过MRI方法如磁场相关性(magnetic field cor⁃ relation,MFC)和磁敏感加权成像(susceptibility weighted imaging,SWI)[59-60] 可以记录患者双大脑特定区域的铁含量积累。MFC是MRI的成像度量指标,其定量值为均匀磁场(magnetic field in homoge⁃ neous,MFI)。MFI的值根据不同组织在MRI中的磁灵敏度不同以及宏微观组织结构的不同而不同。富含铁的细胞的MFC值增加。因此,MFC在MRI中可以作为铁的生物标志物。已有研究表明,在TBI患者的丘脑、球状苍白球和深部灰质中MFC值显著升高,提示铁参与了TBI形成过程中的白质和皮质下灰质损伤[59]。SWI对脑组织铁和血氧饱和度的变化特别敏感,可以显示不同组织的磁化率变化。研究表明,SWI可以检测PD患者的脑铁水平,并确定疾病的严重程度[61]。对TBI患者进行的SWI显示脑内灰质和皮质下灰质角弧度值升高[62]。弥散张量成像(diffusion tensor imaging,DTI)指标可以反映脑损伤患者脑白质脱髓炎的细微变化或组织显微结构的破坏,导致各向异性分数降低,平均扩散系数增加[63],DTI对轻度TBI的微小变化比MRI更敏感。
-
9 脑外伤后的铁死亡药物治疗
-
目前主要有3种医用铁螯合剂:铁载体螯合剂、合成螯合剂和天然螯合剂[64]。铁载体螯合剂是从微生物中提取的低分子量化合物,最常用的药用铁载体是DFO。DFO作为非转铁蛋白螯合剂,通过还原血红蛋白,与Fe3+ 结合产生超氧自由基。它还作为还原剂,防止脂质过氧化。在液体撞击损伤模型中, DFO还可以减少脑积水的形成和HO⁃1的表达[56]。在脑外伤动物模型中,DFO降低铁和铁蛋白水平,改善空间记忆,减少脑萎缩的可能性[65]。在颅内出血动物模型中,DFO对铁诱导的脑水肿有有益作用[66]。 N,N’⁃二(2⁃羟基苄基)乙二胺⁃N,N’⁃二乙酸盐酸盐 (HBED)也是一种铁螯合剂,通过血脑屏障与亚铁结合,将其转化为三价铁,减轻铁的危害。与去铁胺相比,HBED是一种合成产物,对铁有更高的亲和力,不良反应更少[66]。在动物模型中,HBED可以减少脑损伤的程度,限制脑损伤后脑功能的恶化。它可以改善运动功能和神经功能障碍,减少皮质损伤和氧化应激标志物的数量。这伴随着脑损伤体积和海马肿胀的显著减少。HBED还可以降低AQP通道的表达,AQP通道参与细胞水肿,可以减少TBI后的脑水肿。二甲胺四环素是一种高亲脂性化合物,是一种容易通过血脑屏障的铁螯合剂。与DFO相比,它在减少铁诱导损伤方面具有更高的活性[67]。在创伤性脑损伤动物模型中,二甲胺四环素可降低铁超载、神经元死亡和血清铁水平。它通过抑制小胶质细胞的激活和炎症反应来提供神经保护,并减轻脑出血后铁诱导的脑水肿和血脑屏障损伤。临床试验也表明二甲胺四环素对出血和脑外伤患者的预后有影响。
-
Fer⁃1是一种特异性铁死亡抑制剂,可减少亨廷顿病、急性脑损伤等模型的细胞死亡[68]。已有研究表明,Fer⁃1不仅能减少脑外伤动物模型中的铁聚集和神经元死亡,而且还能改善脑外伤诱导的认知和运动功能缺陷。此外,还有一些中药可能在TBI的治疗中发挥作用。黄芩素是一种黄酮类化合物,在许多神经系统疾病中具有神经保护作用[69]。在FeCl3诱导的PTE动物模型中,它通过抑制12/15⁃ LOX和防止脂质过氧化发挥神经保护作用,从而在一定程度上抑制铁死亡[70]。
-
10 结论
-
铁死亡是一种新的细胞死亡形式,在TBI的发病机制中起着越来越重要的作用。当铁的积累和脂质过氧化被激活时,细胞发生铁死亡。然而,我们对创伤性脑损伤的这些过程仍处于早期阶段。因此,探讨铁与脑外伤原发性和继发性后果的关系十分必要。对于TBI中铁死亡对临床表现的具体调控机制以及铁在ROS生成和神经毒性中的作用,还需要进一步研究。目前,由于对肾脏和心脏的毒性,铁螯合剂仅用于实验。铁螯合治疗在脑外伤患者中的临床应用及远期预后也值得进一步研究。
-
参考文献
-
[1] JIANG J Y,GAO G Y,FENG J F,et al.Traumatic brain injury in China[J].Lancet Neurol,2019,18(3):286-295
-
[2] TOKLU H Z,TUMER N.Oxidative stress,brain edema,blood⁃brain barrier permeability,and autonomic dysfunc⁃ tion from traumatic brain injury[M]//FOBEISSYF.Brain neurotrauma:molecular,neuropsychological,and rehabili⁃ tation aspects.Boca Raton(FL)CRC Press,2015:5-14
-
[3] KE Y,QIAN Z M.Brain iron metabolism:neurobiology and neurochemistry[J].Prog Neurobiol,2007,83(3):149-173
-
[4] WARD R J,ZUCCA F A,DUYN J H,et al.The role of iron in brain ageing and neurodegenerative disorders[J].Lancet Neurol,2014,13(10):1045-1060
-
[5] DIXON S J,STOCKWELL B R.The role of iron and reac⁃ tive oxygen species in cell death[J].Nat Chem Biol,2014,10(1):9-17
-
[6] SHICHIRI M.The role of lipid peroxidation in neurologi⁃ cal disorders[J].J Clin Biochem Nutr,2014,54(3):151-160
-
[7] KHAN J Y,BLACK S M.Developmental changes in mu⁃ rine brain antioxidant enzymes[J].Pediatr Res,2003,54(1):77-82
-
[8] IMAI T,IWATA S,HIRAYAMA T,et al.Intracellular Fe(2+)accumulation in endothelial cells and pericytes in⁃ duces blood ⁃brain barrier dysfunction in secondary brain injury after brain hemorrhage[J].Sci Rep,2019,9(1):6228
-
[9] DEL C V H M,RITCHIE S,GLATZ A,et al.Brain iron deposits and lifespan cognitive ability[J].Age(Dordr),2015,37(5):100
-
[10] BURDO J R,ANTONETTI D A,WOLPERT E B,et al.Mechanisms and regulation of transferrin and iron trans⁃ port in a model blood⁃brain barrier system[J].Neurosci⁃ ence,2003,121(4):883-890
-
[11] KLOMP L W,FARHANGRAZI Z S,DUGAN L L,et al.Ceruloplasmin gene expression in the murine central ner⁃ vous system[J].J Clin Invest,1996,98(1):207-215
-
[12] ATTIEH Z K,MUKHOPADHYAY C K,SESHADRI V,et al.Ceruloplasmin ferroxidase activity stimulates cellular iron uptake by a trivalent cation⁃specific transport mecha⁃ nism[J].J Biol Chem,1999,274(2):1116-1123
-
[13] RICHARDSON D R.Role of ceruloplasmin and ascorbate in cellular iron release[J].J Lab Clin Med,1999,134(5):454-465
-
[14] CARLSON E S,STEAD J D,NEAL C R,et al.Perinatal iron deficiency results in altered developmental expres⁃ sion of genes mediating energy metabolism and neuronal morphogenesis in hippocampus[J].Hippocampus,2007,17(8):679-691
-
[15] WANG Y,WU Y,LI T,et al.Iron metabolism and brain development in premature infants[J].Front Physiol,2019,10:463
-
[16] HARRIS Z L,TAKAHASHI Y,MIYAJIMA H,et al.Ace⁃ ruloplasminemia:molecular characterization of this disor⁃ der of iron metabolism[J].Proc Natl Acad Sci U S A,1995,92(7):2539-2543
-
[17] ANDREWS N C.Disorders of iron metabolism[J].N Engl J Med,1999,341(26):1986-1995
-
[18] DOLMA S,LESSNICK S L,HAHN W C,et al.Identifica⁃ tion of genotype⁃selective antitumor agents using synthet⁃ ic lethal chemical screening in engineered human tumor cells[J].Cancer Cell,2003,3(3):285-296
-
[19] YAGODA N,VON RECHENBERG M,ZAGANJOR E,et al.RAS⁃RAF⁃MEK⁃dependent oxidative cell death involv⁃ ing voltage ⁃dependent anion channels[J].Nature,2007,447(7146):864-868
-
[20] DIXON S J,LEMBERG K M,LAMPRECHT M R,et al.Ferroptosis:an iron ⁃ dependent form of nonapoptotic cell death[J].Cell,2012,149(5):1060-1072
-
[21] BRIDGES R,LUTGEN V,LOBNER D,et al.Thinking outside the cleft to understand synaptic activity:contribu⁃ tion of the cystine⁃glutamate antiporter(System xc⁃)to nor⁃ mal and pathological glutamatergic signaling[J].Pharma⁃ col Rev,2012,64(3):780-802
-
[22] BAYIR H,KAGAN V E,TYURINA Y Y,et al.Assess⁃ ment of antioxidant reserves and oxidative stress in cere⁃brospinal fluid after severe traumatic brain injury in in⁃ fants and children[J].Pediatr Res,2002,51(5):571-578
-
[23] ANSARI M A,ROBERTS K N,SCHEFF S W.Oxidative stress and modification of synaptic proteins in hippocam⁃ pus after traumatic brain injury[J].Free Radic Biol Med,2008,45(4):443-452
-
[24] YANG W S,SRIRAMARATNAM R,WELSCH M E,et al.Regulation of ferroptotic cancer cell death by GPX4 [J].Cell,2014,156(1⁃2):317-331
-
[25] LORINCZ T,JEMNITZ K,KARDON T,et al.Ferroptosis is involved in acetaminophen induced cell death[J].Pathol Oncol Res,2015,21(4):1115-1121
-
[26] SKOUTA R,DIXON S J,WANG J,et al.Ferrostatins in⁃ hibit oxidative lipid damage and cell death in diverse dis⁃ ease models[J].J Am Chem Soc,2014,136(12):4551-4556
-
[27] MACDONALD M J,HASAN N M,ANSARI I U,et al.Dis⁃ covery of a genetic metabolic cause for mauriac syndrome in type 1 diabetes[J].Diabetes,2016,65(7):2051-2059
-
[28] MAICHELE A J,BURWINKEL B,MAIRE I,et al.Muta⁃ tions in the testis/liver isoform of the phosphorylase ki⁃ nase gamma subunit(PHKG2)cause autosomal liver gly⁃ cogenosis in the gsd rat and in humans[J].Nat Genet,1996,14(3):337-340
-
[29] JENNIS M,KUNG C P,BASU S,et al.An African⁃specif⁃ ic polymorphism in the TP53 gene impairs p53 tumor sup⁃ pressor function in a mouse model[J].Genes Dev,2016,30(8):918-930
-
[30] JIANG L,KON N,LI T,et al.Ferroptosis as a p53⁃mediat⁃ ed activity during tumour suppression[J].Nature,2015,520(7545):57-62
-
[31] OU Y,WANG S J,LI D,et al.Activation of SAT1 engag⁃ es polyamine metabolism with p53 ⁃ mediated ferroptotic responses[J].Proc Natl Acad Sci U S A,2016,113(44):E6806-E6812
-
[32] RAY S K,DIXON C E,BANIK N L.Molecular mecha⁃ nisms in the pathogenesis of traumatic brain injury[J].Histol Histopathol,2002,17(4):1137-1152
-
[33] CHODOBSKI A,ZINK B J,SZMYDYNGER ⁃ CHODOB⁃ SKA J.Blood ⁃ brain barrier pathophysiology in traumatic brain injury[J].Transl Stroke Res,2011,2(4):492-516
-
[34] KRISHNAMURTHY K,LASKOWITZ D T.Cellular and molecular mechanisms of secondary neuronal injury fol⁃ lowing traumatic brain injury[A].In:Translational re⁃ search in traumatic brain injury(Laskowitz D,Grant G,eds).Boca Raton(FL),2016
-
[35] FISCHER T D,HYLIN M J,ZHAO J,et al.Altered mito⁃ chondrial dynamics and TBI pathophysiology[J].Front Syst Neurosci,2016,10:29
-
[36] WILDE E A,RAMOS M A,YALLAMPALLI R,et al.Dif⁃ fusion tensor imaging of the cingulum bundle in children after traumatic brain injury[J].Dev Neuropsychol,2010,35(3):333-351
-
[37] ABDALKADER M,LAMPINEN R,KANNINEN K M,et al.Targeting Nrf2 to suppress ferroptosis and mitochondri⁃ al dysfunction in neurodegeneration[J].Front Neurosci,2018,12:466
-
[38] MARMAROU A.Pathophysiology of traumatic brain ede⁃ ma:current concepts[J].Acta Neurochir Suppl,2003,86:7-10
-
[39] SIMARD J M,KENT T A,CHEN M,et al.Brain oedema in focal ischaemia:molecular pathophysiology and theo⁃ retical implications[J].Lancet Neurol,2007,6(3):258-268
-
[40] UNTERBERG A W,STOVER J,KRESS B,et al.Edema and brain trauma[J].Neuroscience,2004,129(4):1021-1029
-
[41] GUO Q,SAYEED I,BARONNE L M,et al.Progesterone administration modulates AQP4 expression and edema af⁃ ter traumatic brain injury in male rats[J].Exp Neurol,2006,198(2):469-478
-
[42] ALEXANDER J J,JACOB A,CUNNINGHAM P,et al.TNF is a key mediator of septic encephalopathy acting through its receptor,TNF receptor⁃1[J].Neurochem Int,2008,52(3):447-456
-
[43] RAO K V,REDDY P V,CURTIS K M,et al.Aquaporin⁃4 expression in cultured astrocytes after fluid percussion in⁃ jury[J].J Neurotrauma,2011,28(3):371-381
-
[44] ZHANG Z,WU Y,YUAN S,et al.Glutathione peroxidase 4 participates in secondary brain injury through mediat⁃ ing ferroptosis in a rat model of intracerebral hemorrhage [J].Brain Res,2018,1701:112-125
-
[45] HALL E D,VAISHNAV R A,MUSTAFA A G.Antioxi⁃ dant therapies for traumatic brain injury[J].Neurothera⁃ peutics,2010,7(1):51-61
-
[46] CHAN P H,FISHMAN R A,CARONNA J,et al.Induc⁃ tion of brain edema following intracerebral injection of ar⁃ achidonic acid[J].Ann Neurol,1983,13(6):625-632
-
[47] JHA R M,KOCHANEK P M,SIMARD J M.Pathophysiol⁃ ogy and treatment of cerebral edema in traumatic brain in⁃ jury[J].Neuropharmacology,2019,145(Pt B):230-246
-
[48] HAYASHI T,KANEKO Y,YU S,et al.Quantitative anal⁃ yses of matrix metalloproteinase activity after traumatic brain injury in adult rats[J].Brain Res,2009,1280:172-177
-
[49] MILLIS S R,ROSENTHAL M,NOVACK T A,et al.Long⁃ term neuropsychological outcome after traumatic brain in⁃ jury[J].J Head Trauma Rehabil,2001,16(4):343-355
-
[50] XIE B S,WANG Y Q,LIN Y,et al.Inhibition of ferropto⁃ sis attenuates tissue damage and improves long⁃term out⁃ comes after traumatic brain injury in mice[J].CNS Neu⁃ rosci Ther,2019,25(4):465-475
-
[51] FLEMINGER S,OLIVER D L,LOVESTONE S,et al.Head injury as a risk factor for Alzheimer's disease:the evidence 10 years on;a partial replication[J].J Neurol Neurosurg Psychiatry,2003,74(7):857-862
-
[52] ZLOKOVIC B V.Neurovascular pathways to neurodegen⁃ eration in Alzheimer's disease and other disorders[J].Nat Rev Neurosci,2011,12(12):723-738
-
[53] WILLMORE L J,UEDA Y.Posttraumatic epilepsy:hem⁃ orrhage,free radicals and the molecular regulation of glu⁃ tamate[J].Neurochem Res,2009,34(4):688-697
-
[54] IWANOWSKI L,OLSZEWSKI J.The effects of subarach⁃ noid injections of iron ⁃containing substances on the cen⁃ tral nervous system[J].J Neuropathol Exp Neurol,1960,19:433-448
-
[55] TURNER C P,BERGERON M,MATZ P,et al.Heme oxy⁃ genase⁃1 is induced in glia throughout brain by subarach⁃ noid hemoglobin[J].J Cereb Blood Flow Metab,1998,18(3):257-273
-
[56] ZHAO J,CHEN Z,XI G,et al.Deferoxamine attenuates acute hydrocephalus after traumatic brain injury in rats [J].Transl Stroke Res,2014,5(5):586-594
-
[57] KOSTELJANETZ M,INGSTRUP H M.Normal pressure hydrocephalus:correlation between CT and measure⁃ ments of cerebrospinal fluid dynamics[J].Acta Neurochir(Wien),1985,77(1⁃2):8-13
-
[58] WU G,XI G,HUA Y,et al.T2* magnetic resonance imag⁃ ing sequences reflect brain tissue iron deposition follow⁃ ing intracerebral hemorrhage[J].Transl Stroke Res,2010,1(1):31-34
-
[59] RAZ E,JENSEN J H,GE Y,et al.Brain iron quantifica⁃ tion in mild traumatic brain injury:a magnetic field corre⁃ lation study[J].AJNR Am J Neuroradiol,2011,32(10):1851-1856
-
[60] DOUGAN B K,HORSWILL M S,GEFFEN G M.Ath⁃ letes’age,sex,and years of education moderate the acute neuropsychological impact of sports⁃related concussion:a meta⁃analysis[J].J Int Neuropsychol Soc,2014,20(1):64-80
-
[61] WU S F,ZHU Z F,KONG Y,et al.Assessment of cere⁃ bral iron content in patients with Parkinson's disease by the susceptibility ⁃weighted MRI[J].Eur Rev Med Phar⁃ macol Sci,2014,18(18):2605-2608
-
[62] LU L,CAO H,WEI X,et al.Iron deposition is positively related to cognitive impairment in patients with chronic mild traumatic brain injury:assessment with susceptibili⁃ ty weighted imaging[J].Biomed Res Int,2015,2015:470676
-
[63] WALLACE E J,MATHIAS J L,WARD L.The relation⁃ ship between diffusion tensor imaging findings and cogni⁃ tive outcomes following adult traumatic brain injury:a me⁃ ta⁃analysis[J].Neurosci Biobehav Rev,2018,92:93-103
-
[64] HATCHER H C,SINGH R N,TORTI F M,et al.Synthet⁃ ic and natural iron chelators:therapeutic potential and clinical use[J].Future Med Chem,2009,1(9):1643-1670
-
[65] ZHANG L,HU R,LI M,et al.Deferoxamine attenuates iron⁃induced long⁃term neurotoxicity in rats with traumat⁃ ic brain injury[J].Neurol Sci,2013,34(5):639-645
-
[66] XIE Q,GU Y,HUA Y,et al.Deferoxamine attenuates white matter injury in a piglet intracerebral hemorrhage model[J].Stroke,2014,45(1):290-292
-
[67] GARTON T,KEEP R F,HUA Y,et al.Brain iron over⁃ load following intracranial haemorrhage[J].Stroke Vasc Neurol,2016,1(4):172-184
-
[68] JIN Y,LIN Y,FENG J F,et al.Moderate hypothermia sig⁃ nificantly decreases hippocampal cell death involving au⁃ tophagy pathway after moderate traumatic brain injury [J].J Neurotrauma,2015,32(14):1090-1100
-
[69] GU X H,XU L J,LIU Z Q,et al.The flavonoid baicalein rescues synaptic plasticity and memory deficits in a mouse model of Alzheimer’s disease[J].Behav Brain Res,2016,311:309-321
-
[70] LI Q,LI Q Q,JIA J N,et al.Baicalein exerts neuroprotec⁃ tive effects in FeCl3 ⁃induced posttraumatic epileptic sei⁃ zures via suppressing ferroptosis[J].Front Pharmacol,2019,10:638
-
摘要
颅脑外伤(traumatic brain injury,TBI)是由外力引起的大脑结构和生理功能破坏的损伤性疾病。它是全世界导致患者死亡和残疾的主要原因。颅脑外伤包括原发性和继发性损伤。铁含量的过度积累和铁死亡进程高度参与继发性脑损伤的病理生理过程。铁死亡是一种可调节的程序性细胞死亡,因为脑内铁积累增加导致脂质过氧化、活性氧(reactive oxygen spe⁃ cies,ROS)产生、线粒体功能障碍和神经炎症反应,从而导致神经元的损伤。因此,减少铁的过度积累和抑制脂质过氧化等因素可能是一种有前途的治疗方法。铁螯合剂可以消除过量的铁,减轻部分颅脑外伤的临床症状。文章将重点讨论在颅脑外伤中的铁含量和铁死亡的机制,以拓宽对铁螯合剂治疗脑外伤的认识,为进一步的颅脑外伤治疗寻找新的研究方向。
Abstract
Traumatic brain injury(TBI)is a structural and physiological disruption of brain function caused by external forces. It is the leading cause of death and disability worldwide. TBI includes both primary and secondary injuries. Excessive iron accumulation and ferroptosis are highly involved in the pathophysiological process of secondary brain injury. Ferroptosis is a form of regulatory cell death,characteristic as increased iron accumulation,lipid peroxidation,reactive oxygen species(ROS)production,mitochondrial dysfunction and neuroinflammatory responses,resulting in cellular and neuronal damage. For this reason,eliminating factors like excessive accumulation of iron and inhibiting lipid peroxidation may be a promising therapy approach. Iron chelators can be used to eliminate excess iron and to alleviate some of the clinical manifestations of TBI. In this review,it was focused on the mechanisms of iron and ferroptosis involved in the manifestations of TBI,broadening our understanding of the use of iron chelators for TBI,better seeking new research directions for further treatment of TBI.