Page 24 - 南京医科大学学报自然科学版
P. 24
南京医科大学学报(自然科学版) 第44卷第2期
·162 · Journal of Nanjing Medical University(Natural Sciences) 2024年2月
·基础研究·
负载仙茅苷的3D打印复合支架促进血管化和成骨效应的研究
袁秀琛 ,范世杰 ,段伟豪 ,谭亚东 ,吴璟斌 ,周瑞凯 ,翁益平 1,2*
2
2
2
1,2
2
2
蚌埠医学院研究生院,安徽 蚌埠 233030;南京医科大学附属常州市第二人民医院骨科,南京医科大学常州医学中心,江
1 2
苏 常州 213003
[摘 要] 目的:研究负载仙茅苷的三维复合支架的理化特性,并评估其对人脐带静脉内皮细胞(human umbilical vein endo⁃
thelial cell,HUVEC)和小鼠骨髓间充质干细胞(bone marrow mesenchymal stem cell,BMSC)促进血管化和骨诱导方面的潜在作
用。方法:采用乳液/溶剂蒸发技术制备负载仙茅苷(curculigoside,CUR)的聚己内酯微球(CUR⁃PM),借助3D生物打印技术成
功构建了由羟基磷灰石(hydroxyapatite,HA)、明胶(gelatin,GEL)和海藻酸钠(sodium alginate,SA)组成的三维复合(hydroxyapa⁃
tite gelatin sodium alginate,HGS)支架的基础上,制备了负载仙茅苷的聚己内酯微球(hydroxyapatite gelatin sodium alginate curcu⁃
ligoside,HGSC)支架。通过扫描电镜、红外光谱、流变学、力学性能、药物释放和降解性等实验对支架进行表征;通过CCK⁃8、
EdU荧光染色实验以验证支架的生物安全性;通过HUVEC细胞管形成实验、碱性磷酸酶(alkaline phosphatase,ALP)染色,评估
HGSC用于促进细胞血管化和成骨调控的潜能。结果:HGSC内部具有大小均匀的网格状结构,与HGS相比,具有适当的力学
性能和降解性。CCK⁃8 和 EdU 荧光染色结果显示,HGSC 支架具有良好的生物相容性。HUVEC 细胞管形成实验和 BMSC 的
ALP染色结果表明,HGSC支架表现出促进血管化和骨形成的潜能。结论:HGSC支架具备良好的生物相容性,并且对BMSC的
骨诱导潜能和HUVEC的血管化具有明显的促进作用,为骨缺损修复提供了具有前景的治疗策略。
[关键词] 3D打印;微球;仙茅苷;血管化;骨修复
[中图分类号] R681 [文献标志码] A [文章编号] 1007⁃4368(2024)02⁃162⁃08
doi:10.7655/NYDXBNSN230865
Research on 3D printed composite scaffolds loaded with curculigoside for promoting
vascularization and osteogenesis
2
2
2
2
1,2
2
YUAN Xiuchen ,FAN Shijie ,DUAN Weihao ,TAN Yadong ,WU Jingbin ,ZHOU Ruikai ,WENG Yiping 1,2*
2
1 Graduate School,Bengbu Medical College,Bengbu 233030;Department of Orthopaedics,the Affiliated Changzhou
NO.2 People’s Hospital of Nanjing Medical University,Changzhou Medical Center,Nanjing Medical University,
Changzhou 213003,China
[Abstract] Objective:This study aimed to investigate the physicochemical properties of a three ⁃ dimensional(3D)composite
scaffold loaded with curculigoside(CUR)and assess its potential impact on promoting angiogenesis and osteogenic induction in human
umbilical vein endothelial cells(HUVEC)and mouse bone marrow mesenchymal stem cells(BMSC). Methods:Polycaprolactone
microspheres loaded with Curculigoside(CUR⁃PM)were prepared using an emulsion/solvent evaporation technique. We successfully
engineered a 3D composite scaffold comprising hydroxyapatite(HA),gelatin(GEL),and sodium alginate(SA)with the assistance of
3D bioprinting technology,denoted as HGS. Furthermore,we established a polycaprolactone⁃based microsphere scaffold,referred to as
HGSC,for the purpose of CUR loading. The scaffold was characterized by scanning electron microscopy,infrared spectroscopy,
rheology,mechanical properties,drug release,and degradation experiments. The biocompatibility of the scaffold was verified using CCK⁃8
and EdU fluorescence staining experiments. The potential of the HGSC scaffold to promote cell vascularization and bone regulation was
assessed through HUVEC tube formation experiments and alkaline phosphatase(ALP)staining. Results:The HGSC exhibited a
uniform grid ⁃ like structure with appropriate mechanical properties and degradation compared to HGS. The CCK ⁃ 8 and EdU
fluorescence staining demonstrated excellent biocompatibility of the HGSC scaffold. The outcomes of HUVEC tube formation
[基金项目] 常州市科技计划资助(CE20215020);南京医科大学常州医学中心科研项目(CMCC202217)
∗
通信作者(Corresponding author),E⁃mail:czeywengyiping@163.com