-
有机氯农药(organochlorinated pesticide,OCP) 曾在农业生产中大规模运用,作为持久性有机污染物(persistent organic pollutant,POP)中的一大类,其中一些OCP生物毒效应已经超过了其对农业的贡献[1]。其中滴滴涕(dichloro ⁃ diphenyl ⁃trichloroeth⁃ ane,DDT)即2,2⁃双(4⁃氯苯基)⁃1,1,1⁃三氯乙烷具有强效杀虫力,一开始被广泛运用于疟疾等传染病,然而由于其对动植物产生的杀伤性以及环境污染问题,1983年后各国开始禁用,但DDT在环境中十分稳定且有残留[2]。WHO报告,大多数发展中国家仍将持续受到环境DDT污染的影响,甚至室内灰尘中都能检测到较高水平的DDT[3]。
-
DDT主要由皮肤直接接触或饮食进入人体,其代谢产物DDE是人类血清中最常检测到的OCP[4]。 2007年全国总膳食研究表明我国膳食中DDT的膳食暴露平均水平是16ng/(kg·d)[5]。DDT在人体内经核受体蛋白和转运蛋白等转运到肝脏和相应靶器官,其代谢过程需要细胞色素P450代谢酶(cyto⁃ chrome P450,CYP)的作用[6],主要代谢产物为1,1⁃ 二氯⁃2,2⁃双(对氯苯基)乙烯[1,1⁃dichloro⁃2,2⁃bis (4⁃chlorophenyl)ethylene,DDE]或1,1⁃二氯⁃2,2⁃双 (对氯苯基)乙烷[1,1⁃dichloro⁃2,2⁃bis(4⁃chlorophe⁃ nyl)ethane,DDD],DDE的半衰期更长且更稳定,常蓄积在人体脂肪组织中[7]。目前研究已发现DDT及其代谢产物可以引起代谢疾病[8],生殖发育异常[9],影响肿瘤的发生发展[10]。因此,为更好明确DDT以及其代谢产物毒作用的机制,有必要对DDT的生物转化途径进行研究。
-
CYP酶是哺乳动物体内重要的Ⅰ相代谢酶,介导许多药物和外源化学物的代谢,具有代谢解毒或代谢活化的作用[11]。CYP2B6是重要的肝脏CYP酶,约占肝脏总CYP含量的3%~6%,许多外源污染物是其代谢底物,如尼古丁等[12-13]。而大鼠CYP2B1是CYP2B6的同源酶,蛋白质序列同源性为74%,虽然结构略有差异,但文献报道表明大多数CYP2B6的底物均可被CYP2B1代谢,代谢活性位点具有保守性,因此大鼠CYP2B1常作为在体内研究人CYP2B6介导生物转化过程的替代酶[14]。分子对接模型计算表明包括OCP在内的41种POP均与CYP2B6有直接结合作用关系[15]。还有研究发现, DDT及其代谢产物对CYP2B的诱导能力强于其对CYP3A和CYP1A家族的诱导能力[16]。但迄今尚未见CYP2B6与DDT代谢的关系研究。
-
为此,本研究在建立生物样本中DDT及其代谢产物检测方法的基础上,通过体内外实验评价CYP2B6与DDT代谢的关系,为阐明DDT代谢机制并为环境中DDT的健康风险评估提供实验依据。
-
1 材料和方法
-
1.1 材料
-
6种DDT混合标准品(p,p’⁃DDT、o,p’⁃DDT、 p,p’⁃DDE、o,p’⁃DDE、p,p’⁃DDD、o,p’⁃DDD)(上海百灵威公司);异丙醇(色谱纯)、正己烷(色谱纯)(上海ANPEL公司);甲基叔丁基醚(Sigma⁃Aldrich公司,美国);重组酶CYP2B6(Cypex公司,美国);CYP2B6酶活性检测试剂盒(GMS18053.1)、大鼠CYP2B1酶活性检测试剂盒(GMS18019.1)(Genmed Scientifics公司,美国);抑制剂KR⁃Ⅱ(上海阿拉丁公司);CYP酶抑制剂8⁃MOP;数控氮吹仪(MD200⁃2)(上海之信仪器有限公司);INDinnite M200酶标仪(BD公司,美国);NanoDrop2000超微量分光光度仪、气相质谱联用仪TSQ⁃8000(Thermo Scientific公司,美国)。
-
1.2 方法
-
1.2.1 DDT检测方法的建立
-
采用GC ⁃MS/MS检测DDT,色谱柱为DB ⁃5u (30m×0.25mm×0.25 μm)毛细管柱,检测温度设为270℃,载气为高纯度氦气,柱流量为1.0mL/min,高纯度甲烷作为辅助气体,流速1.0mL/min;传输线温度250℃,离子源温度250℃,柱始温80℃保持0.5min, 310℃保持5min,全程序17min,离子源为ESI,正离子模式,采用AutoSRM采集数据并定量,根据m/z相对丰度和特征峰确定DDT的特征离子。用DDT标准品配制标准曲线并以外标法定量,根据检测所得峰面积以及浓度绘制物质标准曲线,校正曲线相关系数(r)控制在0.99以上,每个样品检测均设置3个重复,并以信噪比(S/N)=3时样品对应浓度确定检测限,控制结果相对偏差不超过算数平均值的15%,计算样品回收率不低于80%。
-
1.2.2 体外代谢动力学分析
-
由磷酸盐溶液(pH=7.4,50mmol/L)、NADPH产生系统(0.24mmol/L NADP+、3.3mmol/L G6P、2mmol/L EDTA、3.3mmol/L MgCl2)、合适浓度重组酶CYP2B6 (82nmol)/8⁃MOP抑制剂和预先溶于乙腈溶液的p,p’⁃DDT(0~600 μmol/L)组成孵育体系(共250 μL), 1.5mL EP管中振荡混匀,置于37℃培养箱中孵育30min,加入等体积预冷乙腈终止反应,4℃ 16 000g离心5min,取上清液上机检测,所有实验平行重复3次。
-
p,p’⁃DDT以及代谢产物p,p’⁃DDD、p,p’⁃DDE的定量参照标准品标准曲线。根据米氏动力学方程对实验数据进行计算,得到动力学参数(Km、Vmax 和CLint),公式为:V=Vmax ×[S]/(Km+[S]),CLint=Vmax/Km (其中V为反应速度,[S]为底物浓度,Km为M⁃M常数,Vmax为最大反应速率)。
-
1.2.3 动物染毒模型构建
-
20只清洁级10周龄SD雄性大鼠(Sprague⁃Daw⁃ ley)购自上海斯莱克实验动物有限责任公司[实验动物生产许可证号:SCXK(沪)2007⁃2005,合格证号:0018341],体重范围250~300g。饲养于SPF屏障中心,自由摄取水与饲料,环境温度控制为(25± 0.5)℃,相对湿度为55%,明暗交替周期12h/12h。动物饲养、环境维护以及实验安排均按照南京医科大学实验动物福利伦理委员会指导原则进行。大鼠适应环境1周后,随机分为对照组和实验组。对照组尾静脉注射0.5mg/kg乙醇溶剂,实验组尾静脉注射100mg/(mL·kg)抑制剂KR⁃Ⅱ;每组再分别随机分为2个亚组,1h后一组尾静脉注射玉米油,另一组注射40mg/(mL·kg)p,p’⁃DDT。分别在给药前,给药后10、20、30min眼眶静脉取血。实验结束后,收集肝组织样本并保存于-80℃冰箱备用。
-
1.2.4 大鼠血清和肝脏样本的处理
-
大鼠血清加入盐酸(6mol/L),涡旋2min静置,加入0.5mL异丙醇,涡旋2min静置,再加入3mL正己烷/甲基叔丁基醚(体积比1∶1),涡旋2min,静置至分层,吸取上清液至另一干净EP管中,重复操作2次。用氮气将上清液吹至近干,以1mL正己烷/二氯甲烷(体积比1∶1)溶解。将溶解液加入到已经用正己烷活化(正己烷/二氯甲烷体积比1∶1)的弗罗里硅土小柱中,以正己烷/二氯甲烷洗脱3次,每次2mL,收集3次洗脱液用氮气吹干,使用0.1mL正己烷定容后待测。
-
称取300mg大鼠肝脏组织,加入2mL去离子水,匀浆。加入500 μL盐酸使蛋白变性,加入500 μL异丙醇,沉淀蛋白。再加入3mL正己烷/甲基叔丁基醚(体积比1∶1),重复3次,充分振荡吸上层有机相于干净试管中,合并3次有机相后用氮气吹干。最后用3mL正己烷/甲基叔丁基醚(体积比1∶1)复溶后备用。过弗罗里硅土柱,收集洗脱液。用6mL正己烷/甲基叔丁基醚(体积比1∶1)洗脱,合并洗脱液,氮气吹至近干。加入500 μL甲苯、100 μL吡啶、100 μL乙酸酐,充分混匀,60℃水浴30min。加入700 μL去离子水终止反应。用3mL正己烷萃取,重复3次,合并有机相,氮气吹干,加入100 μL CH2Cl2溶解。将上述样品转移至250 μL内衬管待测。
-
1.2.5 大鼠肝脏微粒体制备
-
称取300mg大鼠肝脏组织于离心管中,加入1mL裂解液,冰上剪碎后超声,转移至新离心管中。 4℃、12 000 g离心20min,转移上清液至新的离心管中。之后4℃、100 000 g离心1h,弃上清,加入适量微粒体蛋白超声悬浮缓冲液重悬。测定浓度备用。
-
1.2.6 大鼠肝脏CYP2B1酶活性测定
-
大鼠肝脏微粒体置于冰上,避免光照。取适量GENMED缓冲液(Reagent A)、GENMED反应液(Re⁃ agent B)和GENMED底物(Reagent C)至离心管中,并分别加入新配的标准液到相应孔中。37℃孵育20min,避免光照;加入适量GENMED终止液(Re⁃ agent D)混匀;放入荧光分光光度仪中检测,并读取相应荧光读数(relative fluorescence unit,RFU);后以RFU为Y轴,标准羟基异吩噁唑酮浓度为X轴构建标准曲线。96孔板中加入适量GENMED缓冲液 (Reagent A)、GENMED反应液(Reagent B)和GENMED底物(Reagent C),再分别加入25 μL标准液或待测样品(20 μg肝脏微粒体蛋白),37℃孵育20min;将其放入荧光分光光度仪中检测,并读取相应RFU,根据标准曲线获得对应羟基异吩噁唑酮浓度;并转化为酶活性=[对应羟基异吩噁唑酮浓度 (nmol/L)× 0.2mL(体系容量)×样品稀释倍数]/20min (反应时间)。
-
1.3 统计学方法
-
数据用均数±标准差()表示,采用SPSS 23.0软件进行统计分析,多个样本均数比较采用单因素方差分析,进一步两两比较采用LSD⁃t 检验, P< 0.05为差异有统计学意义。
-
2 结果
-
2.1 DDT检测方法的建立
-
建立分析DDT(p,p’⁃DDT、o,p’⁃DDT、p,p’⁃DDD、o,p’⁃DDD、p,p’⁃DDE、o,p’⁃DDE)的GC⁃MS/MS检测方法,根据m/z相对丰度和特征峰确定DDT的特征离子,并记录各DDT保留时间,以及检出限 (表1)。根据DDT保留时间确定其特征峰(图1A)。标准品处理后采用外标法定量,并根据峰面积和浓度绘制各物质的标准曲线,结果显示,校正曲线相关系数均在0.99以上,线性良好,灵敏度高,满足准确定量的要求(图1B)。DDT的加标回收率和相对标准偏差如表2所示,实验样品回收率在80%~110%之间,相对标准偏差<15%,说明本实验方法符合要求。
-
2.2 评价CYP2B6对p,p’⁃DDT的代谢活性
-
运用体外代谢实验评价CYP2B6代谢p,p’⁃ DDT能力,采用80nmol的重组酶CYP2B6与p,p’⁃ DDT(0~600 μmol/L)孵育30min,根据米氏动力学方程计算代谢酶活性,反应速度呈现浓度依赖性,通过非线性回归计算得到动力学参数Km为15.12 μmol/L,每纳摩尔P450酶的Vmax为12.8nmol/min,内在清除率为0.85(图2),结果说明CYP2B6可将p,p’⁃DDT代谢为p,p’⁃DDE。随后利用代谢酶抑制剂(8⁃MOP) 研究CYP2B6对p,p’⁃DDT代谢的抑制作用。对照组利用p,p’⁃DDT(1 μmol/L)和CYP2B6(25pmol/mL)孵育30min,代谢酶抑制剂组利用p,p’⁃DDT(1 μmol/L)、 CYP2B6(25pmol/mL)和8⁃MOP(5 μmol/L)孵育30min,检测对照组(CYP2B6 + p,p’⁃DDT)和重组酶抑制剂组(CYP2B6 + 8⁃MOP + p,p’⁃DDT)在0、5、 10、20、30min时原形和代谢产物的含量。如图3所示,在对照组中,随着代谢时间延长,p,p’⁃DDT的浓度逐渐降低而代谢产物(p,p’⁃DDE/p,p’⁃DDD)则随时间逐渐增加。而与对照组相比,代谢酶抑制剂 (8⁃MOP)可显著减少原形p,p’⁃DDT被代谢的速度和数量,其代谢产物(p,p’⁃DDE/p,p’⁃DDD)的生成显著降低(P< 0.001),约为对照组的80%和65%,结果表明抑制CYP2B6酶活性会影响p,p’⁃DDT的代谢。
-
a:指DDT及其代谢产物。
-
图1 6种DDT的特征图谱和标准曲线
-
Fig.1 The representative standard curve and mass spectrum of 6kinds of DDT
-
a:指DDT及其代谢产物。
-
2.3 抑制CYP2B1可降低大鼠p,p’⁃DDT代谢产物的生成
-
体内代谢实验中,将大鼠分为对照以及CYP2B6的特异性化学抑制剂KR⁃Ⅱ处理的抑制剂组,检测肝脏微粒体CYP2B1(人CYP2B6的同源酶)的活性。抑制剂组CYP2B1活性明显低于对照组(P< 0.01,图4A),说明抑制剂KR ⁃Ⅱ的确可以抑制CYP2B1活性;肝脏匀浆的检测结果显示抑制剂组p,p’⁃DDT原形明显高于对照组,而两种代谢产物含量则明显低于对照组(P< 0.001,图4B)。说明CYP2B1活性影响了大鼠肝脏对p,p’⁃DDT的代谢。
-
此外,本研究还分析了大鼠血清中p,p’⁃DDT和主要代谢产物(p,p’⁃DDD/p,p’⁃DDE)的水平随时间的变化。与对照组大鼠相比,随着时间的延长,抑制剂组血清中的原形明显较高而代谢产物含量则较低(P< 0.001,图5),尤其在30min时最为显著。实验结果再次证实抑制CYP2B1活性能够抑制其代谢p,p’⁃DDT的能力,减少代谢产物的生成。
-
3 讨论
-
DDT是含量较高的经典POP,1983—1984年我国大规模禁止生产和使用DDT,仅留有少数工厂生产用于外销,然而在此前累计生产使用DDT已达40多万吨[17]。由于这类物质化学性质稳定、自然环境下难降解,DDT半衰期为20年左右,我国土壤中DDT浓度为3.01~163.20ng/g,江苏省苏北地区污染浓度达13.71ng/g,苏南地区污染浓度达163.20ng/g[18-19]。在中国东部城市的人群研究中发现,2型糖尿病患者血清中仍检测出一定水平的p,p’⁃DDE(4 184.00 ± 2.90)pg/mL,且远高于正常人群[20]。虽然中国人群血清中DDT以及其代谢物p,p’⁃DDE的体内蓄积量逐年下降,但要达到美国人群平均血清浓度还需要数十年的时间[21]。这说明至今中国绝大部分人体内仍含有相当高浓度的DDT,并可能引起健康损害。DDT在人体中的生物转化过程一直被人们重视,许多研究表明它的代谢主要由肝脏中的CYP450酶介导[22]。既往研究显示, p,p’⁃DDT可在体内经CYP1A1等代谢为性质更稳定和毒性相对更大的产物p,p’⁃DDE[23],而最近研究报道发现CYP3A和CYP2B酶也可以代谢DDT[24]。其中CYP2B6主要表达在肝脏,是人类CYP2B亚家族中唯一编码功能性酶的基因,可代谢近1/4的现有药物[25]。DDT是高脂溶性的化合物,主要蓄积在肝脏,研究指出p,p’⁃ DDT的脱氯作用主要由CYP2B1、CYP3A1、CYP2B6和CYP3A4介导,这些肝脏代谢酶能够在厌氧条件下通过NADH以及NADPH通路介导p,p’⁃DDT的代谢,使其还原脱氯代谢为p,p’⁃DDE和p,p’⁃DDD[26]。遗憾的是该研究并未对CYP2B6是否为DDT代谢的关键酶进行具体验证。以往对于DDT代谢的研究多关注CYP1A和CYP3A亚家族,对于CYP2B系列酶的代谢能力研究较少,且仅有部分提示性结果。最近本课题组的一项全基因组关联研究在中国东部的非职业人群中发现一个与p,p’⁃DDT代谢相关的CYP2B6功能性SNP位点[27]。研究说明了CYP2B6基因多态性与DDT及代谢物浓度有关,表明CYP2B6代谢活化可能是人群中DDT毒性效应产生的分子基础,因此阐明CYP2B6对DDT的代谢过程能够为干预有机氯农药的毒效应提供新的思路。
-
图2 CYP2B6重组酶对p,p’⁃DDT的代谢动力学特征
-
Fig.2 Metabolic characteristics of p,p’⁃ DDT by CYP2B6enzyme
-
图3 CYP2B6的抑制剂(8⁃MOP)对p,p’⁃DDT代谢的影响
-
Fig.3 Effects of the CYP2B6inhibitor(8⁃MOP)on p,p’⁃DDT metabolism
-
图4 CYP2B1的抑制剂(KR⁃Ⅱ)对大鼠CYP2B1活性及肝脏代谢p,p’⁃DDT的影响
-
Fig.4 Effects of the CYP2B1inhibitor(KR⁃Ⅱ)on CYP2B1activity and hepatic metabolism of p,p’⁃DDT in rats
-
图5 CYP2B1抑制剂(KR⁃Ⅱ)对大鼠血清p,p’⁃DDT及代谢产物水平的影响
-
Fig.5 Effects of the CYP2B1inhibitor(KR⁃Ⅱ)on serum p,p’⁃DDT and its metabolites levels in rats
-
本研究通过体内体外实验分别验证了CYP2B6对p,p’⁃DDT的代谢作用。体内体外实验都观察到了CYP2B6活性抑制对p,p’⁃DDT代谢的抑制。提示DDT在人体中的代谢作用确实与CYP2B6有关。本研究结果显示CYP2B6体外代谢DDT的Km 为15.12 μmol/L,每纳摩尔P450酶的Vmax 为12.8nmol/min。该代谢速度与肝脏CYP3A4的代谢速度差不多,而其他代谢酶CYP1A1、CYP1A2、 CYP2A6、CYP2C9、CYP2D6、CYP2E1和CYP4A11的代谢速率均远远低于CYP2B6 [28],此结果提示CYP2B6是代谢DDT的优势酶。同时结果表明DDE和DDD是主要代谢产物,大量研究表明这些代谢产物中特别是DDE,其蓄积和毒性都强于DDT,可能是DDT产生持久高毒性的主要原因[29]。
-
本研究建立了一套分析DDT的GC⁃MS/MS检测方法,其中p,p’⁃DDT的检测限为0.002 34ng/mL,其主要代谢产物p,p’⁃DDE的检测限为0.001 56ng/mL。相较于其他研究的血浆DDT检测方法(血浆中DDE的最低检测限为0.009ng/mL)[30],本研究方法具有高灵敏性、高特异性,有利于环境(大气、水、土壤、食物)、生物样本中DDT及其代谢产物的检测。由于DDT在环境中普遍存在和持久性,容易在土壤富集并通过二次释放带来持久健康风险,DDT相关的健康风险评估已引起全世界的广泛关注[31]。研究表明土源性暴露DDT的居民有很高的潜在癌症风险,成年人是最敏感的群体,其次是儿童和青少年[32]。因此,在环境化学物的健康风险评估中,建立科学和精准的暴露评价方法对于环境和健康关系的研究至关重要。
-
外源化学物在生命体内代谢是十分复杂的过程,本研究结合了体外代谢方法与体内代谢方法,能够更为全面地阐述代谢过程。介于代谢酶代谢过程有一定相似性,本研究方法具有衍生扩展性,也能用于研究其他化合物与酶的代谢关系。 CYP2B6是DDT的主要优势代谢酶,考虑到CYP2B6是高突变性的代谢酶,人群中CYP2B6的表达和活性存在差异,本研究可为DDT暴露危害的易感人群筛选及风险评估的优化提供依据。
-
参考文献
-
[1] ROGAN W J,CHEN A.Health risks and benefits of bis(4 ⁃chlorophenyl)⁃1,1,1⁃trichloroethane(DDT)[J].Lancet,2005,366(9487):763-773
-
[2] 李卫华,张蕴晖,范奇元,等.上海和宜兴地区食品和人乳腺组织中有机氯农药污染现状[J].环境与职业医学 2005,22(1):14-16
-
[3] GASPAR F W,CHEVRIER J,BORNMAN R,et al.Un⁃ disturbed dust as a metric of long⁃term indoor insecticide exposure:residential DDT contamination from indoor re⁃ sidual spraying and its association with serum levels in the VHEMBE cohort[J].Environ Int,2015,85:163-167
-
[4] RAMOS J J,HUETOS O,GONZALEZ S,et al.Organo⁃ chlorinated pesticides levels in a representative sample of the Spanish adult population:the bioambient.es projec[J].Int J Hyg Environ Health,2017,220(2 Pt A):217-226
-
[5] ZHOU P,ZHAO Y,LI J,et al.Dietary exposure to persis⁃ tent organochlorine pesticides in 2007 Chinese total diet study[J].Environ Int,2012,42:152-159
-
[6] 李佳圆,吴德生,杨非,等.血清有机氯农药DDT暴露、CYP1A1 基因多态性与乳腺癌患病风险的病例对照研究[J].中华流行病学杂志,2006,27(3):217-222
-
[7] SALIHOVIC S,GANNA A,FALL T,et al.The metabolic fingerprint of p,p’⁃ DDE and HCB exposure in humans [J].Environ Int,2016,88:60-66
-
[8] JAACKS L M,YADAV S,PANUWET P,et al.Metabolite of the pesticide DDT and incident type 2 diabetes in ur⁃ ban India[J].Environ Int,2019,133(pt a):105089
-
[9] YANG C,FANG J,SUN X,et al.Prenatal exposure to or⁃ ganochlorine pesticides and infant growth:a longitudinal study[J].Environ Int,2021,148:106374
-
[10] CHANG S,EL⁃ZAEMEY S,HEYWORTH J,et al.DDT ex⁃ posure in early childhood and female breast cancer:evi⁃ dence from an ecological study in Taiwan[J].Environ Int,2018,121(pt 2):1106-1112
-
[11] 朱明媚,景霞,孙芳,等.CYP2C9、CYP2A6基因多态性对丙戊酸钠血药浓度的影响[J].南京医科大学学报(自然科学版),2017,37(1):40-43,47
-
[12] TURPEINEN M,ZANGER U M.Cytochrome P450 2B6:function,genetics,and clinical relevance[J].Drug Metabol Drug Interact,2012,27(4):185-197
-
[13] GARCIA K L P,LÊ A D,TYNDALE R F.Brain CYP2B induction can decrease nicotine levels in the brain[J].Addict Biol,2017,22(5):1257⁃1266
-
[14] LEWIS D F,LAKE B G,DICKINS M,et al.Molecular modelling of CYP2B6,the human CYP2B isoform,by ho⁃ mology with the substrate ⁃ bound CYP102 crystal struc⁃ ture:evaluation of CYP2B6 substrate characteristics,the cytochrome b5 binding site and comparisons with CYP2B1 and CYP2B4[J].Xenobiotica,1999,29(4):361-393
-
[15] MALDONADO⁃ROJAS W,RIVERA⁃JULIO K,OLIVERO ⁃VERBEL J,et al.Mechanisms of interaction between per⁃ sistent organic pollutants(POPs)and CYP2B6:an in sili⁃ co approach[J].Chemosphere,2016,159:113-125
-
[16] WYDE M E,BARTOLUCCI E,UEDA A,et al.The envi⁃ ronmental pollutant 1,1⁃dichloro ⁃2,2⁃bis(p ⁃chlorophe⁃ nyl)ethylene induces rat hepatic cytochrome P450 2B and 3A expression through the constitutive androstane re⁃ ceptor and pregnane X receptor[J].Mol Pharmacol,2003,64(2):474-481
-
[17] QIU X,ZHU T,YAO B,et al.Contribution of dicofol to the current DDT pollution in China[J].Environ Sci Tech⁃ nol,2005,39(12):4385-4390
-
[18] YANG X,WANG S,BIAN Y,et al.Dicofol application re⁃ sulted in high DDTs residue in cotton fields from northern Jiangsu Province,China[J].J Hazard Mater,2008,150(1):92-98
-
[19] 安琼,董元华,王辉,等.苏南农田土壤有机氯农药残留规律[J].土壤学报,2004,41(3):414-419
-
[20] HAN X,ZHANG F,MENG L,et al.Exposure to organo⁃ chlorine pesticides and the risk of type 2 diabetes in the population of East China[J].Ecotoxicol Environ Saf,2020,190:110125
-
[21] WANG Q,YUAN H,JIN J,et al.Organochlorine pesti⁃ cide concentrations in pooled serum of people in different age groups from five Chinese cities[J].Sci Total Environ,2017,586:1012-1019
-
[22] TEBOURBI O,DRISS M R,SAKLY M,et al.Metabolism of DDT in different tissues of young rats[J].J Environ Sci Health B,2006,41(2):167-176
-
[23] MESSAROS B M,ROSSANO M G,LIU G,et al.Negative effects of serum p,p’⁃DDE on sperm parameters and mod⁃ ification by genetic polymorphisms[J].Environ Res,2009,109(4):457-464
-
[24] WANG H,TOMPKINS L M.CYP2B6:new insights into a historically overlooked cytochrome P450 isozyme[J].Curr Drug Metab,2008,9(7):598-610
-
[25] NEBERT D W,WIKVALL K,MILLER W L.Human cyto⁃ chromes P450 in health and disease[J].Philos Trans R Soc Lond B Biol Sci,2013,368(1612):20120431
-
[26] KITAMURA S,SHIMIZU Y,SHIRAGA Y,et al.Reduc⁃ tive metabolism of p,p’⁃DDT and o,p’⁃DDT by rat liver cytochrome P450[J].Drug Metab Dispos,2002,30(2):113-118
-
[27] LI S,SHAO W,WANG C,et al.Identification of common genetic variants associated with serum concentrations of p,p’⁃ DDE in non ⁃ occupational populations in Eastern China[J].Environ Int,2021,152:106507
-
[28] KITAMURA S,SHIMIZU Y,SHIRAGA Y,et al.Reduc⁃ tive metabolism of p,p’⁃DDT and o,p’⁃DDT by rat liver cytochrome P450[J].Drug Metab Dispos,2002,30(2):113-118
-
[29] CANO ⁃SANCHO G,SALMON A G,LA MERRILL M A.Association between exposure to p,p’⁃DDT and its me⁃ tabolite p,p’⁃DDE with obesity:integrated systematic re⁃ view and meta ⁃ analysis[J].Environ Health Perspect,2017,125(9):096002
-
[30] WITTSIEPE J,NESTOLA M,KOHNE M,et al.Determi⁃ nation of polychlorinated biphenyls and organochlorine pesticides in small volumes of human blood by high ⁃ throughput on⁃line SPE⁃LVI⁃GC⁃HRMS[J].J Chromatogr B Analyt Technol Biomed Life Sci,2014,945/946:217-224
-
[31] BHANDARI G,ATREYA K,SCHEEPERS P T J,et al.Concentration and distribution of pesticide residues in soil:non ⁃dietary human health risk assessment[J].Che⁃ mosphere,2020,253:126594
-
[32] WANG R,QU C,LI M,et al.Health risks of exposure to soil ⁃ borne dichlorodiphenyltrichloroethanes(DDTs):a preliminary probabilistic assessment and spatial visualiza⁃ tion[J].Sci Total Environ,2021,772:144949
-
摘要
目的:本研究选择细胞色素P450酶(cytochrome P450,CYP)2B6介导p,p’⁃滴滴涕(dichloro⁃diphenyl⁃trichloroethane, DDT)生物转化过程进行研究,为该类持久性有机污染物的风险评估和防治提供依据。方法:建立气相色谱/质谱联用仪(GC⁃ MS/MS)的检测方法以检测生物样本中的p,p’⁃DDT;利用重组酶CYP2B6构建体外代谢模型,采用米式方程计算代谢动力学参数;采用抑制剂8⁃MOP验证CYP2B6对p,p’⁃DDT的代谢能力;构建SD大鼠体内代谢模型(大鼠CYP2B1是人CYP2B6的同源酶),尾静脉注射p,p’⁃DDT和CYP2B6的特异性抑制剂KR⁃Ⅱ,收集血清(0、5、10、20、30 min)以及肝脏微粒体,比较对照组以及抑制剂组大鼠肝脏中CYP2B1活性以及肝脏和血清中p,p’⁃DDT原形及代谢产物p,p’⁃DDE、p,p’⁃DDD水平的变化。结果: 成功建立了多种DDT及代谢产物的 GC⁃MS/MS检测方法。体外代谢证实CYP2B6可代谢p,p’⁃DDT产生以p,p’⁃DDE为主的代谢产物,动力学参数Km为15.12 μmol/L,每纳摩尔P450酶的Vmax为12.8nmol/min;抑制剂8⁃MOP可显著抑制CYP2B6活性,代谢产物p,p’⁃DDE的含量显著下降。CYP2B1表达被抑制后,大鼠肝脏中CYP2B1的酶活性显著下降,肝脏和血清中的代谢产物p,p’⁃DDE和p,p’⁃DDD含量也明显降低。结论:CYP2B6可以代谢p,p’⁃DDT生成以p,p’⁃DDE为主的代谢产物,是DDT的主要优势代谢酶。考虑到人群中CYP2B6的表达和活性存在差异,本研究可为DDT暴露危害的易感人群筛选及风险评估的优化提供依据。
Abstract
Objective:This study is proposed to clarify the biological conversion process of p,p’⁃dichloro⁃diphenyl⁃trichloroethane (DDT)metabolized by cytochrome P450(CYP)2B6. The result will provide basis for the risk assessment and prevention of persistent organic pollutant. Methods:The detection method based on gas chromatography ⁃mass spectrometry(GC ⁃MS/MS)was established to detect DDT in biological samples. The metabolic model in vitro was established,using recombinant enzyme CYP2B6 and p,p’⁃DDT. The enzyme activity was calculated by Michaelis⁃Menten equation. The 8⁃MOP as enzyme inhibitor was used to verify the metabolical ability of CYP2B6 on p,p’⁃ DDT. Meanwhile,the metabolic model in vivo was established in SD rat(rat CYP2B1 is homologous enzymes of human CYP2B6)by tail intravenous injection of p,p’⁃DDT and CYP2B6 specific chemical inhibitor KR⁃Ⅱ. The changes of p,p’⁃DDT prototypes and metabolites(p,p’⁃DDE,p,p’⁃DDD)and the changes of enzyme activity were assessed in the serum(0 min,5 min,10 min,20 min,30 min)and liver microsomes. Results:A detection method for DDT was successfully established and tested. Metabolic experiments in vitro confirmed that p,p’⁃DDT could metabolized by CYP2B6,and the main metabolite was p,p’⁃ DDE. Kinetic parameter Km was 15.12 μmol/L,and the Vmax of per nanomolar P450 is 12.8 nmol/min. Inhibitor 8⁃MOP significantly inhibited the CYP2B6 activity and metabolites p,p’⁃DDE content significantly decreased. After CYP2B1 was inhibited,the metabolic enzyme activity was significantly decreased and the serum p,p’⁃DDE and p,p’⁃DDD product content was lowered. Conclusion: CYP2B6 can metabolize p,p’⁃DDT to produce metabolites dominated by p,p’⁃DDE,and it should be the dominant enzyme of DDT in the human body. Considering that there are differences in the expression and activity of CYP2B6. This study can provide a basis for screening of susceptible populations exposed to DDT and the optimization of risk assessment.
Keywords
organic chlorine pesticides ; DDT ; CYP2B6 ; biotransformation ; metabolites