Page 89 - 南京医科大学学报自然科学版
P. 89

第44卷第3期         刘志鹏,降建新,吴琪炜,等. 基于多序列MRI影像组学与深度迁移学习特征的脑胶质瘤分级
                  2024年3月                预测研究[J]. 南京医科大学学报(自然科学版),2024,44(3):372-379                    ·379 ·


                    RNAs as epigenetic mediator and predictor of glioma pro⁃  survival analysis[J]. Front Oncol,2023,13:1079597
                    gression,invasiveness,and prognosis[J]. Semin Cancer  [14] ZHANG H B,ZHANG H W,ZHANG Y Z,et al. Deep
                    Biol,2022,83:536-542                               learning radiomics for the assessment of telomerase re⁃
               [4] MOUDGIL⁃JOSHI J,KALIAPERUMAL C. Letter regard⁃      verse transcriptase promoter mutation status in patients
                    ing Louis et al:the 2021 WHO classification of tumors of  with glioblastoma using multiparametric MRI[J]. J Magn
                    the central nervous system:a summary[J]. Neuro⁃oncolo⁃  Reson Imaging,2023,58(5):1441-1451
                    gy,2021,23(12):2120-2121                     [15] TIAN Q,YAN L F,ZHANG X,et al. Radiomics strategy
               [5] UDDIN M S,AL MAMUN A,ALGHAMDI B S,et al. Epi⁃       for glioma grading using texture features from multipara⁃
                    genetics of glioblastoma multiforme:from molecular mech⁃  metric MRI[J]. J Magn Reson Imag,2018,48(6):1518-
                    anisms to therapeutic approaches[J]. Semin Cancer Biol,  1528
                    2022,83:100-120                              [16] AOUADI S,TORFEH T,ARUNACHALAM Y,et al. In⁃
               [6] 舒    洋,王彦平,何瑞星,等. 基于 T1W C 的影像建立                    vestigation of radiomics and deep convolutional neural
                                                  1+
                    支持向量机预测模型对胶质瘤细胞增殖活性研究[J].                          networks approaches for glioma grading[J]. Biomed Phys
                    南京医科大学学报(自然科学版),2023,43(5):634-639                 Eng Express,2023,9(3):035020
               [7] 张    恒,张   赛,孙佳伟,等. 深度学习脑肿瘤MRI图像              [17] QUAN M Y,HUANG Y X,WANG C Y,et al. Deep learn⁃
                    分类研究进展[J]. 磁共振成像,2023,14(1):166-171                ing radiomics model based on breast ultrasound video to
               [8] LI J,DONG D,FANG M J,et al. Dual⁃energy CT⁃based    predict HER2 expression status[J]. Front Endocrinol,
                    deep learning radiomics can improve lymph node metasta⁃  2023,14:1144812
                    sis risk prediction for gastric cancer[J]. Eur Radiol,  [18] 王鹤翔,杨世锋,王童语,等. 基于术前MRI深度学习影
                    2020,30(4):2324-2333                               像组学机器学习模型预测软组织肉瘤组织病理学分级
               [9] DEV K,ASHRAF Z,MUHURI P K,et al. Deep autoen⁃       的研究[J]. 中华放射学杂志,2022,56(7):792-799
                    coder based domain adaptation for transfer learning[J].  [19] 王世界,刘华清,张建兴,等. 基于自动乳腺全容积成像
                    Multimed Tools Appl,2022,81(16):22379-22405        影像组学的机器学习模型鉴别BI⁃RADS 4类病灶良恶
               [10] ZHANG J,LIU J Y,LIANG Z P,et al. Differentiation of  性的临床价值[J]. 中华超声影像学杂志,2023,32(2):
                    acute and chronic vertebral compression fractures using  136-143
                    conventional CT based on deep transfer learning features  [20] SIAKALLIS L,SUDRE C H,MULHOLLAND P,et al.
                    and hand⁃crafted radiomics features[J]. BMC Musculosk⁃  Longitudinal structural and perfusion MRI enhanced by
                    elet Disord,2023,24(1):165                         machine learning outperforms standalone modalities and
               [11] LUO J F,PAN M K,MO K,et al. Emerging role of artifi⁃  radiological expertise in high ⁃ grade glioma surveillance
                    cial intelligence in diagnosis,classification and clinical  [J]. Neuroradiology,2021,63(12):2047-2056
                    management of glioma[J]. Semin Cancer Biol,2023,91:  [21] CHEN W,LIU B Q,PENG S T,et al. Computer ⁃ aided
                    110-123                                            grading of gliomas combining automatic segmentation and
               [12] MENZE B H,JAKAB A,BAUER S,et al. The multimodal    radiomics[J]. Int J Biomed Imag,2018,2018:1-11
                    brain tumor image segmentation benchmark(BRATS)  [22] CHEN X D,HE L X,SHI K W,et al. Interpretable ma⁃
                    [J]. IEEE Trans Med Imaging,2015,34(10):1993-2024  chine learning for fall prediction among older adults in
               [13] CAO J G,YAN W J,ZHAN Z X,et al. Epidemiology and   China[J]. Am J Prev Med,2023,65(4):579-586
                    risk stratification of low ⁃ grade gliomas in the United                [收稿日期] 2023-09-22
                    States,2004⁃2019:a competing⁃risk regression model for                      (本文编辑:陈汐敏)
   84   85   86   87   88   89   90   91   92   93   94