Page 87 - 南京医科大学学报自然科学版
P. 87

第43卷第9期                           南京医科大学学报(自然科学版)
                  2023年9月                   Journal of Nanjing Medical University(Natural Sciences)     ·1265 ·


               ·影像医学研究·

                集成机器学习构建透明细胞肾细胞癌免疫影像分型及预测患

                者生存的价值



                李   巧 ,王宇昊 ,夏一凡 ,张玉东           1*
                                       1
                      1
                              2
                南京医科大学第一附属医院放射科,泌尿外科,江苏                   南京 210029
                1                           2

               [摘   要] 目的:基于集成机器学习(machine learning,ML)及增强 CT 构建透明细胞肾细胞癌(clear cell renal cell carcinoma,
                ccRCC)免疫影像(immuno⁃radiomics,ImRad)分型并探讨其对患者预后生存的预测价值。方法:收集癌症基因图谱(the cancer
                genome atlas,TCGA)数据库113例ccRCC患者的临床、影像及基因表达信息,提取全肿瘤影像组学特征,基于集成ML进行特征
                筛选并构建免疫浸润、肿瘤突变负荷、免疫耗竭相关基因的 ImRad 分型。进一步多因素 Cox 回归分析 ImRad 对患者总生存
               (overall survival,OS)的预测效能。结果:经ML构建30个ImRad分型,经五折法验证,基于朴素贝叶斯算法对肿瘤免疫微环境
                的预测效能最佳(曲线下面积0.717~0.956)。与基于临床、病理及ImRad单模态指标对比,融合临床⁃病理及ImRad的模型预测
                OS的效能最佳。ImRad特征中,Rad⁃激活态肥大细胞等8个特征是OS的独立预测因子。结论:基于集成ML及CT组学分析可
                预测ccRCC免疫微环境并提高预测患者术后生存的效能。
               [关键词] 透明细胞肾细胞癌;CT影像组学;机器学习;免疫浸润

               [中图分类号] R737.11                   [文献标志码] A                     [文章编号] 1007⁃4368(2023)09⁃1265⁃08
                doi:10.7655/NYDXBNS20230913



                Immune⁃radiomic phenotype based on ensemble machine learning in predicting survival
                of clear cell renal cell carcinoma
                                   2
                      1
                                              1
                LI Qiao ,WANG Yuhao ,XIA Yifan ,ZHANG Yudong 1*
                                       2
                1 Department of Radiology,Department of Urology,the First Affiliated Hospital of Nanjing Medical University,
                Nanjing 210029,China
               [Abstract] Objective:To construct hybrid immune⁃radiomic(ImRad)phenotypes of clear cell renal cell carcinoma(ccRCC)based
                on ensemble machine learning(ML)and contrast ⁃ enhanced CT,and to investigate its predictive value for survival. Methods:The
                clinical,CT imaging and gene⁃expression information of 113 ccRCC patients were collected from TCGA database. Radiomic features
                were extracted from whole tumor. ImRad predictors were constructed on tumor immune infiltration,tumor mutational burden,immune
                exhaustion gene expression after feature selection based on ensemble ML. Further,the predictive value of ImRad for overall survival
               (OS)was assessed using multivariate Cox regression analysis. Results:Among the 30 ImRad contructed by ensemble ML and
                validated by 5 folds cross validation,Naive Bayes algorithm achieved the generally best performance(area under the curve:0717-
                0.956). Clinicopathologic immune comprehensive model on predicting OS achieved the best performance,surpassing single modality
                indicators based on clinical,pathological and ImRad. Among ImRad features,Rad⁃Mast_cells_activated was one of eight independent
                predictive factors for patients’prognosis. Conclusion:CT radiomics based on ensemble ML can predict immune microenvironment
                and improve the prediction efficiency of postoperative survival of ccRCC.
               [Key words] clear cell renal cell carcinoma;CT radiomics;machine learning;immune infiltration
                                                                            [J Nanjing Med Univ,2023,43(09):1265⁃1272]





               [基金项目] 国家自然科学基金(82272082)
                ∗
                通信作者(Corresponding author),E⁃mail:zhang3895@njmu.edu.cn
   82   83   84   85   86   87   88   89   90   91   92