Page 121 - 南京医科大学学报自然科学版
P. 121

第44卷第2期                 杜 悦,史中青,戚占如,等. 一种超声心动图关键帧智能检测方法[J].
                  2024年2月                     南京医科大学学报(自然科学版),2024,44(2):253-262                        ·259 ·


                               5                                      5
                               4                                      4
                              ( ED )  3                              ( ES )  3
                              AFD  2                                 AFD  2


                               1                                      1
                               0                                      0
                                   A2C       A3C     A4C                   A2C      A3C      A4C
                                             图7 ED和ES模型预测与真实标签一致性对比
                               Figure 7 Comparison of consistency between ED and ES model prediction and label


                  A                      ED            ED               ES           ES



                  •••                                         •••                                          •••


                 Frame No   12           13            14               37           38            39
                  B                      ED            ED             ES& ES



                  •••                                         •••                                          •••


                 Frame No   7             8            9                29           30            31
                  C                    ED& ED                                       ES& ES


                  •••                                         •••                                          •••



                 Frame No   3             4            5                24           25            26
                   A:Model prediction of A2C views and examples of true labels. B:Model prediction of A3C views and examples of true labels. C:Model prediction
                of A4C views and examples of true labels. ED、ES:true label;ED 、ES :model prediction
                            图8 A2C、A3C和A4C切面上ResNet+VST模型关键帧检测结果与真实标签对应视频帧示例
                Figure 8  Examples of video frames corresponding to the detection results of key frames of ResNet+VST model and labels
                        on A2C,A3C and A4C views

                异(P < 0.05)。Tukey检验结果进一步证明,ResNet+                2.2 EchoNet⁃Dynamic⁃Tiny数据集
                VST 模型与 3D CNN+LSTM 以及 ResNet+LSTM 模型                 从 EchoNet⁃Dynamic⁃Tiny 数据集中随机挑选 1
                之间均存在显著性差异(P < 0.05)。                             个视频,将ResNet+VST模型的关键帧检测结果与视

                                表3   南京鼓楼医院数据集A4C切面不同模型ED、ES帧检测误差与推理时间对比
                Table 3  Comparison of detection error and inferencing time of ED and ES frames of different models on A4C view of Nan⁃
                       jing Drum Tower Hospital dataset                                                  (x ± s)

                                                           Model
                     Performance                                                            F           P
                                             A               B               C
                     AFD(ED)            1.270 ± 1.170 *#  1.810 ± 1.690 #  1.900 ± 1.880    5.535      0.004
                     AFD(ES)            1.450 ± 1.380 *#  1.920 ± 1.850 #  1.650 ± 1.560    3.591      0.028
                     Inference time(s)  0.021 ± 0.002 *#  0.157 ± 0.009 #  0.136 ± 0.005  >100.000    <0.001

                                                                                                 #
                                                                               *
                   A:ResNet+VST model. B:3D CNN+LSTM model. C:ResNet+LSTM model. Compared with B,P < 0.05;Compared with C,P < 0.05.
   116   117   118   119   120   121   122   123   124   125   126