Page 87 - 南京医科大学学报自然科学版
P. 87
第44卷第3期 刘志鹏,降建新,吴琪炜,等. 基于多序列MRI影像组学与深度迁移学习特征的脑胶质瘤分级
2024年3月 预测研究[J]. 南京医科大学学报(自然科学版),2024,44(3):372-379 ·377 ·
A B
mRMR RF⁃RFE SVM⁃RFE
T1
Validation
T2
0.960
SVM 0.957 0.958 0.996 T1c
0.980
Flair
LR 0.965 0.960 0.995
T1+T2 0.900
0.960 T1+T1c
RF 0.949 0.967 0.957
T1+Flair
0.940 T2+T1c 0.840
XGBoost 0.951 0.956 0.965
T2+Flair
DT 0.905 0.923 0.878 0.920 T1c+Flair
0.780
T1+T2+T1c
KNN 0.987 0.980 0.979
0.900 T1+T2+Flair
T1+T1c+Flair
NB 0.947 0.923 0.927 0.720
T2+T1c+Flair
0.880 0.976 0.988 0.932 0.920
mRMR RF⁃RFE T1+T2+T1c+Flair AUC ACC SEN SPE YI
SVM⁃RFE
( Positive label: ) 0.8 ( Positive label: ) 0.8
C 1 1.0 D 1 1.0
0.6
0.6
True positive rate 0.4 ROC fold 0(AUC=0.991) True positive rate 0.4 ROC(AUC=0.986)
ROC fold 1(AUC=0.998)
ROC fold 2(AUC=0.993)
ROC fold 3(AUC=1.000)
ROC fold 4(AUC=0.998)
0.2
0.2
Chance
Mean ROC(AUC=0.996 ± 0.004)
0
0.6
0 0.2 0.4 ± 1 std.dev. 0.8 1.0 0 0 0.2 0.4 0.6 0.8 1.0
False positive rate(Positive label:1) False positive rate(Positive label:1)
A:AUC results of seven machine learning models and three feature screening methods on the validation set. B:Summary of the optimal results for
all sequences on the validation set. C:Five⁃fold cross⁃validation results of the optimal model on the verification set. D:Results of optimal model test set.
图4 DLR特征实验结果
Figure 4 The results of DLR features
A B
Flair_gradient_firstorder_90percentile High +0.08
T2_wavelet⁃LLH_glszm_Size Zone Non Uniformity +0.03
Flair_wavelet⁃HLL_firstorder_Minimum +0.02
Flair_wavelet⁃HLH_firstorder_Maximum +0.02
Flair_wavelet⁃HHH_glszm_Zone Entropy +0.02
Flair_original_shape_Least Axis Length +0.01
T1c_diagnostics_Mask⁃orighinal_Volume Num +0.01
T2_diagnostics_Mask⁃orighinal_Volume Num +0.01
T1c_gradient_glszm_Low Gray Level Zone Emphasis +0.01
T1c_logarithm_glrlm_Run Entropy +0.01
Flair_wavelet⁃LLH_glszm_Gray Level Non Uniformity Feature value +0.01
T2_wavelet⁃LHL_glcm_ldmn +0.01
T2_wavelet⁃HHH_glszm_Large Area Low Gray Level Emphasis +0.01
Flair_original_gldm_Dependence Entropy +0.01
Flair_dtl_981 +0.01
T2_dtl_467 +0.01
T1c_square_glszm_Gray Level Non Uniformity Normalized +0.01
Flair_dtl_712 +0.01
T1c_original_gldm_Small Dependence Low Gray Level Emphasis +0
T2_dtl_919 +0
Sum of 40 other features +0.09
Low
-0.6 -0.4 -0.2 0 0.2 0 0.02 0.04 0.06 0.08
SHAP value Mean(SHAP value)
(impact on model output)
图5 SHAP特征权重分布蜂图(A)及权重均值直方图(B)
Figure 5 SHAP feature weight distribution swarm plot(A)and weight mean histogram(B)
接影响治疗方案及患者预后 [13] 。因此,术前无创准 治疗计划具有重要意义。本研究建立基于多序列
确地预测胶质瘤分级,对制定手术方案和实施后续 MRI 的 HCR 和 DTL 特征的 ML 模型,其中最优的模