Page 106 - 南京医科大学学报自然科学版
P. 106
第43卷第9期
·1284 · 南 京 医 科 大 学 学 报 2023年9月
[参考文献] metric analysis to differentiate pseudo ⁃ progression from
early tumor progression[J]. J Neurooncol,2013,112(3):
[1] LOUIS D N,PERRY A,WESSELING P,et al. The 2021
413-420
WHO classification of tumors of the central nervous sys⁃
[12] AN G,AHN S,PARK J S,et al. Association between tem⁃
tem:a summary[J]. Neuro Oncol,2021,23(8):1231-
poral muscle thickness and clinical outcomes in patients
1251
with newly diagnosed glioblastoma[J]. J Cancer Res Clin
[2] 国家卫生健康委员会医政医管局. 脑胶质瘤诊疗规范
Oncol,2021,147(3):901-909
(2018年版)[J]. 中华神经外科杂志,2019,35(3):217-
[13] FURTNER J,GENBRUGGE E,GORLIA T,et al. Tempo⁃
239
ral muscle thickness is an independent prognostic marker
[3] WU X F,LIANG X,WANG X C,et al. Differentiating high⁃
in patients with progressive glioblastoma:translational ima⁃
grade glioma recurrence from pseudoprogression:compar⁃
ging analysis of the EORTC 26101 trial[J]. Neuro Oncol,
ing diffusion kurtosis imaging and diffusion tensor imaging
2019,21(12):1587-1594
[J]. Eur J Radiol,2021,135:109445
[14] KIM J Y,PARK J E,JO Y,et al. Incorporating diffusion⁃
[4] BRANDSMA D,VANDEN⁃BENT M J. Pseudoprogression
and perfusion⁃weighted MRI into a radiomics model im⁃
and pseudoresponse in the treatment of gliomas[J]. Curr
proves diagnostic performance for pseudoprogression in
Opin Neurol,2009,22(6):633-638
glioblastoma patients[J]. Neuro Oncol,2019,21(3):
[5] WEN P Y,MACDONALD D R,REARDON D A,et al.
404-414
Updated response assessment criteria for high⁃grade glio⁃
[15] LOHMANN P,GALLDIKS N,KOCHER M,et al. Ra⁃
mas:response assessment in neuro ⁃ oncology working
diomics in neuro⁃oncology:basics,workflow,and applica⁃
group[J]. J Clin Oncol,2010,28(11):1963-1972
tions[J]. Methods,2021,188:112-121
[6] VAN DIJKEN B,VAN LAAR P J,HOLTMAN G A,et al.
[16] 陈思璇,许 悦,叶梅萍,等. MRI 不同影像组学模型预
Diagnostic accuracy of magnetic resonance imaging tech⁃
测胶质瘤MGMT启动子甲基化状态的研究[J]. 磁共振
niques for treatment response evaluation in patients with
成像,2022,13(3):1-5
high⁃grade glioma,a systematic review and meta⁃analysis
[17] SU C Q,CHEN X T,DUAN S F,et al. A radiomics⁃based
[J]. Eur Radiol,2017,27(10):4129-4144
[7] 苏春秋,韩秋月,周茂冬,等. 动态对比增强MRI纹理分 model to differentiate glioblastoma from solitary brain me⁃
析法与磁敏感加权成像联合应用在脑胶质瘤分级中的 tastases[J]. Clin Radiol,2021,76(8):629
[18] 唐 薇,段俊艳,余子意,等. 增强 MRI 影像组学预测
价值[J]. 临床放射学杂志,2018,37(8):1264-1268
[8] 黄晓星,汪泽燕,肖学红,等. 术前MRI强化特征预测胶 脑胶质瘤 IDH⁃1 基因突变的价值分析[J]. 磁共振成
质母细胞瘤患者术后复发风险的价值[J]. 临床放射学 像,2022,13(5):111-114
[19] LI Z,MA X,SHEN F,et al. Evaluating treatment response
杂志,2022,41(2):217-223
[9] 唐文天,张梓枫,尹建新,等. 常规MRI特征在弥漫性星 to neoadjuvant chemoradiotherapy in rectal cancer using
形细胞瘤IDH基因突变预测中的临床价值[J]. 南京医 various MRI⁃based radiomics models[J]. BMC Med Imag⁃
科大学学报(自然科学版),2022,42(3):376-381 ing,2021,21(1):30
[20] 孙颖志,颜林枫,韩 宇,等. 利用机器学习鉴别胶质母
[10] SONG Y,ZHANG J,ZHANG Y D,et al. Feature explorer
细胞瘤标准化治疗后真假性进展的研究[J]. 神经解剖
(FAE):a tool for developing and comparing radiomics
models[J]. PLoS One,2020,15(8):e0237587 学杂志,2019,35(2):163-170
[11] AGARWAL A,KUMAR S,NARANG J,et al. Morphologic [收稿日期] 2023-04-30
MRI features,diffusion tensor imaging and radiation dosi⁃ (本文编辑:陈汐敏)