Page 124 - 南京医科大学学报自然科学版
P. 124

第44卷第2期
               ·262 ·                          南   京 医 科       大 学      学 报                        2024年2月


             [10] 吴   洋,张红梅,尹立雪,等. 超声心动图心尖四腔心切                       164:135-145
                   面图像质量智能评分研究[J]. 中华医学超声杂志(电                   [17] TAHERI DEZAKI F,LIAO Z B,LUONG C,et al. Cardiac

                   子版),2023,20(1):97-102                             phase detection in echocardiograms with densely gated re⁃
             [11] 李   敬,刘宁宁,王笑一. 人工智能在超声诊断中的应                        current neural networks and global extrema loss[J]. IEEE
                   用现状及展望[J]. 中国超声医学杂志,2022,38(5):                   Trans Med Imag,2018,38(8):1821-1832
                   595-598                                      [18] FIORITO A M,ØSTVIK A,SMISTAD E,et al. Detection
             [12] FARHAD M,MASUD M M,BEG A. Deep learning based      of cardiac events in echocardiography using 3D convolu⁃
                   cardiac phase detection using echocardiography imaging  tional recurrent neural networks[C]//2018 IEEE Interna⁃
                  [C]//International Conference on Advanced Data Mining  tional Ultrasonics Symposium(IUS).Kobe,Japan.IEEE,
                   and Applications.Cham:Springer,2022:3-17          2019:1-4
             [13] DEZAKI F T,DHUNGEL N,ABDI A H,et al. Deep resid⁃  [19] LANE E S,AZARMEHR N,JEVSIKOV J,et al. Multibeat
                   ual recurrent neural networks for characterisation of cardi⁃  echocardiographic phase detection using deep neural net⁃
                   ac cycle phase from echocardiograms[C]//International  works[J]. Comput Biol Med,2021,133:104373
                   Workshop on Deep Learning in Medical Image Analysis,  [20] LIU Z,NING J,CAO Y,et al. Video swin transformer[C]//
                   International Workshop on Multimodal Learning for Clini⁃  2022 IEEE/CVF Conference on Computer Vision and Pat⁃
                   cal Decision Support.Cham:Springer,2017:100-108   tern Recognition(CVPR). New Orleans,LA,USA.IEEE,
             [14] KONG B,ZHAN Y Q,SHIN M,et al. Recognizing end⁃Di⁃  2022:3192-3201
                   astole and end⁃Systole frames via deep temporal regres⁃  [21] OUYANG D,HE B,GHORBANI A,et al. Video⁃based AI
                   sion network [M]//OURSELIN S, JOSKOWICZ L,        for beat⁃to⁃beat assessment of cardiac function[J]. Na⁃
                   SABUNCU M R,et al.,Eds.Lecture Notes in Computer  ture,2020,580(7802):252-256
                   Science.Cham:Springer International Publishing,2016:  [22] YIN H,ZHOU Y H,CAO L,et al. Channel prediction
                   264-272                                           with liquid time⁃constant networks:an online and adap⁃
             [15] HE F X,LIU T L,TAO D C. Why ResNet works?Residu⁃   tive approach[C]//2021 IEEE 94th Vehicular Technology
                   als generalize[J]. IEEE Trans Neural Netw Learn Syst,  Conference(VTC2021 ⁃ Fall). Norman,OK,USA.IEEE,
                   2020,31(12):5349-5362                             2021:1-6
             [16] QIN C,CHEN L M,CAI Z T,et al. Long short⁃term memo⁃                     [收稿日期] 2023-08-08
                   ry with activation on gradient[J]. Neural Netw,2023,                        (本文编辑:戴王娟)
   119   120   121   122   123   124   125   126   127   128   129