Page 141 - 南京医科大学学报自然科学版
P. 141

第41卷第12期         曹   杨,舒   磊,冯旰珠. 呼吸道及肠道菌群在慢性阻塞性肺病发病机制中的研究进展[J].
                 2021年12月                    南京医科大学学报(自然科学版),2021,41(12):1843-1849                      ·1847 ·


                2(nucleotide binding oligo domain protein 2,NOD2)等    (4):634-650
                模式识别受体(pattern recognition receptoers,PRR),      [7] KAHN F W,JONES J M. Diagnosing bacterial respiratory
                TLR在固有免疫中起着至关重要的作用。业已证实                                infection by bronchoalveolar lavage[J]. J Infect Dis,
                益生菌含有 TLR 配体,参与固有免疫系统的激活,                              1987,155(5):862-869
                                                                 [8] GARCIA⁃CLEMENTE M,DE LA ROSA D,MAIZ L,et
                补充益生菌可增强机体固有免疫能力,从而对呼吸
                                                                       al. Impact of pseudomonas aeruginosa infection on pa⁃
                道感染发挥抑制效应         [61,66-68] 。
                                                                       tients with chronic inflammatory airway diseases[J]. J
                6  总 结                                                 Clin Med,2020,9(12):3800
                                                                 [9] BUDDEN K F,GELLATLY S L,WOOD D L,et al. Emerg⁃
                    综上所述,COPD 患者呼吸道及肠道菌群多样                             ing pathogenic links between microbiota and the gut⁃lung
                性下降,有益菌群减少,致病性变形菌门增多;香烟                                axis[J]. Nat Rev Microbiol,2017,15(1):55-63
                烟雾暴露影响了肺部免疫,降低呼吸道、肠道菌群                           [10] GILL S R,POP M,DEBOY R T,et al. Metagenomic anal⁃
                多样性及有益菌群丰度,抑制SCFA的产生;减少香                               ysis of the human distal gut microbiome[J]. Science,
                烟烟雾暴露可减少 COPD 发病,改善预后。高膳食                              2006,312(5778):1355-1359
                                                                 [11] TURNBAUGH P J,LEY R E,HAMADY M,et al. The hu⁃
                纤维饮食及肠道益生菌制剂(如乳杆菌、双歧杆菌)
                                                                       man microbiome project[J]. Nature,2007,449(7164):
                有利于促进宿主免疫反应提高,在抑制呼吸道感
                                                                       804-810
                染、减轻 COPD 炎症方面发挥积极效应。随着分子
                                                                 [12] DICKSON R P,ERB⁃DOWNWARD J R,FREEMAN C
                检测技术的不断成熟和生物信息学手段的日臻完                                  M,et al. Bacterial topography of the healthy human lower
                善,有关 COPD 菌群特征的相关研究将会越来越深                              respiratory tract[J]. mBio,2017,8(1):e02287-16
                入。减少 COPD 患者下呼吸道“关键物种”病原菌、                       [13] BADOR J,NICOLAS B,CHAPUIS A,et al. 16S rRNA
                增加膳食纤维及肠道益生菌的摄入有利于改善呼                                  PCR on clinical specimens:impact on diagnosis and ther⁃
                吸系统免疫功能,这已成为一个新兴的临床研究视                                 apeutic management[J]. Med Mal Infect,2020,50(1):
                角,必将为COPD的治疗带来新的思路。                                    63-73
                                                                 [14] MENDEZ R,BANERJEE S,BHATTACHARYA S K,et
               [参考文献]
                                                                       al. Lung inflammation and disease:a perspective on mi⁃
               [1] DEVADOSS D,LONG C,LANGLEY R J,et al. Long non⁃      crobial homeostasis and metabolism[J]. IUBMB Life,
                    coding transcriptome in chronic obstructive pulmonary  2019,71(2):152-165
                    disease[J]. Am J Respir Cell Mol Biol,2019,61(6):  [15] LEE S W,KUAN C S,WU L S,et al. Metagenome and
                    678-688                                            metatranscriptome profiling of moderate and severe
               [2] EHTESHAMI⁃AFSHAR S,FITZGERALD J M,DOYLE⁃            COPD sputum in taiwanese han males[J]. PLoS One,
                    WATERS M M,et al. The global economic burden of asth⁃  2016,11(7):e159066
                    ma and chronic obstructive pulmonary disease[J]. Int J  [16] ALLALI I,ARNOLD J W,ROACH J,et al. A comparison
                    Tuberc Lung Dis,2016,20(1):11-23                   of sequencing platforms and bioinformatics pipelines for
               [3] SANA A,MEDA N,KAFANDO B,et al. Prevalence of        compositional analysis of the gut microbiome[J]. BMC
                    COPD among women and relation with cooking fuel    Microbiol,2017,17(1):194
                    choice in ouagadougou,burkina faso[J]. Int J Tuberc  [17] WADE W G,PROSDOCIMI E M. Profiling of oral bacteri⁃
                    Lung Dis,2020,24(9):928-933                        al communities[J]. J Dent Res,2020,99(6):621-629
               [4] OLLOQUEQUI J,SILVA O R. Biomass smoke as a risk  [18] HILTY M,BURKE C,PEDRO H,et al. Disordered micro⁃
                    factor for chronic obstructive pulmonary disease:effects  bial communities in asthmatic airways[J]. PLoS One,
                    on innate immunity[J]. Innate Immun,2016,22(5):    2010,5(1):e8578
                    373-381                                      [19] LI X,SUN Y,AN Y,et al. Air pollution during the winter
               [5] PATHAK U,GUPTA N C,SURI J C. Risk of COPD due       period and respiratory tract microbial imbalance in a
                    to indoor air pollution from biomass cooking fuel:a sys⁃  healthy young population in Northeastern China[J]. Envi⁃
                    tematic review and meta ⁃ analysis[J]. Int J Environ  ron Pollut,2019,246:972-979
                    Health Res,2020,30(1):75-88                  [20] LEE S Y,MAC A M,FAM K D,et al. Airway microbiome
               [6] LEUNG J M,TIEW P Y,MAC A M,et al. The role of       composition correlates with lung function and arterial stiff⁃
                    acute and chronic respiratory colonization and infections  ness in an age⁃dependent manner[J]. PLoS One,2019,14
                    in the pathogenesis of COPD[J]. Respirology,2017,22  (11):e225636
   136   137   138   139   140   141   142   143   144   145   146