Page 13 - 南京医科大学学报自然科学版
P. 13
第43卷第7期 孙文亚,何元林,陈秋臻,等. 小鼠原始卵泡形成过程中可变剪切的动态变化[J].
2023年7月 南京医科大学学报(自然科学版),2023,43(07):893-899 ·899 ·
本研究富集了大量与减数分裂调控有关的可 [10] SOUMILLON M,NECSULEA A,WEIER M,et al. Cellu⁃
变剪切事件,并验证了减数分裂相关基因亚型的存 lar source and mechanisms of high transcriptome com⁃
在,比如SE类型的Sycp1和Hormad1,并发现了它们 plexity in the mammalian testis[J]. Cell Rep,2013,3
在阶段转换时可变异构体的变化。在卵泡形成过 (6):2179-2190
[11] SCHMID R,GRELLSCHEID S N,EHRMANN I,et al.
程中,减数分裂或精子发生相关基因表达的显著降
The splicing landscape is globally reprogrammed during
低与卵母细胞减数分裂在二倍体期阻滞直至排卵
male meiosis[J]. Nucleic Acids Res,2013,41(22):
相一致。此外,该分析还有助于鉴定可能在卵母细 10170-10184
胞发育中起作用的基因的功能亚型或蛋白质。这 [12] TANG F,BARBACIORU C,NORDMAN E,et al. Deter⁃
些可变剪切相关的基因亚型或蛋白是否在卵母细 ministic and stochastic allele specific gene expression in
胞中发挥不可缺少的作用还需进一步的探究。除 single mouse blastomeres[J]. PLoS One,2011,6(6):
了 SE 类型剪切,本研究也揭示了 AF 剪切类型的富 e21208
集,尤其是在包囊破裂到卵泡形成转换期间。总 [13] DO D V,STRAUSS B,CUKUROGLU E,et al. SRSF3
之,本研究结果揭示了可变剪切在卵泡组装过程中 maintains transcriptome integrity in oocytes by regulation
of alternative splicing and transposable elements[J].
和细胞阶段转换相关,具有促进细胞分化、抑制减数
Cell Discov,2018,4:33
分裂等作用,揭示了卵泡组装过程中转录⁃可变剪切
[14] TRINCADO J L,ENTIZNE J C,HYSENAJ G,et al. SUP⁃
偶联调控的重要性。
PA2:fast,accurate,and uncertainty ⁃ aware differential
[参考文献] splicing analysis across multiple conditions[J]. Genome
Biol,2018,19(1):40
[1] ROSSETTI R,FERRARI I,BONOMI M,et al. Genetics
[15] GARRIDO⁃MARTIN D,PALUMBO E,GUIGO R,et al.
of primary ovarian insufficiency[J]. Clin Genet,2017,91
Ggsashimi:sashimi plot revised for browser⁃and annota⁃
(2):183-198
tion⁃independent splicing visualization[J]. PLoS Comput
[2] CHON S J,UMAIR Z,YOON M S. Premature ovarian in⁃
Biol,2018,14(8):e1006360
sufficiency:past,present,and future[J]. Front Cell Dev
[16] GEUENS T,BOUHY D,TIMMERMAN V. The hnRNP
Biol,2021,9:672890
family:insights into their role in health and disease[J].
[3] PODFIGURNA ⁃ STOPA A,CZYZYK A,GRYMOWICZ
Hum Genet,2016,135(8):851-867
M,et al. Premature ovarian insufficiency:the context of
[17] DANIEL K,LANGE J,HACHED K,et al. Meiotic homo⁃
long⁃term effects[J]. J Endocrinol Investig,2016,39(9):
logue alignment and its quality surveillance are con⁃
983-990
trolled by mouse HORMAD1[J]. Nat Cell Biol,2011,13
[4] WANG C,ZHOU B,XIA G. Mechanisms controlling
(5):599-610
germline cyst breakdown and primordial follicle forma⁃
[18] DE VRIES F A,DE BOER E,VAN DEN BOSCH M,et
tion[J]. Cell Mol Life Sci,2017,74(14):2547-2566
al. Mouse Sycp1 functions in synaptonemal complex as⁃
[5] MCLAUGHLIN E A,MCIVER S C. Awakening the oo⁃
sembly,meiotic recombination,and XY body formation
cyte:controlling primordial follicle development[J]. Re⁃
[J]. Genes Dev,2005,19(11):1376-1389
production,2009,137(1):1-11
[19] ZIBETTI C,ADAMO A,BINDA C,et al. Alternative
[6] HE Y L,CHEN Q Z,DAI J C,et al. Single⁃cell RNA⁃Seq
splicing of the histone demethylase LSD1/KDM1 contrib⁃
reveals a highly coordinated transcriptional program in
utes to the modulation of neurite morphogenesis in the
mouse germ cells during primordial follicle formation[J]. mammalian nervous system[J]. J Neurosci,2010,30
Aging Cell,2021,20(7):e13424 (7):2521-2532
[7] MARASCO L E,KORNBLIHTT A R. The physiology of [20] KROTZ S P,BALLOW D J,CHOI Y,et al. Expression
alternative splicing[J]. Nat Rev Mol Cell Biol,2022,24 and localization of the novel and highly conserved game⁃
(4):242-254 tocyte ⁃ specific factor 1 during oogenesis and spermato⁃
[8] VERTA J P,JACOBS A. The role of alternative splicing genesis[J]. Fertil Steril,2009,91(5 Suppl):2020-2024
in adaptation and evolution[J]. Trends Ecol Evol,2022, [21] WRIGHT C J,SMITH C W J,JIGGINS C D. Alternative
37(4):299-308 splicing as a source of phenotypic diversity[J]. Nat Rev
[9] BARALLE F E,GIUDICE J. Alternative splicing as a reg⁃ Genet,2022,23(11):697-710
ulator of development and tissue identity[J]. Nat Rev Mol [收稿日期] 2023-01-04
Cell Biol,2017,18(7):437-451 (责任编辑:蒋 莉)