Page 45 - 南京医科大学学报自然科学版
P. 45
第44卷第2期 马萌萌,包天平,曹林霞,等. 隐丹参酮通过调节TGF⁃β/Smad通路改善高氧诱导肺损伤的纤维化过程[J].
2024年2月 南京医科大学学报(自然科学版),2024,44(2):178-184 ·183 ·
到证实,高氧诱导的BPD实验动物模型已经被广泛 nary fibrosis rats treated with cryptotanshinone[J]. Front
运用 [22] ,本研究通过高氧BPD模型发现,CTS改善了 Pharmacol,2023,14:1127219
BPD 模型新生大鼠的肺部病理情况,特别是纤维化 [7] DALIL D,IRANZADEH S,KOHANSAL S. Anticancer po⁃
现象,体内外结果均显示纤维化标志物α⁃SMA的水 tential of cryptotanshinone on breast cancer treatment;a
narrative review[J]. Front Pharmacol,2022,13:979634
平降低,提示 CTS 可改善高氧诱导的肺纤维化从而
[8] SUN J M,AGARWAL S,DESAI T D,et al. Cryptotanshi⁃
起到肺部保护作用。
none protects against oxidative stress in the paraquat⁃in⁃
生长因子TGF⁃β被认为是肺发育异常的主要调 duced Parkinson’s disease model[J]. Environ Toxicol,
节因子,通过 TGF⁃β/Smad2/3 的典型信号转导调节 2023,38(1):39-48
早期肺发育 [23-24] ,该通路与异常肺泡化关系密切, [9] ZHANG Q,GAN C,LIU H,et al. Cryptotanshinone revers⁃
TGF⁃β1还可诱导成纤维细胞迁移、肌成纤维细胞的 es the epithelial⁃mesenchymal transformation process and
增殖和分化以及ECM的沉积 [25] ,目前TGF⁃β靶基因 attenuates bleomycin⁃induced pulmonary fibrosis[J]. Phy⁃
越来越被认为是 BPD 的致病因素 [26] 。TGF⁃β1 启动 tother Res,2020,34(10):2685-2696
[10] ZHANG Y,LU W,ZHANG X,et al. Cryptotanshinone pro⁃
了成纤维细胞向肌成纤维细胞的转化,并导致标志
tects against pulmonary fibrosis through inhibiting Smad
性蛋白α⁃SMA的显著增加 [27] ,这表明抑制纤维化细 and STAT3 signaling pathways[J]. Pharmacol Res,2019,
胞因子 TGF⁃β1 和靶向 TGF⁃β信号通路是 BPD 中纤
147:104307
维化治疗的潜在策略。本研究结果显示CTS可以降 [11] PANG X,SHAO L,NIE X,et al. Emodin attenuates silica⁃
低高氧后肺组织及HFL⁃1中的TGF⁃β1水平,同时降 induced lung injury by inhibition of inflammation,apopto⁃
低下游 Smad2/3 的磷酸化表达含量,表明 CTS 可能 sis and epithelial⁃mesenchymal transition[J]. Int Immu⁃
通过 TGF⁃β1/Smad 通路在 BPD 模型中发挥抗纤维 nopharmacol,2021,91:107277
化的作用。 [12] XU J,LI W,XU S,et al. Effect of dermatan sulphate on a
C57 ⁃ mouse model of pulmonary fibrosis[J]. J Int Med
综上所述,CTS 对高氧诱导肺损伤的 BPD 模型
Res,2019,47(6):2655-2665
具有保护作用,降低纤维化标志物α⁃SMA 的水平,
[13] THÉBAUD B,GOSS K N,LAUGHON M,et al. Broncho⁃
其机制可能与 TGF⁃β1/Smad 通路有关,具体上下游
pulmonary dysplasia[J]. Nat Rev Dis Primers,2019,5
的机制有待进一步研究。 (1):78
[参考文献] [14] DENG X,BAO Z,YANG X,et al. Molecular mechanisms
of cell death in bronchopulmonary dysplasia[J]. Apopto⁃
[1] GILFILLAN M,BHANDARI A,BHANDARI V. Diagno⁃
sis,2023,28(1⁃2):39-54
sis and management of bronchopulmonary dysplasia[J].
[15] 胡晶晶,郑亚斐,朱海艳,等. 肌腱蛋白C对支气管肺发
BMJ,2021,375:n1974
育不良诊断价值的前瞻性研究[J]. 南京医科大学学报
[2] 高倩茜,程 锐. 间充质干细胞外泌体的生物学功能及
(自然科学版),2023,43(4):531-535
其治疗支气管肺发育不良研究进展[J]. 南京医科大学
[16] LUI K,LEE S K,KUSUDA S,et al. Trends in outcomes
学报(自然科学版),2022,42(2):286-290
for neonates born very preterm and very low birth weight
[3] PARSONS A,NETSANET A,SEEDORF G,et al. Under⁃
in 11 high⁃income countries[J]. J Pediatr,2019,215:32-40
standing the role of placental pathophysiology in the de⁃
[17]WU Y H,WU Y R,LI B,et al. Cryptotanshinone:a review
velopment of bronchopulmonary dysplasia[J]. Am J
of its pharmacology activities and molecular mechanisms
Physiol Lung Cell Mol Physiol,2022,323(6):L651-L658
[J]. Fitoterapia,2020,145:104633
[4] MCGOWAN S. Understanding the developmental path⁃
[18] FU H,ZHANG T,HUANG R,et al. Calcitonin gene⁃relat⁃
ways pulmonary fibroblasts may follow during alveolar re⁃
ed peptide protects type Ⅱ alveolar epithelial cells from
generation[J]. Cell Tissue Res,2017,367(3):707-719
hyperoxia⁃induced DNA damage and cell death[J]. Exp
[5] LIU H,XIE J,FAN L,et al. Cryptotanshinone protects Ther Med,2017,13(4):1279-1284
against PCOS⁃induced damage of ovarian tissue via regu⁃ [19] YOU K,PARIKH P,KHANDALAVALA K,et al. Moder⁃
lating oxidative stress,mitochondrial membrane potential, ate hyperoxia induces senescence in developing human
inflammation,and apoptosis via regulating ferroptosis[J]. lung fibroblasts[J]. Am J Physiol Lung Cell Mol Physiol,
Oxid Med Cell Longev,2022,2022:8011850 2019,317(5):L525-L536
[6] HE X,ZHONG Z,WANG Q,et al. Pharmacokinetics and [20] REHAN V K,TORDAY J S. The lung alveolar lipofibro⁃
tissue distribution of bleomycin⁃induced idiopathic pulmo⁃ blast:an evolutionary strategy against neonatal hyperoxic