Page 89 - 南京医科大学学报自然科学版
P. 89
第44卷第2期 刘婷婷,林佳璐,娄鉴娟,等. 多参数MRI影像组学评估浸润性乳腺癌HER⁃2表达状态的临床
2024年2月 应用价值[J]. 南京医科大学学报(自然科学版),2024,44(2):218-227 ·227 ·
[16] XU A,CHU X,ZHANG S,et al. Development and valida⁃ Her⁃2/neu overexpression induces NF⁃kappaB via a PI3⁃
tion of a clinicoradiomic nomogram to assess the HER⁃2 kinase/Akt pathway involving calpain⁃mediated degrada⁃
status of patients with invasive ductal carcinoma[J]. tion of IkappaB ⁃ alpha that can be inhibitedbythe tumor
BMC Cancer,2022,22(1):872 suppressor PTEN[J]. Oncogene 2001,20(11):1287-
[17] 薛 珂,丁莹莹,李振辉,等. 利用磁共振成像动态增强 1299
纹理特征预测不同分子亚型乳腺癌[J]. 实用放射学杂 [26] YANKEELOV T E,GORE J C. Dynamic contrast en⁃
志,2020,36(8):1235-1239 hanced magnetic resonance imaging in oncology:theory,
[18] FANG C,ZHANG J,LI J. et al. Clinical⁃radiomics nomo⁃ data acquisition,analysis,and examples[J]. Curr Med Im⁃
gram for identifying HER2 status in patients with breast aging Rev,2009,3(2):91-107
cancer:a multicenter study[J]. Front Oncol,2022,12: [27] MONTEMURRO F,MARTINCICH L,SAROTTO I,et al.
922185 Relationship between DCE⁃MRI morphological and func⁃
[19] 程 雪,余日胜,徐 民,等. 乳腺癌的功能磁共振成像 tional features and histopathological characteristics of
征象与人表皮生长因子受体2表达差异的相关性分析 breast cancer[J]. Eur Radiol,2007,17(6):1490-1497
[J]. 中华医学杂志,2019,99(31):2440-2444 [28] CONSTRANTINI M,BELLI P,DISTEFANO D,et al. Mag⁃
[20] 乳腺癌HER⁃2检测指南(2019版)编写组. 乳腺癌HER⁃2 netic resonance imaging features in triple⁃negative breast
检测指南(2019版)[J]. 中华病理学杂志,2019,48(3): cancer:comparison with luminal and HER⁃2⁃overexpress⁃
169-175 ing tumors[J]. Clin Breast Cancer,2012,12:331-339
[21] FERRARI A,VINCENT⁃SALOMON A,PIVOT X,et al. [29] 安丽华,时克伟,李 静,等. 乳腺癌动态增强磁共振成
A whole⁃genome sequence and transcriptome perspective 像表现与分子生物学指标的相关性研究[J]. 实用医学
on HER ⁃ 2 ⁃ positive breast cancers[J]. Nat Commun, 影像杂志,2015,16(5):386-390
2016,7:12222 [30] CHANG R F,CHEN H H,CHANG Y C,et al. Quantifica⁃
[22] BHATTACHARJEE A,RAJENDRA J,DIKSHIT R,et al. tion of breast tumor heterogeneity for ER status,HER⁃2
HER⁃2 borderline is a negative prognostic factor for pri⁃ status,and TN molecular subtype evaluation on DCE⁃MRI
mary malignant breast cancer[J]. Breast Cancer Res [J]. MagnReson Imaging,2016,34(6):809-819
Treat,2020,181(1):225-231 [31] REN J,QI M,YUAN Y,et al. Machine learning ⁃ based
[23] 刘瑜琳,章 蓉,岳丽娜,等. 基于肿瘤全域 ADC 直方 MRI texture analysis to predict the histologic grade of oral
图与乳腺癌免疫组化指标的相关性[J]. 中国医学影像 squamous cell carcinoma[J]. AJR Am J Roentgenol,
学杂志,2020,28(11):831-835 2020,215(5):1184-1190
[24] YUEN S,MONZAWA S,YANAI S,et al. The association [32] 蒋晓婷,宋佳成,张爱宁,等. 动态对比增强磁共振结合
between MRI findings and breast cancer subtypes : 表观弥散系数鉴别恶性子宫间叶性肿瘤与弥散受限的
focused on the combination patterns on diffusion⁃weighted 子宫肌瘤[J]. 南 京医科大学学报(自然科学版),
and T2⁃weighted images[J]. Breast Cancer,2020,27(5): 2023,3(5):626-633
1029-1037 [收稿日期] 2023-06-19
[25] PIANETTI S,ARSURA M,ROMIEU⁃MOUREZ R,et al. (本文编辑:唐 震)