Page 115 - 南京医科大学学报自然科学版
P. 115
第42卷第9期 南京医科大学学报(自然科学版)
2022年9月 Journal of Nanjing Medical University(Natural Sciences) ·1309 ·
·公共卫生与预防医学研究·
2005—2020年江苏省结核病发病和死亡趋势分析
张 瑜 ,卢 鹏 ,竺丽梅 ,陆 伟 ,羊海涛 1*
1
2
2
2
东南大学公共卫生学院流行病与卫生统计学系,江苏 南京 210009;江苏省疾病预防控制中心慢性传染病防制所,江苏
1 2
南京 210009
[摘 要] 目的:分析江苏省2005—2020年结核病发病和死亡趋势,并探讨年龄、时期及队列对其影响,为后期更好地控制结
核病提供科学依据。方法:采用Joinpoint回归方法分析江苏省2005—2020年结核病发病与死亡数据,计算其年度变化百分比
(annual percent change,APC)和平均年度变化百分比(average annual percent change,AAPC),采用基于R语言的年龄⁃时期⁃队列
模型网络工具对0~89岁人群的数据进行统计分析,估算其效应值。结果:男性、女性及总人口年龄调整发病率呈现下降趋势
(APC=AAPC=-7.3%,P < 0.001;APC=AAPC=-6.8%,P < 0.001;APC=AAPC=-7.1%,P < 0.001),男性、女性及总人口年龄调整死
亡率总体呈现下降趋势(APC=AAPC=-10.4%,P < 0.001;AAPC=-17.2%,P < 0.001;APC=AAPC=-10.0%,P < 0.001),人群发病
率均在20~24岁及70~74岁达到较高值,死亡率在80~84岁达到最高值,人群发病及死亡风险随着时期推移逐渐下降,越晚出
生的队列发病及死亡风险越低。结论:重点关注年龄对结核病的影响,男性、20~24岁和70~74岁人群是结核病发病的高危人
群,80~84岁年龄段人群是结核病死亡的高危人群。
[关键词] 结核;Joinpoint回归;年龄⁃时期⁃序列模型;发病率;死亡率
[中图分类号] R181.8 [文献标志码] A [文章编号] 1007⁃4368(2022)09⁃1309⁃07
doi:10.7655/NYDXBNS20220918
Trend analysis of tuberculosis incidence and mortality in Jiangsu Province from 2005 to
2020
2
1
2
2
ZHANG Yu ,LU Peng ,ZHU Limei ,LU Wei ,YANG Haitao 1*
Department of Epidemiology and Health Statistics,School of Public Health,Southeast University,Nanjing 210009;
1
2 Department of Chronic Communicable Disease Prevention and Control,Center for Disease Control and Prevention of
Jiangsu Province,Nanjing 210009,China
[Abstract] Objective:This study aims to analyze the trends of tuberculosis incidence and mortality in Jiangsu Province from 2005 to
2020,and to explore the effects of age,period and cohort on them,so as to provide a scientific basis for better control of tuberculosis
incidence and mortality in the later period. Methods:Joinpoint regression was used to analyze the incidence and mortality of
tuberculosis in Jiangsu province from 2005 to 2020,annual percent change(APC)and average annual percent change(AAPC)were
calculated. The data for people aged 0~89 years old were statistically analyzed by using the R⁃based age⁃period⁃cohort model web tool
to estimate effect values. Results:There was a monotonic down ward trend in age⁃adjusted incidence for males,females and the total
population(APC=AAPC=-7.3%,P < 0.001;APC=AAPC=-6.8%,P < 0.001;APC=AAPC=-7.1%,P < 0.001)and an overall down
ward trend in age⁃adjusted mortality formales,females and the total population(APC=AAPC=-10.4%,P < 0.001;AAPC=-17.2%,P <
0.001;APC=AAPC=-10.0%,P < 0.001),with the population incidence rate reaching higher values at the age of 20⁃24 and 70⁃74,and
the mortality rate reaching its highest value at the age of 80~84. With the risk of incidence and mortality decreasing overtime,the risk
of incidence and mortality in the population gradually decreased as the birth cohort moved backwards. Conclusion:Focusing on the
impact of age on tuberculosis,males,people aged 20⁃24 years and 70⁃74 years are populations with risk of tuberculosis incidence and
people aged 80⁃84 years are populations with risk of tuberculosis mortality.
[Key words] tuberculosis;Joinpoint regression;age⁃period⁃cohort model;incidence;mortality
[J Nanjing Med Univ,2022,42(09):1309⁃1314,1334]
[基金项目] 国家自然科学基金(82003516);江苏省卫健委医学科研面上项目(M2020020);江苏省科协青年科学人才托举工程
∗
通信作者(Corresponding author),E⁃mail:yanghtjscdc@163.com