Page 97 - 南京医科大学学报自然科学版
P. 97

第42卷第7期             陈晓超,卜恒涛,梁 超,等. m5C甲基化相关基因预测肾透明细胞癌的预后[J].
                  2022年7月                     南京医科大学学报(自然科学版),2022,42(7):983-993                        ·993 ·


                    of a set of genes improving survival prediction in kidney  experimental datasets[J]. Nucleic Acids Res,2019,47
                    renal clear cell carcinoma through integrative reanalysis  (D1):D607-D613
                    of transcriptomic data[J]. Dis Markers,2020,2020:  [13] HEISSENBERGER C,LIENDL L,NAGELREITER F,et
                    8824717                                            al. Loss of the ribosomal RNA methyltransferase NSUN5
               [4] RONG D W,SUN G S,WU F,et al. Epigenetics:roles      impairs global protein synthesis and normal growth[J].
                     and therapeutic implications of non⁃coding RNA modifi⁃  Nucleic Acids Res,2019,47(22):11807-11825
                     cations in human cancers[J]. Mol Ther Nucleic Acids,  [14] JIANG Z,LI S,HAN M J,et al. High expression of
                     2021,25:67-82
                                                                       NSUN5 promotes cell proliferation via cell cycle regula⁃
               [5] WILKINSON E,CUI Y H,HE Y Y. Roles of RNA modifi⁃
                                                                       tion in colorectal cancer[J]. Am J Transl Res,2020,12
                    cations in diverse cellular functions[J]. Front Cell Dev
                                                                      (7):3858-3870
                    Biol,2022,10:828683
                                                                 [15] YANG R,LIANG X,WANG H,et al. The RNA methyl⁃
               [6] PAN J F,HUANG Z D,XU Y Q. m5C RNA methylation
                                                                       transferase NSUN6 suppresses pancreatic cancer develop⁃
                    regulators predict prognosis and regulate the immune mi⁃
                                                                       ment by regulating cell proliferation[J]. EBioMedicine,
                    croenvironment in lung squamous cell carcinoma[J].
                                                                       2021,63:103195
                    Front Oncol,2021,11:657466
                                                                 [16] AWAH C U,WINTER J,MAZDOOM C M,et al. NSUN6,
               [7] CHEN X,LI A,SUN B F,et al. 5 ⁃ methylcytosine pro⁃
                                                                       an RNA methyltransferase of 5⁃mC controls glioblastoma
                     motes pathogenesis of bladder cancer through stabilizing
                                                                       response to temozolomide (TMZ) via NELFB and
                     mRNAs[J]. Nat Cell Biol,2019,21(8):978-990
                                                                       RPS6KB2 interaction[J]. Cancer Biol Ther,2021,22(10/
               [8] HAN Z,YANG B,WANG Y,et al. Identification of ex⁃
                                                                       11/12):587-597
                    pression patterns and potential prognostic significance of
                                                                 [17] ZHU A P,HOPKINS K M,FRIEDMAN R A,et al. DN⁃
                    m(5)C ⁃ related regulators in head and neck squamous
                                                                       MT1 and DNMT3B regulate tumorigenicity of human
                    cell carcinoma[J]. Front Oncol,2021,11:592107
                                                                       prostate cancer cells by controlling RAD9 expression
               [9] MOUNIR M,LUCCHETTA M,SILVA T C,et al. New
                                                                       through targeted methylation[J]. Carcinogenesis,2021,
                     functionalities in the TCGA biolinks package for the
                                                                       42(2):220-231
                     study and integration of cancer data from GDC and GTEx
                                                                 [18] XU K,CHEN B,LI B,et al. DNMT3B silencing suppress⁃
                    [J]. PLoS Comput Biol,2019,15(3):e1006701
                                                                       es migration and invasion by epigenetically promoting miR⁃
               [10] ZHANG X K,WANG Y Y,A G R,et al. Pan⁃cancer analy⁃
                                                                       34a in bladder cancer[J]. Aging,2020,12(23):23668-
                    sis of PARP1 alterations as biomarkers in the prediction
                                                                       23683
                    of immunotherapeutic effects and the association of its ex⁃
                    pression levels and immunotherapy signatures[J]. Front  [19] PADDA J,KHALID K,YADAV J,et al. JAK2 and TET2
                                                                       mutation in polycythemia vera[J]. Cureus,2021,13(9):
                    Immunol,2021,12:721030
               [11] TANG Z F,KANG B X,LI C W,et al. GEPIA2:an en⁃      e17854
                    hanced web server for large ⁃ scale expression profiling  [20] PENG B,LI C,HE L,et al. miR⁃660⁃5p promotes breast
                    and interactive analysis[J]. Nucleic Acids Res,2019,47  cancer progression through down⁃regulating TET2 and ac⁃
                    (W1):W556-W560                                     tivating PI3K/AKT/mTOR signaling[J]. Braz J Med Biol
               [12] SZKLARCZYK D,GABLE A L,LYON D,et al. STRING        Res,2020,53(12):e9740
                    v11:protein⁃protein association networks with increased                 [收稿日期] 2022-04-18
                    coverage,supporting functional discovery in genome⁃wide                     (责任编辑:蒋 莉)
   92   93   94   95   96   97   98   99   100   101   102