Page 145 - 南京医科大学自然版
P. 145

第44卷第11期             李安岚,俞曼殊,盛梅笑. 腹膜透析患者临床结局预后风险预测方法研究进展[J].
                 2024年11月                    南京医科大学学报(自然科学版),2024,44(11):1605-1611                      ·1611 ·


                    score in patients on peritoneal dialysis[J]. Front Nutr,  constructing large and complex cranial defects using an
                    2022,9:912642                                      image ⁃ based statistical shape model[J]. J Med Syst,
               [30]DO J Y,KIM A Y,KANG S H. Association between phase  2024,48(1):55
                    angle and sarcopenia in patients undergoing peritoneal  [44]CARANFIL E,LAMI K,UEGAMI W,et al. Artificial in⁃
                    dialysis[J]. Front Nutr,2021,8:742081              telligence and lung pathology[J/OL]. Adv Anat Pathol,
               [31]WEN Y Q,ZHAN X J,WANG N S,et al. Monocyte/lym⁃      2024(2024 ⁃ 05 ⁃ 23)[2024 ⁃ 05 ⁃ 27]. DOI:10.1097/
                    phocyte ratio and cardiovascular disease mortality in peri⁃  PAP.0000000000000448
                    toneal dialysis patients[J]. Mediators Inflamm,2020,  [45]VAMATHEVAN J,CLARK D,CZODROWSKI P,et al.
                    2020:9852507                                       Applications of machine learning in drug discovery and
               [32]ROSALES C. Neutrophils at the crossroads of innate and  development[J]. Nat Rev Drug Discov,2019,18(6):
                    adaptive immunity[J]. J Leukoc Biol,2020,108(1):   463-477
                    377-396                                      [46]DASHTBAN A,MIZANI M A,PASEA L,et al. Identify⁃
               [33]HUANG N Y,LI H Y,FAN L,et al. Serum phosphorus      ing subtypes of chronic kidney disease with machine
                    and albumin in patients undergoing peritoneal dialysis:in⁃  learning:development,internal validation and prognostic
                    teraction and association with mortality[J]. Front Med,  validation using linked electronic health records in
                    2021,8:760394                                      350 067 individuals[J]. EBio Medicine,2023,89:104489
               [34]YU Y,ZHONG Z,YANG W Z,et al. Neutrophil percent⁃  [47]DACK E,CHRISTE A,FONTANELLAZ M,et al. Artifi⁃
                    age⁃to⁃albumin ratio and risk of mortality in patients on  cial intelligence and interstitial lung disease:diagnosis
                    peritoneal dialysis[J]. J Inflamm Res,2023,16:6271-  and prognosis[J]. Invest Radiol,2023,58(8):602-609
                    6281                                         [48]SMITH L A,OAKDEN⁃RAYNER L,BIRD A,et al. Ma⁃
               [35]李    洋,王亚芬,李      相,等. TyG、CRP/Alb、25(OH)D          chine learning and deep learning predictive models for
                    与维持性腹膜透析患者预后的关联性[J]. 中国医师杂                         long ⁃ term prognosis in patients with chronic obstructive
                    志,2022,24(9):1335-1339                             pulmonary disease:a systematic review and meta⁃analy⁃
               [36]罗亚维,冯      胜,沈华英,等. C反应蛋白/白蛋白比值是                    sis[J]. Lancet Digit Health,2023,5(12):e872-e881
                    腹膜透析患者死亡的独立影响因素[J]. 中华肾脏病杂                   [49]XU L P,CAO F,WANG L,et al. Machine learning model
                    志,2022,38(6):528-535                               and nomogram to predict the risk of heart failure hospital⁃
               [37]MA S,CAI Y M,WANG Z,et al. Derivation and valida⁃   ization in peritoneal dialysis patients[J]. Ren Fail,2024,
                    tion of a risk score predicting risk of early⁃onset peritoni⁃  46(1):2324071
                    tis among patients initializing peritoneal dialysis:a cohort  [50]YANG J,WAN J F,FENG L,et al. Machine learning algo⁃
                    study[J]. Int J Infect Dis,2020,99:301-306         rithms for the prediction of adverse prognosis in patients
               [38]WANG Y X,SHEN Q Q,WANG J N,et al. The risk fac⁃     undergoing peritoneal dialysis[J]. BMC Med Inform De⁃
                    tors and predictive model for cardiac valve calcification in  cis Mak,2024,24(1):8
                    patients on maintenance peritoneal dialysis:a single⁃cen⁃  [51]ZANG Z Y,XU Q J,ZHOU X L,et al. Random forest can
                    ter retrospective study[J]. Ren Fail,2023,45(2):   accurately predict the technique failure of peritoneal dialy⁃
                    2271069                                            sis associated peritonitis patients[J]. Front Med,2023,
               [39]刘晨媛,吴娟洁,董金玲,等. 腹膜透析患者感染的影响                          10:1335232
                    因素及其风险预测列线图模型[J]. 中华医院感染学杂                   [52]唐    雯,高峻逸,马辛宇,等. 循环神经网络模型在腹膜
                    志,2023,33(20):3185-3189                            透析临床预后预测中的初步应用[J]. 北京大学学报
               [40]陈    婷,龙海波,黄千殷,等. 预测腹膜透析患者预后模                      (医学版),2019,51(3):602-608
                    型的构建与验证[J]. 中华肾脏病杂志,2020,36(9):              [53]XU Z Y,XU X,ZHU X M,et al. Attention⁃based deep
                    680-687                                            learning model for prediction of major adverse cardiovas⁃
               [41]KANG S H,DO J Y. Phase angle as a risk factor for mor⁃  cular events in peritoneal dialysis patients[J]. IEEE J
                    tality in patients undergoing peritoneal dialysis[J]. Nutri⁃  Biomed Health Inform,2024,28(2):1101-1109
                    ents,2023,15(23):4991                        [54]MA L T,ZHANG C H,GAO J Y,et al. Mortality predic⁃
               [42]HUANG D D,LI Y Y,QI X M,et al. A nomogram pre⁃      tion with adaptive feature importance recalibration for
                    dicts cardiovascular events in patients with peritoneal  peritoneal dialysis patients[J]. Patterns,2023,4(12):
                    dialysis⁃associated peritonitis[J]. Ren Fail,2022,44(1):  100892
                    1558-1567                                                              [收稿日期] 2024-05-27
               [43]LI J N,ELLIS D G,PEPE A,et al. Back to the roots:re⁃                         (本文编辑:陈汐敏)
   140   141   142   143   144   145   146   147   148   149   150