Page 130 - 南京医科大学学报自然科学版
P. 130

南京医科大学学报(自然科学版)                                  第41卷第8期
               ·1232 ·                    Journal of Nanjing Medical University(Natural Sciences)   2021年8月


             ·公共卫生与预防医学·

              2020年江苏省新型冠状病毒感染的肺炎时空分析



              时影影 ,沈文琪 ,嵇          红 ,赵子平 ,吴       莹 ,刘文东    1*
                     1
                                             2
                                                     1
                                     1
                             1
               江苏省疾病预防控制中心急性传染病防制所,江苏                  南京 210009;南京医科大学公共卫生学院,江苏               南京    211166
              1                                                    2
             [摘    要] 目的:分析江苏省新型冠状病毒感染的肺炎疫情时空聚集性,为进一步做好疫情防控提供依据。方法:绘制发病流
              行曲线、点标记图描述时空演变。采用最邻近指数(nearest neighbor indicator,NNI)估计本土病例全局聚集性;以县(区)为单
              位,采用 Kulldorff 扫描统计量探测时空聚集区。使用 Excel 2010、SaTScan 9.6.1、ArcGIS 10.2 进行分析。结果:江苏省 2020 年
              1—12 月共报告 684 例确诊病例,其中本土 631 例,境外输入 53 例。本土病例波及全省 79.44%的县(区),存在空间聚集性
             (NNI=0.27,P < 0.01)。时空扫描显示一级聚集区位于苏北 4 个设区市交界处,包括 21 个县区,时间为 1 月 26 日—2 月 1 日
             (LLR =74.92,RR=5.06,P < 0.01);3个二级聚集区涉及27个县区,其中二级聚集区2时间为2月上旬。输入病例涉及11个设区
              市28个县(区),其中南京23例、连云港9例。结论:江苏省疫情特征表现为“南北聚集,中部分散”。苏南长三角核心城市和苏
              北交通枢纽地区应不断优化防控策略,以早期发现并控制潜在的暴发。
             [关键词] 新型冠状病毒感染的肺炎;最邻近指数;时空扫描;江苏
             [中图分类号] R563.1                   [文献标志码] A                       [文章编号] 1007⁃4368(2021)08⁃1232⁃07
              doi:10.7655/NYDXBNS20210820



              Spatio⁃temporal clustering analysis of COVID⁃19 in Jiangsu,2020
                                              1
                                      1
                                                                    1
                                                           2
                         1
              SHI Yingying ,SHEN Wenqi ,JI Hong ,ZHAO Ziping ,WU Ying ,LIU Wendong 1*
              1 Acute Infectious Disease Prevention and Control Institute,Jiangsu Provincial Center for Disease Control and
              Prevention,Nanjing 210009;School of Public Health,Nanjing Medical University,Nanjing 211166,China
                                      2
             [Abstract] Objective:This study aims to clarify the evolution and space⁃time clusters of the coronavirus disease 2019(COVID⁃19)
              epidemic of Jiangsu,providing evidences for rapid detecting and responding to potential outbreaks. Methods:Epidemic curves and dot
              maps based on coordinates were applied to display the temporal the spatial evolution process. The nearest neighbor indicator(NNI)was
              used to estimate the global spatial aggregation of indigenous cases,and Kulldorff space⁃time scan statistic was performed to detect the
              space⁃time clusters at the county level. These analysis were performed by Excel 2010,SatScan 9.6.1 and ArcGIS 10.2. Results:A total
              of 684 confirmed cases were reported during 2020 in Jiangsu. There were 631 indigenous cases,involving 79.44% counties. The NNI of
              the indigenous cases was 0.27(P < 0.01),indicating global spatial aggregation. The most likely cluster covered four cities in north
              Jiangsu,including 21 counties,which emerged between January 26 and February 1(LLR=74.92,RR=5.06,P < 0.01). Three secondary
              clusters were detected in south Jiangsu,including 27 counties. In particular,secondary cluster ⁃ 2 happened in early February. 53
              Imported cases involved 28 counties in 11 cities,23 of which were admitted in Nanjing and 9 in Lianyungang. Conclusion:COVID⁃19
              cases concentrated in the south and north Jiangsu,but scattered in middle area. More efforts should be put into precise containments to
              contain potential local multipoint outbreaks in early stage,especially in the Yangtze River Delta core cities in south area and transport
              hubs in north area.
             [Key words] COVID⁃19;nearest neighbor indicator;space⁃time scanning;Jiangsu
                                                                           [J Nanjing Med Univ,2021,41(08):1232⁃1238]







             [基金项目] 江苏省卫生健康委科研项目(Z2019006);江苏省青年医学重点人才培养项目(QNRC2016542)
              ∗
              通信作者(Corresponding author),E⁃mail:jscdclwd@sina.cn
   125   126   127   128   129   130   131   132   133   134   135