Page 68 - 南京医科大学自然版
P. 68
第44卷第8期
·1096 · 南 京 医 科 大 学 学 报 2024年8月
患者显著肝纤维化的决策具有临床获益(图4)。模 维化的风险。
型的净获益曲线(红色)位于无干预(None,蓝色横 2.4.3 aCHANGE模型与FIB⁃4模型预测能力的比较
线)和全面干预(All,绿色斜线)的极端情况之上,说 在训练集以及验证集中计算出 FIB⁃4,计算公
明aCHANGE模型比这两种极端假设更能为临床提 式:FIB⁃4=(AST×年龄)/(血小板计数× ALT ),后
供价值,有助于准确预测NAFLD患者出现显著肝纤 利用 FIB⁃4 对患者是否出现显著肝纤维化进行预
A B
1.0 Dxy 0.550 1.0 Dxy 0.551
C(ROC) 0.775 C(ROC) 0.775
R2 0.239 R2 0.235
D U Q -0.001 D U Q 0.153
0.158
Actual probability 0.8 Brier 0.122 Actual probability 0.8 Brier -0.246
0.001
0.153
0.157
0.123
0.000
Intercept
Intercept
0.6
0.6
0.881
Slope
Slope
1.000
0.045
Emax
Emax
0.147
E90
0.014
0.054
E90
Eavg
0.015
0.007
Eavg
0.4
0.4
0.222
0.193
S:z
S:z
0.2 S:p 0.847 Ideal 0.2 S:p 0.824 Ideal
Logistie eaboration Logistie eaboration
Nonparametric Nonparametric
0 0
.0 0.2 0.4 0.6 0.8 1.0 .0 0.2 0.4 0.6 0.8 1.0
Predicted probability Predicted probability
A:Calibration curve of the training set. B:Calibration curve of the internal validation set.
图2 aCHANGE模型的校准曲线
Figure 2 Calibration curve of the aCHANGE model
A B
1.0 1.0
0.8 0.8
Sensitivity 0.6 Sensitivity 0.6
0.4
0.4
0.2 0.2
AUC:0.775 AUC:0.775
0 0
.0 0.2 0.4 0.6 0.8 1.0 .0 0.2 0.4 0.6 0.8 1.0
1-Specificity 1-Specificity
A:ROC curve of the training set(area under the curve approximately 0.775). B:ROC curve of the internal validation set(area under the curve ap⁃
proximately 0.775).
图3 aCHANGE模型的ROC曲线
Figure 3 ROC curve of the aCHANGE model
A B
0.2 Model_step 0.2 Model_step
All All
None None
Net benefit 0.1 Net benefit 0.1
0 0
00 0.25 0.50 0.75 1.00 0.25 0.50 0.75
Risk threshold Risk threshold
A:Clinical DCA on the training set. B:Clinical DCA on the internal validation set.
图4 aCHANGE模型的临床决策曲线分析
Figure 4 Clinical DCA of the aCHANGE model