Page 70 - 南京医科大学学报自然科学版
P. 70
第43卷第2期
·212 · 南 京 医 科 大 学 学 报 2023年2月
应。最近的研究表明,NAD 合成途径关键基因的突 malities:paternal 16p11.2 microdeletion and maternal
+
变可导致先天性畸形,包括编码色氨酸转运蛋白的 17q12 microduplication[J]. Psychiatr Genet,2021,31
基因、编码Kynurenine通路酶的基因(NMNAT1⁃3和 (6):246-249
NADSYN1) 。另外亦有研究表明 QPRT 拷贝数缺 [8] ULLMARK T,MONTANO G,JÄRVSTRÅT L,et al. Anti⁃
[17]
apoptotic quinolinate phosphoribosyltransferase(QPRT)
失并外源性烟酸缺乏的小鼠血液 NAD 浓度明显降
+
is a target gene of Wilms’tumor gene 1(WT1)protein in
低 [18] 。基于QPRT参与NAD 合成,推测小鼠模型表
+
leukemic cells[J]. Biochem Biophys Res Commun,2017,
现的肾脏病理组织学表型可能与其过低的 NAD 浓
+
482(4):802-807
度相关,这亦为我们研究 QPRT 影响肾脏发育的机
[9] CHAN K,LI X. Current epigenetic insights in kidney de⁃
制提供了方向。 velopment[J]. Genes(Basel),2021,12(8):1281
综上所述,本研究从 QPRT 基因敲除的成年小 [10] 刘曼菱,赵丽华,张曼玲,等. 胎猪肾脏发育不同时期相
鼠与胎鼠的肾脏等组织水平研究QPRT基因对胚胎 关信号分子的表达[J]. 南京医科大学学报(自然科学
肾脏发育的致病作用,预测 QPRT 基因可能为 RHD 版),2019,39(6):822-828
的潜在致病基因。本研究的不足之处在于未能探 [11] ISHIDOH K,KAMEMURA N,IMAGAWA T,et al. Quino⁃
索 QPRT 在肾脏发育中的具体调控机制。但是 linate phosphoribosyl transferase,a key enzyme in de no⁃
vo NAD(+)synthesis,suppresses spontaneous cell death
QPRT 基因是 NAD 合成途径的关键酶基因,这亦
+
by inhibiting overproduction of active⁃caspase⁃3[J]. Bio⁃
为从代谢角度深入研究 RHD 的致病机制提供了依
chim Biophys Acta,2010,1803(5):527-533
据,并有望为后续的临床诊断及靶向治疗提供新
[12] 朱浩然,张 鑫,祁俊侠,等. 利用双引导RNA的CRIS⁃
线索。 PR/Cas9 技术构建 Nudt3 基因敲除小鼠[J]. 南京医科
[参考文献] 大学学报(自然科学版),2021,41(7):949-955
[13] POYAN MEHR A,TRAN M T,RALTO K M,et al. De no⁃
[1] KNOERS N V A M. The term CAKUT has outlived its use⁃
fulness:the case for the defense[J]. Pediatr Nephrol, vo NAD+ biosynthetic impairment in acute kidney injury
in humans[J]. Nat Med,2018,24(9):1351-1359
2022,37(11):2793-2798
[14] LIU X,LIU S,ZHANG B,et al. Jian⁃Pi⁃Yi⁃Shen formula
[2] ELMORE S A,KAVARI S L,HOENERHOFF M J,et al.
alleviates chronic kidney disease in two rat models by
Histology atlas of the developing mouse urinary system
+
modulating QPRT/NAD /SIRT3/Mitochondrial dynamics
with emphasis on prenatal days E10.5⁃E18.5[J]. Toxicol
pathway[J]. Evid Based Complement Alternat Med,
Pathol,2019,47(7):865-886
2021,2021:6625345
[3] SHORT K M,SMYTH I M. Branching morphogenesis as a
driver of renal development[J]. Anat Rec(Hoboken), [15] HARSHMAN L A,BROPHY P D. PAX2 in human kid⁃
ney malformations and disease [J]. Pediatr Nephrol,
2020,303(10):2578-2587
2012,27(8):1265-1275
[4] PACKARD A,KLEIN W H,COSTANTINI F. Ret signal⁃
[16] HALLER M,AU J,O’NEILL M,et al. 16p11.2 transcrip⁃
ing in ureteric bud epithelial cells controls cell move⁃
tion factor MAZ is a dosage⁃sensitive regulator of genito⁃
ments,cell clustering and bud formation[J]. Develop⁃
urinary development[J]. Proc Natl Acad Sci U S A,2018,
ment,2021,148(9):dev199386
115(8):E1849-E1858
[5] WESTLAND R,VERBITSKY M,VUKOJEVIC K,et al.
Copy number variation analysis identifies novel CAKUT [17] SHI H,ENRIQUEZ A,RAPADAS M,et al. NAD Defi⁃
candidate genes in children with a solitary functioning ciency,congenital malformations,and niacin supplemen⁃
kidney[J]. Kidney international,2015,88(6):1402- tation[J]. N Engl J Med,2017,377(6):544-552
1410 [18] SHIBATA K,FUKUWATARI T. Organ correlation with
[6] CHAI O H,SONG C H,PARK S K,et al. Molecular regu⁃ tryptophan metabolism obtained by analyses of TDO⁃KO
lation of kidney development[J]. Anat Cell Boil,2013,46 and QPRT⁃KO mice[J]. Int J Tryptophan Res,2016,9:
(1):19-31 1-7
[7] ERBAY M F,KARAYAGMURLU A. Two siblings with [收稿日期] 2022-08-27
autism spectrum disorder and two different genetic abnor⁃ (本文编辑:唐 震)