Page 85 - 南京医科大学学报自然科学版
P. 85
第44卷第2期 刘婷婷,林佳璐,娄鉴娟,等. 多参数MRI影像组学评估浸润性乳腺癌HER⁃2表达状态的临床
2024年2月 应用价值[J]. 南京医科大学学报(自然科学版),2024,44(2):218-227 ·223 ·
表4 最终筛选出的26个多参数影像组学特征
Table 4 Final selection of 26 multi⁃parametric radiomics features
MRI sequence features category Radiomics features Coef
DCE2 First order DCE2_wavelet_LLH_firstorder_Skewness -3.420175E-02
First order DCE2_wavelet_LLL_firstorder_Minimum 4.090850E-01
Shape DCE2_original_shape_Sphericity -8.281829E-02
Shape DCE2_original_shape_SurfaceVolumeRatio 1.264466E+00
GLRLM DCE2_lbp_3D_2_glrlm_RunLengthNonUniformity 4.018018E-05
GLRLM DCE2_wavelet_LLL_glrlm_GrayLevelNonUniformity 8.337503E-02
GLRLM DCE2_wavelet_HLH_glrlm_LowGrayLevelRunEmphasis 2.207430E-07
GLRLM DCE2_wavelet_LHH_glrlm_LongRunLowGrayLevelEmphasis 2.640173E-02
GLRLM DCE2_wavelet_HLH_glrlm_HighGrayLevelRunEmphasis -1.729161E-01
GLSZM DCE2_wavelet_HHH_glszm_SmallAreaLowGrayLevelEmphasis -1.456218E-01
GLDM DCE2_wavelet_LHH_gldm_SmallDependenceLowGrayLevelEmphasis -2.777829E-01
DCE4 First order DCE4_wavelet_LLH_firstorder_Skewness -2.930163E-01
GLRLM DCE4_wavelet_LHH_glrlm_GrayLevelNonUniformityNormalized -5.542897E-02
GLRLM DCE4_wavelet_LHH_glrlm_GrayLevelVariance 9.834993E-06
GLSZM DCE4_wavelet_LLH_glszm_SmallAreaEmphasis 3.128872E-02
GLSZM DCE4_wavelet_LLH_glszm_SmallAreaLowGrayLevelEmphasis 1.006800E-04
DWI First order DWI_wavelet_HHL_firstorder_Skewness -1.826650E-01
GLSZM DWI_wavelet_HLH_glszm_SizeZoneNonUniformityNormalized -1.946239E-01
GLSZM DWI_wavelet_LHL_glszm_LargeAreaLowGrayLevelEmphasis 7.234353E-02
NGTDM DWI_wavelet_HHL_ngtdm_Contrast 1.083605E-01
ADC First order ADC_lbp-3D_m1_firstorder_90Percentile 1.147517E-01
NGTDM ADC_wavelet_LLL_ngtdm_Strength -2.584432E-01
TIRM First order TIRM_lbp_3D_k_firstorder_Median -1.534631E-02
Shape TIRM_original_shape_Elongation -2.008755E-01
DCE2_wavelet. HHH_glsam_Small Area Low Gray Level Emphasis
DCE2_wavelet. HLH_glrim_High Gray Level Run Emphasis
DWI_wavelet. HHL_firstorder_Skewness
DWI_wavelet. HLH_glsam_Size Zone Non Uniformity Normalized
feature ADC_wavelet. LLL_ngtdm_strength
TIRM_original_shape_Elongation
DCE2_wavelet. LHH_gldm_Small Dependence Low Gray Level Emphasis
DCE4_wavelet. LHH_firstorder_Skewness
DCE2_wavelet. LLL_firstorder_Minimum
DCE2_onginal_shape_Surtace Volume Ratio
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Coef
The x⁃axis represents the weight values,and the y⁃axis represents the radiomics features.
图4 按照权重排序的前10个特征
Figure 4 Top10 features ranked by weights
间的差异没有统计学意义(P 均>0.05)。测试集的 现HER⁃2的扩增和过表达,HER⁃2状态是乳腺癌症
决策曲线表明多参数模型在大范围阈值概率下优 疾病进展和死亡的独立预测因子,HER⁃2过表达的
于其他模型,临床获益度更高(图6)。 浸润性乳腺癌患者预后更差 [22] ,但随着临床治疗的
发展,HER⁃2 也可做为乳腺癌靶向治疗的一个靶
3 讨 论
点,因此,早期对乳腺癌患者的 HER⁃2 状态进行准
HER⁃2是一种原癌基因,与细胞的生长、分化、 确的评估至关重要。目前,HER⁃2状态主要通过免
转移过程调控作用有关 [21] ;20%~25%的乳腺癌会出 疫组织化学(IHC)或荧光原位杂交(FISH)检测,两