Page 89 - 南京医科大学学报自然科学版
P. 89
第44卷第3期 刘志鹏,降建新,吴琪炜,等. 基于多序列MRI影像组学与深度迁移学习特征的脑胶质瘤分级
2024年3月 预测研究[J]. 南京医科大学学报(自然科学版),2024,44(3):372-379 ·379 ·
RNAs as epigenetic mediator and predictor of glioma pro⁃ survival analysis[J]. Front Oncol,2023,13:1079597
gression,invasiveness,and prognosis[J]. Semin Cancer [14] ZHANG H B,ZHANG H W,ZHANG Y Z,et al. Deep
Biol,2022,83:536-542 learning radiomics for the assessment of telomerase re⁃
[4] MOUDGIL⁃JOSHI J,KALIAPERUMAL C. Letter regard⁃ verse transcriptase promoter mutation status in patients
ing Louis et al:the 2021 WHO classification of tumors of with glioblastoma using multiparametric MRI[J]. J Magn
the central nervous system:a summary[J]. Neuro⁃oncolo⁃ Reson Imaging,2023,58(5):1441-1451
gy,2021,23(12):2120-2121 [15] TIAN Q,YAN L F,ZHANG X,et al. Radiomics strategy
[5] UDDIN M S,AL MAMUN A,ALGHAMDI B S,et al. Epi⁃ for glioma grading using texture features from multipara⁃
genetics of glioblastoma multiforme:from molecular mech⁃ metric MRI[J]. J Magn Reson Imag,2018,48(6):1518-
anisms to therapeutic approaches[J]. Semin Cancer Biol, 1528
2022,83:100-120 [16] AOUADI S,TORFEH T,ARUNACHALAM Y,et al. In⁃
[6] 舒 洋,王彦平,何瑞星,等. 基于 T1W C 的影像建立 vestigation of radiomics and deep convolutional neural
1+
支持向量机预测模型对胶质瘤细胞增殖活性研究[J]. networks approaches for glioma grading[J]. Biomed Phys
南京医科大学学报(自然科学版),2023,43(5):634-639 Eng Express,2023,9(3):035020
[7] 张 恒,张 赛,孙佳伟,等. 深度学习脑肿瘤MRI图像 [17] QUAN M Y,HUANG Y X,WANG C Y,et al. Deep learn⁃
分类研究进展[J]. 磁共振成像,2023,14(1):166-171 ing radiomics model based on breast ultrasound video to
[8] LI J,DONG D,FANG M J,et al. Dual⁃energy CT⁃based predict HER2 expression status[J]. Front Endocrinol,
deep learning radiomics can improve lymph node metasta⁃ 2023,14:1144812
sis risk prediction for gastric cancer[J]. Eur Radiol, [18] 王鹤翔,杨世锋,王童语,等. 基于术前MRI深度学习影
2020,30(4):2324-2333 像组学机器学习模型预测软组织肉瘤组织病理学分级
[9] DEV K,ASHRAF Z,MUHURI P K,et al. Deep autoen⁃ 的研究[J]. 中华放射学杂志,2022,56(7):792-799
coder based domain adaptation for transfer learning[J]. [19] 王世界,刘华清,张建兴,等. 基于自动乳腺全容积成像
Multimed Tools Appl,2022,81(16):22379-22405 影像组学的机器学习模型鉴别BI⁃RADS 4类病灶良恶
[10] ZHANG J,LIU J Y,LIANG Z P,et al. Differentiation of 性的临床价值[J]. 中华超声影像学杂志,2023,32(2):
acute and chronic vertebral compression fractures using 136-143
conventional CT based on deep transfer learning features [20] SIAKALLIS L,SUDRE C H,MULHOLLAND P,et al.
and hand⁃crafted radiomics features[J]. BMC Musculosk⁃ Longitudinal structural and perfusion MRI enhanced by
elet Disord,2023,24(1):165 machine learning outperforms standalone modalities and
[11] LUO J F,PAN M K,MO K,et al. Emerging role of artifi⁃ radiological expertise in high ⁃ grade glioma surveillance
cial intelligence in diagnosis,classification and clinical [J]. Neuroradiology,2021,63(12):2047-2056
management of glioma[J]. Semin Cancer Biol,2023,91: [21] CHEN W,LIU B Q,PENG S T,et al. Computer ⁃ aided
110-123 grading of gliomas combining automatic segmentation and
[12] MENZE B H,JAKAB A,BAUER S,et al. The multimodal radiomics[J]. Int J Biomed Imag,2018,2018:1-11
brain tumor image segmentation benchmark(BRATS) [22] CHEN X D,HE L X,SHI K W,et al. Interpretable ma⁃
[J]. IEEE Trans Med Imaging,2015,34(10):1993-2024 chine learning for fall prediction among older adults in
[13] CAO J G,YAN W J,ZHAN Z X,et al. Epidemiology and China[J]. Am J Prev Med,2023,65(4):579-586
risk stratification of low ⁃ grade gliomas in the United [收稿日期] 2023-09-22
States,2004⁃2019:a competing⁃risk regression model for (本文编辑:陈汐敏)