Page 121 - 南京医科大学自然版
P. 121

第44卷第5期              邹小义,冯同保,张 平. 线粒体融合和裂变在呼吸系统疾病中的研究进展[J].
                  2024年5月                     南京医科大学学报(自然科学版),2024,44(5):705-712                        ·709 ·


                                                      [84]
                高细胞内 cAMP 水平进而激活蛋白激酶 A                  ,诱导            mitochondrial pathways in psychiatric disease[J]. Mol
                Drp1 在 Ser637 处的抑制性磷酸化,并抑制 Drp1 在                      Neuropsychiatry,2018,4(1):52-69
                Ser616 处的刺激性磷酸化,减少线粒体裂变,抑制                       [8] TANG Y C,TIAN H X,YI T,et al. The critical roles of
                PH过程中PASMC增殖的作用 。                                      mitophagy in cerebral ischemia[J]. Protein Cell,2016,7
                                          [85]
                   越来越多的研究表明许多天然化合物对线粒体                               (10):699-713
                                                                 [9] LI D,YANG S,XING Y,et al. Novel insights and current
                融合和裂变具有潜在效应。如黄芩素在急性肺损
                                                                       evidence for mechanisms of atherosclerosis:mitochondrial
                伤中通过抑制 Drp1 在 Ser616 处的磷酸化来减少线
                                                                       dynamics as a potential therapeutic target[J]. Front Cell
                粒体裂变     [86] ,柑橘皮中的多甲氧基黄酮可降低
                                                                       Dev Biol,2021,9:673839
                COPD 患者 AEC 中 Drp1 的蛋白表达水平          [87] 。因此,    [10] XIE L L,SHI F,TAN Z,et al. Mitochondrial network
                对天然化合物的疗效评估,可能成为线粒体裂变相                                 structure homeostasis and cell death[J]. Cancer Sci,
                                      [88]
                关损伤的临床诊疗新方向 。                                          2018,109(12):3686-3694
                                                                 [11] BAGARIA J,BAGYINSZKY E,AN S S A. Genetics of
                4 小结与展望
                                                                       autosomal recessive spastic ataxia of Charlevoix⁃Saguenay
                    随着年龄的增加以及环境刺激因素的影响,细                              (ARSACS)and role of sacsin in neurodegeneration[J].
                胞中线粒体动力学的平衡紊乱,导致线粒体过度融                                 Int J Mol Sci,2022,23(1):552
                合或裂变,诱发多种呼吸系统疾病的发生发展。因                           [12]JACKSON M J,POLLOCK N,STAUNTON C,et al. Redox
                                                                       control of signalling responses to contractile activity and
                此,进行线粒体融合和裂变相关研究,围绕线粒体
                                                                       ageing in skeletal muscle[J]. Cells,2022,11(10):1698
                动力学进行相关肺疾病的干预和药物研发成为当
                                                                 [13]FAVARO G,ROMANELLO V,VARANITA T,et al. DRP1⁃
                前的研究热点。调控线粒体动力学的平衡是肺部
                                                                       mediated mitochondrial shape controls calcium homeosta⁃
                疾病治疗干预的有效方式,线粒体相关靶蛋白                                   sis and muscle mass[J]. Nat Commun,2019,10(1):
                MFN1/2、OPA1、Drp1等及其相关信号通路如Nrf2已                        2576
                被证明在呼吸系统相关疾病中起着重要作用。在                            [14]ZHOU H,ZHOU H,TOAN S. Pathological roles of mito⁃
                此基础上,深入开展线粒体的融合和分裂在呼吸系                                 chondrial oxidative stress and mitochondrial dynamics in
                统相关疾病中的发病机制以及药物靶向位点的研                                  cardiac microvascular ischemia/reperfusion injury[J].
                究,有望为临床精准诊疗呼吸系统相关疾病提供新                                 Biomolecules,2020,10(1):E85
                的方案。                                             [15] TIAN H,CHEN X,LIAO J,et al. Mitochondrial quality
                                                                       control in stroke:from the mechanisms to therapeutic
               [参考文献]
                                                                       potentials[J]. J Cell Mol Med,2022,26(4):1000-1012
               [1] KÜHLBRANDT W. Structure and function of mitochon⁃  [16]DONG L F,ROHLENA J,ZOBALOVA R,et al. Mitochon⁃
                     drial membrane protein complexes[J]. BMC Biol,2015,  dria on the move:horizontal mitochondrial transfer in disease
                     13:89                                             and health[J]. J Cell Biol,2023,222(3):e202211044
               [2] INAGI R. Organelle stress and metabolic derangement in  [17] ZHAO J,QIAO L,DONG J,et al. Antioxidant effects of
                    kidney disease[J]. Int J Mol Sci,2022,23(3):1723   irisin in liver diseases:mechanistic insights[J]. Oxid
               [3] NASSIR F. NAFLD:mechanisms,treatments,and biomar⁃   Med Cell Longev,2022,2022:3563518
                    kers[J]. Biomolecules,2022,12(6):824         [18]CHAN D C. Mitochondrial dynamics and its involvement
               [4] WANG L,LI J,DI L J. Glycogen synthesis and beyond,a  in disease[J]. Annu Rev Pathol,2020,15:235-259
                    comprehensive review of GSK3 as a key regulator of meta⁃  [19] GAO S,HU J. Mitochondrial fusion:the machineries in
                    bolic pathways and a therapeutic target for treating meta⁃  and out[J]. Trends Cell Biol,2021,31(1):62-74
                    bolic diseases[J]. Med Res Rev,2022,42(2):946-982  [20] BEIKOGHLI KALKHORAN S,KARARIGAS G. Oestro⁃
               [5] PICARD M,SHIRIHAI O S. Mitochondrial signal trans⁃  genic regulation of mitochondrial dynamics[J]. Int J Mol
                    duction[J]. Cell Metab,2022,34(11):1620-1653       Sci,2022,23(3):1118
               [6] QUILES J M,GUSTAFSSON Å B. The role of mitochon⁃  [21]YANG Z,WANG L,YANG C,et al. Mitochondrial mem⁃
                    drial fission in cardiovascular health and disease[J]. Nat  brane remodeling[J]. Front Bioeng Biotechnol,2022,9:
                    Rev Cardiol,2022,19(11):723-736                    786806
               [7] CUPERFAIN A B,ZHANG Z L,KENNEDY J L,et al.    [22] UCHIKADO Y,IKEDA Y,OHISHI M. Current under⁃
                     The complex interaction of mitochondrial genetics and  standing of the pivotal role of mitochondrial dynamics in
   116   117   118   119   120   121   122   123   124   125   126