Page 117 - 南京医科大学学报自然科学版
P. 117

第44卷第1期                    李  磊,孙秀兰. 代谢重编程对小胶质细胞功能的调节作用[J].
                  2024年1月                     南京医科大学学报(自然科学版),2024,44(01):105-114                       ·111 ·


                达减少   [93] 。上述研究强调了 mTOR/HIF⁃1α信号通                     rrhage:microglia⁃astrocyte involvement in remyelination
                路在 MS 中小胶质细胞代谢重编程中的关键作用。                              [J]. J Neuroinflammation,2021,18(1):43
                此外,使用2⁃DG抑制糖酵解会导致LPS刺激的小胶                        [7] JURCOVICOVA J. Glucose transport in brain⁃effect of in⁃
                质细胞中促炎性极化减少,并减少促炎性细胞因子                                 flammation[J]. Endocr Regul,2014,48(1):35-48
                                                                 [8] ROMANO A,KOCZWARA J B,GALLELLI C A,et al.
                的产生   [94] 。这些发现强调了MS疾病中代谢与小胶
                                                                       Fats for thoughts:an update on brain fatty acid metabo⁃
                质细胞极化之间的复杂关系。
                                                                       lism[J]. Int J Biochem Cell Biol,2017,84:40-45
                    总之,调整小胶质细胞代谢具有减少神经炎
                                                                 [9] SCHÖNFELD P,REISER G. Why does brain metabolism
                症、保护神经元和减缓疾病进展的潜力,为治疗神
                                                                       not favor burning of fatty acids to provide energy? Reflec⁃
                经退行性疾病提供了新的靶点和思路。尽管如此,                                 tions on disadvantages of the use of free fatty acids as fuel
                仍需要进一步的研究来全面了解潜在机制,查明最                                 for brain[J]. J Cereb Blood Flow Metab,2013,33(10):
                相关的代谢途径和分子靶点,并优化干预时机和持                                 1493-1499
                续时间。随着该领域的不断进步,小胶质细胞代                            [10] ALBERINI C M,CRUZ E,DESCALZI G,et al. Astrocyte
                谢重编程可能成为中枢神经系统疾病的关键治疗                                  glycogen and lactate:new insights into learning and memory
                靶标。                                                    mechanisms[J]. Glia,2018,66(6):1244-1262
                                                                 [11] ZHANG J M,CHEN M J,HE J H,et al. Correction to:ke⁃
                5 结论与展望                                                tone body rescued seizure behavior of LRP1 deficiency in

                                                                       Drosophila by modulating glutamate transport[J]. J Mol
                    中枢神经细胞的免疫代谢是一个新兴的研究
                                                                       Neurosci,2023,73(1):84
                领域,不同代谢途径在免疫细胞的炎症活化和功能
                                                                 [12] ANDERSEN J V,MARKUSSEN K H,JAKOBSEN E,et
                转变中具有重要作用。小胶质细胞免疫代谢在小
                                                                       al. Glutamate metabolism and recycling at the excitatory
                胶质细胞功能及其介导的神经炎症调节中的重要                                  synapse in health and neurodegeneration[J]. Neurophar⁃
                地位逐渐受到研究者的关注,调控小胶质细胞代谢                                 macology,2021,196:108719
                重编程对中枢神经系统疾病的发生、发展具有关键                           [13] RAJENDRAN L,PAOLICELLI R C. Microglia⁃mediated
                作用。研究并揭示小胶质细胞代谢重编程的作用                                  synapse loss in Alzheimer’s disease[J]. J Neurosci,
                及功能,将为中枢神经系统疾病的病理机制和治疗                                 2018,38(12):2911-2919
                策略提供新靶点和新思路。                                     [14] PAN R Y,MA J,KONG X X,et al. Sodium rutin amelio⁃
                                                                       rates Alzheimer’s disease ⁃ like pathology by enhancing
               [参考文献]
                                                                       microglial amyloid⁃β clearance[J]. Sci Adv,2019,5(2):
               [1] LIM S A,SU W,CHAPMAN N M,et al. Lipid metabolism    eaau6328
                    in T cell signaling and function[J]. Nat Chem Biol,2022,  [15] BERNIER L P,YORK E M,KAMYABI A,et al. Microglial
                    18(5):470-481                                      metabolic flexibility supports immune surveillance of the
               [2] LIU X,HARTMAN C L,LI L,et al. Reprogramming lipid   brain parenchyma[J]. Nat Commun,2020,11(1):1559
                    metabolism prevents effector T cell senescence and en⁃  [16] ZHANG Y,CHEN K,SLOAN S A,et al. An RNA ⁃ se⁃
                    hances tumor immunotherapy[J]. Sci Transl Med,2021,  quencing transcriptome and splicing database of glia,
                    13(587):eaaz6314                                   neurons,and vascular cells of the cerebral cortex[J]. J
               [3] YAN J W,HORNG T. Lipid metabolism in regulation of  Neurosci,2014,34(36):11929-11947
                    macrophage functions[J]. Trends Cell Biol,2020,30  [17] GHOSH S,CASTILLO E,FRIAS E S,et al. Bioenergetic
                    (12):979-989                                       regulation of microglia[J]. Glia,2018,66(6):1200-1212
               [4] O’NEILL L A J,PEARCE E J. Immunometabolism governs  [18]KONG L,WANG Z,LIANG X,et al. Monocarboxylate
                    dendritic cell and macrophage function[J]. J Exp Med,  transporter 1 promotes classical microglial activation and
                    2016,213(1):15-23                                 pro⁃inflammatory effect via 6⁃phosphofructo⁃2⁃kinase/fruc⁃
               [5] MERGENTHALER P,LINDAUER U,DIENEL G A,et            tose ⁃ 2,6 ⁃ biphosphatase 3[J]. J Neuroinflammation,
                    al. Sugar for the brain:the role of glucose in physiological  2019,16(1):240
                    and pathological brain function[J]. Trends Neurosci,  [19] KOMM B,BEYREIS M,KITTL M,et al. Glycine modu⁃
                    2013,36(10):587-597                                lates membrane potential,cell volume,and phagocytosis
               [6] ZHENG J W,LU J N,MEI S H,et al. Ceria nanoparticles  in murine microglia[J]. Amino Acids,2014,46(8):
                    ameliorate white matter injury after intracerebral hemo ⁃  1907-1917
   112   113   114   115   116   117   118   119   120   121   122